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ABSTRACT Fluctuation analysis is the standard experimental method for measuring mutation rates in
micro-organisms. The appearance of mutants is classically described by a Luria-Delbrlick distribution com-
posed of two parameters: the number of mutations per culture (m) and the differential growth rate between
mutant and wild-type cells (b). A precise estimation of these two parameters is a prerequisite to the
calculation of the mutation rate. Here, we developed bz-rates, a Web tool to calculate mutation rates that
provides three useful advances over existing Web tools. First, it allows taking into account b, the differential
growth rate between mutant and wild-type cells, in the estimation of m with the generating function.
Second, bz-rates allows the user to take into account a deviation from the Luria-Delbriick distribution called
z, the plating efficiency, in the estimation of m. Finally, the Web site provides a graphical visualization of the
goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcgb.
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A classical approach to calculate mutation rates (u) in micro-organisms
consists in performing fluctuation analyses through multiple cultures
grown in parallel under identical conditions (Luria and Delbriick 1943).
Each individual culture is started with a small inoculum such that the
mutational events that occur during the culture are independent. Cul-
tures are then plated on selective media to determine the number of
mutants present in each culture. Estimating the mutation rate from
these experimental data is of great interest for biologists and has been
the object of many mathematical developments [for review, see Foster
(2006)].

Calculating mutation rates requires to first estimate the mean number
of mutations per culture () under the assumptions of a Luria-Delbriick
distribution model (Lea and Coulson 1949). Once a value of m has been
calculated, the mutation rate . can be easily inferred by dividing m by the
total number of cells in the culture [although this can lead to an un-
derestimation of the mutation rate (Ycart and Veziris 2014)]. Most of the
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available estimators rely on the maximum likelihood (ML), method
which was shown to be accurate for recovering m values (Sarkar et al.
1992; Jones 1994; Stewart 1994; Jaeger and Sarkar 1995; Zheng 2002;
Gerrish 2008). However, ML estimators can become unstable for fluctu-
ation assays involving cultures with large numbers of mutants. In such
cases, the empirical probability generating function (GF) remains robust
and is preferred over ML (Hamon and Ycart 2012).

One major parameter affecting the estimation of m is b, the differ-
ential fitness between mutant and wild type cells (i.e., the ratio between
the mutant and the wild-type growth rates). In the case of differential
growth rate, several estimators that jointly calculate m and b have long
been made available (Koch 1982; Jones 1994; Jaeger and Sarkar 1995;
Zheng 2002, 2005; Hamon and Ycart 2012). The code of these estima-
tors is easily accessible but requires running command lines or install-
ing third-party tools.

In addition, the estimation of m also can be affected by another
parameter: the plating efficiency, z. This criterion is defined as the
fraction of the cultures that is plated on selective media. This parameter
accounts for the fact that not all mutants are experimentally detected
when only a fraction of the cultures is plated.

Here we propose a new integrated Web tool called bz-rates, which
provides three useful advances over the only Web tool available to
estimate m (Hall et al. 2009). First, it allows taking into account b,
the differential growth rate between mutant and wild-type cells, in
the estimation of m with the GF. Note that bz-rates does not propose
new mathematical developments but fully relies on the available GF
estimator. Second, bz-rates allows the user to take into account the

Volume 5 | November 2015 | 2323


http://www.lcqb.upmc.fr/bzrates
http://www.lcqb.upmc.fr/bzrates
http://creativecommons.org/licenses/by/4.0/
mailto:gilles.fischer@upmc.fr
mailto:gilles.fischer@upmc.fr

1.0

Model vs data

0.8

2
o

Cumulative distribution
o
ry

0.2

e |m
‘. H
mcorr
ucorr
CLlower
CLupper
b

blower
bupper
meanNc
|sdNc
\chi2
chi2-p

Generating Function

8.01
1.3355851e-06
8.01
1.3355851e-06
1.013e-06
1.659%¢-06
0.824

0.

1.048
6.000e+06
0.000e+00
1.53333333333
0.820720935971

679

e e Fluctuation data
- - LD Model

0.0 o

10

20

30 40
Mutants per culture

50 60

Model vs data

o - SO - §- - - W - -

08
b

o
o

Cumulative distribution
o
s

Generating Function

m

o

mcorr
ucorr
CLlower
CLupper
b

blower
bupper
meanNc
sdNc
chi2
chi2-p

5.873e-10
0.705
5.873e-10
5.464e-10
6.282e-10
1.315

1.225

1.42
1.200e+09
0.000e+00
13.1213083348
0.216968220186

A Mutation rate calculator
b : the relative fitness of mutant versus WT cells is known No
z : plating efficiency or fraction of a culture plated (0 <z < 1) 1
: 29 6000000
Copy / paste your fluctuation data here 25 6000000
Nputants [tab/space] Nggys 12 6000000
17 6000000
16 6600000
10 6000000
Nmutants : number of mutants on the plate 8 6000000
N X b folatad ca 9 6000000
lcells : NUmber of plated cells 9 6000000
14 6000000
10_AAAANAA
Clear Run
Model vs data
C
P e
i g
pmmb ==y
S [
. o
P
e
08 & g s i
. Generating Function
. m 7.19
; u 4.11026e-08
» mcorr 7.19
06 ;. pcorr  4.11026e-08
g ot CLlower 3.204e-08
® - CLupper 5.017e-08
b4 J b 1.022
_‘E "' blower ©0.87
] bupper 1.239
E 04 ! meanNc 1.750e+08
5 ; sdNc 0.000e+00
1 chi2 4.75116550117
g chi2z-p ©.576100961806
1
02 i
|
:’ e e Fluctuation data
J‘ - = LD Model
00
0 50 100 150 200

Mutants per culture

=
N

e e Fluctuation data
-~ LD Model

0 100 200 300 400 500 600
Mutants per culture

0.0

Figure 1 Screen shots of the bz-rates Web site. (A) The input form is composed of one choice-field (for the b parameter) and two boxes [for the z
parameter and a two-columned data box (Niutants and Neepis)]- If the user chooses to manually specify a value for b, a supplementary box appears
below the choice field. The z parameter is the plating efficiency which represents the fraction of a culture plated. The Npytants and Neepis box is
intended to enter the number of plated mutants and plated cells in each culture, respectively. Nmytants and Neejis must be spaced by a single white-
space or a tabulation. Here, the Npytants and Neepis box is filled with the values from our experimental fluctuation assay described in the result
section. (B—D) Each result section is composed of a numerical box (inside the plot) and a plot showing the cumulative distribution function fitted
to the experimental data: (B) results from our experimental fluctuation assay, (C) results from a Luria and Delbriick fluctuation analysis of mutations
conferring virus resistance in bacteria [corresponding to the pool of experiments number 1, 10, 11, 15, and 21 from Table 2 in (Luria and Delbriick
1943)], and (D) results from a fluctuation experiment of mutations conferring nalidixic acid resistance in Escherichia coli from Boe et al. (1994).

z deviation in the estimation of m by using the formulation suggested in
(Foster 2006) and initially proposed by Stewart et al. (1990). Note that
more recent formal mathematical treatments to this problem also are
available but were not implemented here (Stewart 1991; Jones 1993;
Zheng 2008a). Finally, bz-rates computes the goodness-of-fit [as de-
scribed in Boe et al. (1994)] between the experimental data and the
two-parameter Luria-Delbriick model and provides the user with a
graphical visualization of the fit.

MATERIALS AND METHODS

Fluctuation assay

Fluctuation assays were performed with a BY4741 yeast strain (TRP1A5’
(1-362):natNT2, CYCIA:TRPIA3' (864-958)-hph, ura3, clb5A :KanMX4)
carrying two nonfunctional alleles of the TRPI gene involved in trypto-
phan biosynthesis on two different chromosomes. One copy is
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truncated in 3’ and the other copy in 5’ leaving a 400-bp homology
region repeated in the two alleles. A nonallelic homologous recombina-
tion event between the two heteroalleles generates a reciprocal translo-
cation that restores tryptophan prototrophy. These mutant cells can
therefore be easily selected by plating the cultures onto standard complete
synthetic media depleted for tryptophan. To summarize in brief, 30
parallel cultures (500 pL) were started by inoculating into rich media
(Broth Yeast Extract-Peptone-Dextrose) ~100 cells per well in a 2-mL
deep-well plate. Cells were grown without agitation at 30° until they
reached an optical density of 0.85 (6 x 10° cells/mL) and plates were
incubated for 4 d at 30° before counting the number of mutants per plate.

Growth rates

The growth rate of three independent mutants and wild-type cells was
measured by growth curve experiments in 100 wL of rich media with
a Tecan Sunrise robot in triplicates.
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Data availability

bz-rates was developed in Python with the Django v1.6 framework. It is
a free Web tool distributed under the terms of the GNU General Public
License. bz-rates is accessible at http://www.lcgb.upmc.fr/bzrates. The
source code, available at https://github.com/gillet/bzrates, can be easily
modified to implement other estimators and clones of the tool can be
set up elsewhere.

RESULTS

Implementation
bz-rates uses the empirical probability GF estimator from Hamon and
Ycart (2012) and Ycart (2013). This method allows a precise estimation
of m across a larger range of parameter values than the ML method.
The cellular division time model chosen in bz-rates is not the classical
exponential model but a constant division time model (Dirac). Al-
though there is no universal cellular division time model because it
depends on experimental conditions like the strain or the media, the
Dirac model usually is the most accurate for the estimation of b and as
accurate as the exponential model for the estimation of m. Note that
this division time model induces a positive bias in the estimation of
large values of m (Ycart 2013).

When b is known, the value provided by the user is used to estimate
m with the GF. However, when the mutant relative fitness b is not
known, bz-rates estimates both m and b with the GF function.

The m,,,, value that takes into consideration the plating efficiency
z is calculated according to equation (41) in (Stewart et al. 1990):
Meor = m - (z—1)/(z - In(z)). w is defined as m/Np and p o as
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Meorr/Nt, where Np and Nt represent the mean number of cells per
plate and per culture, respectively. CLipyer and CL - provide the lower
and upper confidence limits of m,,,, (level of confidence = 95%). o'n,
provides the standard deviation of the number plated cells.

To test the goodness-of-fit of the data to the model, bz-rates performs
a Pearson’s chi-square test. The value of x? gives the Pearson’s chi-
square goodness-of-fit and the x? — pval its associated p-value. The null
hypothesis is rejected in the case x? — pval < 0.01 meaning that the
cumulative distribution function does not fit with the experimental data
(empirical cumulative distribution function). In this case, the user is
warned that the estimation of the mutation rate is not reliable.

Interface

bz-rates is composed of a simple form (Figure 1A). The first choice field
provides the user with the possibility to indicate that b is known. In this
case, the b field appears and the experimentally determined value of
b can be filled in (0 < b < «). Otherwise, b will be estimated compu-
tationally by the GF.

The second box allows to fill in the plating efficiency z (i.e., the
proportion of cells from each culture that was plated, default value:
z=1).

The main field is the “N,,uans Neenis” box that parses the fluctuation
analysis counts. N,,;;,sanes and N5 are the number of plated mutants and
plated cells per culture, respectively. This field is Excel-ready; thus, counts
can be directly copy/pasted into this box without further formatting.

The bz-rates result section is composed of two parts: the numerical
and the graphical boxes (Figure 1). The numerical box on the left
provides the following estimates:
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e m: mean number of mutations per culture not corrected by the
plating efficiency (2)

e w: mutation rate per cell per division not corrected by the plating
efficiency (z)

® Mg, number of mutations per culture corrected by the plating
efficiency (z)

® . mutation rate per cell per division corrected by the plating
efficiency (z)

® CLjyer lower 95% confidence limit for m.,,,

®  CLypper: upper 95% confidence limit for m,,,

e b: mutant cells relative fitness predicted by the GF (only output if

b is left empty in the input field)

Diower: lower 95% confidence limit for b

bupper: upper 95% confidence limit for b

Nc: average number of plated cells per culture

one standard deviation of the number of plated cells

x?: Pearson’s chi-square value

X2 — pval: Pearson’s chi-square p-value

The graphical box plots the cumulative distribution function fitted to
the experimental data. It allows the user to visually judge for the
correctness of the hypothesized distribution. To quantify the quality
of the fit, bz-rates performs a Pearson’s chi-square goodness-of-fit
as described in Boe et al. (1994). If the null hypothesis is rejected
(p-value < 0.01), the user is advised by a red warning that the predicted
and observed distributions are not in close agreement. In this case, the
user should consider using another model that takes into consideration
other deviations from the Luria Delbriick model such as, for instance,
the postplating growth (Lang and Murray 2008). To do so, the user
should use an advanced mutation rate calculation packages to explore
different models such as Salvador (Zheng 2008b).

Experimental testing

A fluctuation assay was performed with a yeast strain carrying a genetic
system that is designed to generate a functional copy of an auxotrophic
gene when the cells undergo a specific chromosomal rearrangement
(a reciprocal translocation, see Materials and Methods). The resulting
mutant cells have a strong growth defect relatively to wild-type cells,
probably as the result of the translocation, that was experimentally
measured to 0.76 (Materials and Methods).

The form of Figure 1A is filled with the data of the 30 tubes fluc-
tuation assay that was undertaken. We neglected to specify the relative
growth rate of the mutants to compare the predicted relative growth
rate of bz-rates to the experimental measure. Figure 1B shows bz-rates
results. The plot indicates a good fit between the statistical distribu-
tion of the mutants and the experimental data. Pearson’s chi-square
goodness-of-fit value (1.16) and p-value (0.88) are displayed at the end
of the numerical box on the left. The mutation rate () is estimated to
1.33 % 107 per cell per division (95% confidence limits 1.01 X 10~° to
1.6 X 107¢ ) and the predicted mutant relative growth rate [0.82
(0.68—1.05)] is in close agreement with the experimental measure (0.76).

Published datasets and simulations

To test our implementation and the stability of the GF estimator in
bz-rates, we tested two published datasets: (i) the first dataset corre-
sponds to a historical fluctuation assay composed of 42 parallel cultures
performed by Luria and Delbriick (Figure 1C). With this dataset,
bz-rates predicts a mutation rate (4.11 x 1078) close to the one calcu-
lated by Luria and Delbriick (1943) (2.48 x 10~8). The value of m (7.19)
and b (1.022) are very close to the range of values reported in Hamon
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and Ycart (2012) [(5.22—8.89) for m and (0.74—1.22) for b]. We also
tested one larger fluctuation dataset from Boe et al. (1994) that is
composed of 1102 cultures (Figure 1D). In this case, bz-rates reports
a m value of 0.705, which is close to the one calculated in Hamon and
Ycart (2012) (0.65—0.77) and the one calculated in Zheng (2005)
(0.71). The mutant differential growth rate value is 1.315, which is
a bit greater than the one reported by Zheng (2005) with a ML ap-
proach (b = 1.193).

The performance of bz-rates also was tested on simulated datasets.
We generated simulated fluctuation assays for different couples of m
and b with either 16, 32, 48, 96, 192, or 384 parallel cultures (Figure 2).
As expected, the precision of the estimator increases with increasing
numbers of parallel cultures. The general trend that can be inferred
from these plots is that the precision on the estimation of m (and by
consequence the estimation of ) is higher for the smallest values of m.
Therefore, users should not outgrow the cultures in order to limit the
number of mutants that grow on selective plates.

Note that the GF estimator has also been extensively tested elsewhere
(Hamon and Ycart 2012; Ycart 2013) and the reader should refer to these
papers for an extensive review of the performance of this estimator.

bz-rates is a Web tool that does not require the installation of any
third party tool or run any command line to estimate mutation rates. It
has a minimalist design in order to provide biologists with a web-tool
the most straightforward as possible. To our knowledge there was so far
a single web-tool available for mutation rate calculation (Hall et al.
2009) but this tool does not allow to consider deviations from Luria
Delbriick or to estimate the goodness of fit with the model. Therefore,
bz-rates provides useful advances such as accounting for two important
deviations to Luria-Delbriick distributions (b and z) as well as giving an
indication of the reliability of the estimated mutation rates. We hope
that bz-rates will reveal useful to a broad community of microbiologists
and geneticists.
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