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Abstract

We present an effective time-independent implementation to model vibrational resonance Raman 

(RR) spectra of medium-large molecular systems with the inclusion of Franck-Condon (FC) and 

Herzberg-Teller (HT) effects and a full account of the possible differences between the harmonic 

potential energy surfaces of the ground and resonant electronic states. Thanks to a number of 

algorithmic improvements and very effective parallelization, the full computations of 

fundamentals, overtones, and combination bands can be routinely performed for large systems 

possibly involving more than two electronic states. In order to improve the accuracy of the results, 

an effective inclusion of the leading anharmonic effects is also possible, together with 

environmental contributions under different solvation regimes. Reduced-dimensionality 

approaches can further enlarge the range of applications of this new tool. Applications to 

imidazole, pyrene, and chlorophyll a1 in solution are reported, as well as comparisons with 

available experimental data.

1 Introduction

Resonance Raman spectroscopy (RR) has received much attention in recent years and has 

found applications in many areas such as analytical chemistry1 and the study of metal 

complexes2 and biological systems.3–5 The first distinguishing feature that RR shows with 

respect to non-resonant Raman is the so-called resonance enhancement:6 the intensity of the 

scattered radiation is 103-106 higher than the intensity of the regular Raman signal. This 
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property facilitates experimental measurements and, in most cases, also causes the resulting 

spectrum to be free from any “contamination” arising from the non-resonant Raman signal, 

which has a much smaller intensity. Resonance enhancement is also responsible for granting 

RR spectroscopy other peculiar features. Since it is due to the interaction of the incoming 

radiation with an electronic transition of the system, a RR spectrum carries information 

about the excited state(s). Traditionally, the methods of choice to study excited-state 

properties of molecules are UV-vis absorption and fluorescence spectroscopies. Both these 

methods have two disadvantages: first, because of the naturally short lifetime of some 

excited states, and because of the inhomogenous broadening caused by the environment, the 

band-width of most electronic transitions is usually very broad, especially in the case of 

molecules in solution; this “dilutes” the information that could be extracted from the 

spectrum, and it is usually difficult to record vibrationally resolved electronic spectra, even 

though the band-shape may be dominated by the vibronic structure. In RR, the band-width 

only depends on the initial and final states,6 which both belong to the ground state potential 

energy surface (PES), therefore the peaks’ width is comparable to the case of a non-resonant 

Raman spectrum. Another advantage of RR over traditional one-photon spectroscopies is 

that it is a vibrational spectroscopy, whence it is much easier to extract structural 

information about the system. A second consequence of the resonance enhancement is that 

only the molecular vibrations that are affected by the electronic transitions (in particular 

those vibrations that involve atoms close to the chromophore) will be visible in the spectrum 

because all other vibrational modes will not benefit from the enhancement and will have 

negligible intensity. This property is heavily exploited in the study of biological 

macromolecules,4,5 in which one may tune the incident radiation’s frequency to one 

particular chromophore within the system, obtaining information about the corresponding 

region of the macromolecule; if a regular Raman or infra-red spectrum is recorded, the high 

number of vibrational transitions of the molecule will produce an “overcrowded” spectrum 

which would be difficult to interpret.

All such characteristic features of RR have stimulated the research in this field, both 

experimentally6 and theoretically,7 but there is still much work to be done in both areas. In 

this contribution we present our work on the time-independent (TI) calculation of RR 

spectra8 within a general-purpose quantum chemistry program, with an emphasis on the 

computational applicability and scaling of the method with respect to system size. The 

implementation was designed as an integrated module in the multi-frequency virtual 

spectrometer under development in our group;9 in this way it can take advantage of the 

various features already present such as the handling of large systems through reduced-

dimensionality schemes, the modeling of the solvation environment, and anharmonicity. The 

present work is organised as follows: after an introduction on the theoretical framework of 

RR, the inclusion of anharmonicity and of environmental effects is discussed. As an 

illustration of the versatility and reliability of our procedure, we analyze the spectra of three 

different systems: imidazole, pyrene, and chloropyll a1.

2 Resonance Raman scattering cross-section

Raman scattering can be formally thought as a two-photon phenomenon where an incident 

electromagnetic radiation is inelastically scattered by the system, which can either absorb 
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(Stokes scattering) or release (anti-Stokes scattering) energy. The ability of a molecular 

system to give rise to Raman scattering is related to its transition polarizability tensor10 

between two different vibrational states belonging to the same electronic level. The Raman 

cross-section can be easily computed once the transition polarizability is known. For 

isotropic media it can be expressed as a combination of three isotropic invariants 

corresponding to the mean isotropic polarizability, the symmetric anisotropy, and the 

antisymmetric anisotropy, defined as11 (summation over repeated indices is implied):

(1)

where αs and αa are the symmetric and antisymmetric components of the polarizability 

tensor. For example, in the case of 90 degrees scattering with an incident radiation of 

frequency ω perpendicularly polarized with respect to the scattering plane, and an 

unpolarized scattered radiation,12 we have:

(2)

where ωs = ω−ωfi is the angular frequency of the scattered radiation. These expressions are 

general, and are applicable to both the resonant and non-resonant cases. One important 

difference, however, is that the non-resonant transition polarizability is symmetric, giving a 

vanishing contribution from the d2 term. There are several methods for the calculation of the 

RR polarizability, with different levels of approximations. The theoretical framework of RR 

can be traced back to the work of Placzek,13 who obtained sum-over-state formulas for the 

Raman transition polarizability in the resonant and non-resonant cases starting from the 

perturbation expansion of the wavefunction, and later Albrecht14 who gave separate 

expressions for the various contributions of the polarizability arising from the expansion of 

the transition dipole moments. The RR polarizability can then be written as a sum-over-state 

expression as follows:10

(3)

where 〈f| and |i〉 represent the final and initial vibrational states respectively, ωmi = ωm − ωi 

is the energy difference between the middle and initial state, μα and μβ are the cartesian 

components of the transition dipole moments between the ground and excited electronic 

states, γ is the excited state’s phenomenological damping constant, and the (infinite) 

summation runs over all vibrational states m′ belonging to the excited state PES. An 

equivalent expression for the RR polarizability can be obtained in the time domain:15–17

(4)

Both the time-dependent and the time-independent expressions require a model for the 

ground and excited PESs, and for the transition electric dipole moment. Usually the 

harmonic approximation is invoked for both states, but even though a geometry optimization 
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followed by a harmonic analysis can be routinely performed for the ground state with most 

electronic structure methods, the same task may prove to be much more difficult in the case 

of an excited state, and often requires a numerical differentiation of the energy gradient, 

which is much more time consuming. For this reason, further approximations are often 

invoked and most calculations of RR spectra assume that both states have the same normal 

modes and harmonic frequencies, and differ only in the equilibrium geometry, this 

assumption being known as the independent mode displaced harmonic oscillator18 

(IMDHO) model. The latter model has been extensively used to compute RR spectra,19–24 

based on either the time-dependent or the time-independent formulations. Additional 

methods used for the calculation of RR spectra can be derived by further manipulation of the 

time-dependent expression, which can be viewed as an equation for the motion of the 

starting vibrational wavepacket on the excited state PES. Under short-time dynamics 

conditions,15–17 it is possible to write the relative RR peak intensity as a ratio between the 

excited-state gradients calculated along the normal modes under consideration.25–28 The 

latter method is the simplest one for computing RR spectra and requires neither a sum-over-

state calculation, nor the evaluation of a half-Fourier transform. Following an alternative 

treatment, which also relies on the short-time dynamics approximation, it is possible to 

evaluate the RR spectrum by computing the geometrical derivative of the complex 

electronic polarizability under resonance conditions using linear response theory,29–34 

similarly to what is commonly done to compute frequency-dependent non-resonant Raman 

intensities, but with the additional complication that the finite lifetime of the excited state 

must be included in the calculation to avoid the singularities that appear in the undamped 

linear response equation. It should be clear from this brief discussion that there is currently a 

profusion of widely different methods that are used to compute RR spectra, each based on 

different assumptions and presenting its own challenges and advantages, and there are also a 

few works in the literature that have attempted to compare them against each other and also 

with respect to experimental data.20,35,36 However, the majority of RR spectra calculations 

present in the literature still relies on the IMDHO model to describe the excited-state PES. 

This provides a rather unbalanced description of the two states involved since a geometry 

optimization followed by a full harmonic analysis is performed for the ground state, whereas 

only the gradients are usually computed for the excited state. If the excited state’s normal 

modes are computed, the integrals which appear in the TI or TD polarizability expressions 

cannot be straightforwardly computed since the harmonic wavefunctions of the two PESs 

are expressed in different basis sets. In order to solve this problem, in the case of semi-rigid 

molecules without large-amplitude motions,37 the excited state normal modes can be related 

to the ones of the ground state via an affine transformation known as the Duschinsky 

relation:38

(5)

Where Q and Q′ are the ground and excited state normal modes respectively, and J and K 
are the Duschinsky matrix and the shift vector. By means of the Duschinsky relation it is 

possible to write down explicit equations that allow the calculation of RR intensities both in 

the TI and TD frameworks.8,39–41 As already pointed out, the most straightforward way to 

compute the Duschinsky matrix is to perform a geometry optimization followed by a 
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vibrational analysis for both states. This method is often called Adiabatic Hessian (AH),42 

but it is not the only way to obtain a meaningful description of the excited state normal 

modes. Indeed, the vibrational analysis for the excited state may also be performed at the 

ground state equilibrium geometry and the shift vector can be extrapolated from the 

gradient, a method known as Vertical Hessian (VH).42,43 If the harmonic approximation is 

exact then the two methods are equivalent, otherwise the choice of using one or the other 

depends on whether one needs a better description of the vertical region or the minimum of 

the excited PES. If the Duschinsky rotation is ignored and excited-state frequencies are not 

computed, the simplified methods known as Vertical Gradient (VG) and Adiabatic Shift 

(AS) are obtained; in the first one, only the excited-state gradient at the ground-state 

equilibrium geometry is computed, whereas for the second one the excited-state geometry is 

optimized, but the shape of the PES is then assumed to be the same as in the ground state.

2.1 Time-Independent calculation of the RR polarizability

In this work, we chose the time-independent approach for the calculation of the RR 

polarizability tensor. The transition dipole moments that appear in equation 3 can be 

expanded in a Taylor series with respect to the excited-state normal modes around the 

molecule’s equilibrium geometry. Keeping only the terms up to the second order in the 

polarizability we obtain:

(6)

where  and  are the transition dipole moment first and second derivatives with 

respect to the normal modes. This way of writing the expansion of the polarizability allows 

to draw a parallel with the non-resonant Raman polarizability, which is expanded directly in 

a Taylor series up to at least the first order (and more, whenever anharmonicity effects are 

considered). The zeroth and first order dipole expansion terms that appear in the resonant 

case are commonly referred to as Franck-Condon (FC), and Herzberg-Teller (HT), therefore 

the terms that appear in the polarizability expression can be classified as mixed FC-FC, FC-

HT, etc. terms, which can be considered the different orders in the expansion of the RR 

polarizability in the normal modes. The full second order of the polarizability contains a HT-

HT term, and two FC-D2 terms (where D2 refers to the second order derivative of the 

transition dipole moment). In this work we stop the dipole expansion up to the HT terms, 

therefore the polarizability contains all FC-FC, FC-HT, and HT-HT terms. Note that in these 

expressions the dipole moments are expanded with respect to the excited state normal modes 

(all quantities referring to the excited electronic state are denoted by an apex). This choice 
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allows for a simplification of the formulas to calculate the required Herzberg-Teller integrals 

and, if HT can be considered a good approximation, the two approaches are equivalent. The 

inclusion of HT terms is especially crucial in the case of symmetry-forbidden transitions, or 

transitions with a very low oscillator strength, while their inclusion may be forgone in the 

case of strongly allowed transitions.

The integrals that appear in equation 6 can be computed recursively.44–46 The time-

independent formulation of the RR polarizability has been implemented within the Gaussian 

suite development version47 by taking advantage of the features previously developed for 

one-photon spectra calculation,48,49 and in particular for one-photon absorption (OPA) 

which requires the very same transition integrals as RR. As already mentioned, the time-

independent scheme requires a truncation of the summation in equation 6 in order to be of 

any use. There is in principle an infinite number of middle states 〈m′|, therefore we need to 

screen them to select beforehand the states that are expected to give the greatest contribution 

to the dipole integrals. We have accomplished this by using a class-based method, described 

in Refs.42,48–51. The convergence of each Raman peak’s calculation can be gauged by 

evaluating the expression obtained by neglecting the denominator contribution in equation 6 

both numerically and analitically, as described in Ref.8. Alternative methods for the 

screening of integrals have also been proposed.52–54 While the prescreening method 

attempts to reduce the number of middle states that need to be included in the calculation, 

their number can still be significant, and does scale with the size of the system. Fortunately 

each middle state contributes independently to the total sum-over-state, therefore equation 6 

can be implemented in an effective parallel way, allowing us to apply our procedure to 

systems of medium and large size, without the need to introduce further approximations. 

More specifically, the middle states are separated into “classes” of excitations according to 

the number of simultaneously excited modes, and the contribution of a class is computed 

before moving to the next. Within each class, the calculation is split between all available 

processors, using a shared-memory Open Multi-Processing (OpenMP) protocol, and each 

processor treats a different family of middle states 〈m′|, where by family we intend a set of 

states with the same simultaneously excited oscillators, hence differing only by the number 

of non-null quanta for each mode. The number of states belonging to a class grows very 

rapidly with the class order, which makes it the bottleneck of the calculation. Parallelizing 

the latter step can speed up the calculation almost linearly with the number of processors. 

Additonally, each Raman peak can be computed independently of the others, therefore the 

evaluation of the different band intensities can also be parallelized if multiple machines are 

available.

The TI formulation has a few advantages. Since the recursion formulas used to compute the 

FC integrals are completely general, it is possible to compute the intensity of overtone and 

combination bands up to any order and the computational cost for a combination band is not 

significantly higher with respect to a fundamental band (though the raw number of possible 

combinations grows rapidly with the maximum allowed quantum number and with system 

size). This also allows the straightforward inclusion of temperature effects in the calculation, 

since this requires to select a finite number of different initial states according to their 

Boltzmann population. Finite temperature spectra may contain a greater number of bands, 
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whose computation can also be parallelized. The efficient implementation of FC integral 

calculation, along with the parallelization of the code, allows us to apply the TI picture with 

the Duschinsky and temperature effects to systems of medium-large size. Note that as the 

size of the system increases and we wish to keep intact the level of theory (i.e. inclusion of 

Duschinsky mixing) the actual RR spectrum calculation will never be the bottleneck of the 

whole computation since the excited-state vibrational analysis is by far the most demanding 

step (see section 8 for a specific example). The applicability of our method can therefore be 

extended to ever-larger systems by reducing the cost of the latter step, e.g. by using a more a 

ordable basis set or even by estimating the second derivatives using semi-empirical methods, 

or running the various steps involved in the numerical differentiation on separate machines.

3 Anharmonicity effects

Even though peaks’ intensities carry information about the excited electronic state of the 

system, RR can still be considered a vibrational spectroscopy since the transition involves 

two vibrational states belonging to the same PES. While a harmonic description of the 

ground-state PES to model vibrational spectroscopies can give good qualitative results, 

inclusion of anharmonic effects is often needed to achieve sufficient accuracy to allow a 

direct comparison with experimental results. This is especially true in the case of RR 

because peak positions are determined by the energies of the vibrational states, and it has 

been shown55–57 that anharmonicity can have huge effects, resulting in shifts of as much as 

150 cm−1 for C-H stretchings, and, more crucially, anharmonicity can affect the ordering of 

the vibrational modes, which can lead to erroneous peak assignments. The anharmonicity of 

the PES also affects spectroscopic intensities, as demonstrated in many works in the case of 

infra-red and vibrational circular dichroism spectra.55,58–62 In the case of non-resonant 

Raman spectroscopy, the inclusion of anharmonic contributions on the intensities calls for 

both an anharmonic description of the PES, and the inclusion of additional terms in the 

Taylor expansion of the Raman polarizability as a function of the normal modes of vibration 

up to the third order (the so-called electrical anharmonicity).55 In the TI picture of RR the 

transition dipole moment is instead expanded as a Taylor series, giving rise to Franck-

Condon, Herzberg-Teller, and possibly higher terms, so the inclusion of anharmonicity rests 

on the sole description of the vibrational states. An additional challenge faced in the case of 

RR is the fact that intensities rely on an accurate description of the excited state PES in 

addition to the ground-state one, and if performing a complete harmonic vibrational analysis 

for an excited state can itself be quite demanding, going beyond the harmonic approximation 

can prove to be truly herculean, unless the excited state can be computationally treated like a 

ground state, e.g. whenever it has a different symmetry or spin multiplicity with respect to 

the “true” ground state, or in cases like photon-induced ionizations where an electron is 

removed from the system. Anharmonicity effects can be included at different levels of 

approximation and with different methods.63,64 In this work we used our 

implementation65–68 of second order vibrational perturbation theory (VPT2) which can 

provide an accurate description of both anharmonic vibrational energies and wavefunctions. 

In VPT2 the perturbed wavefunctions are expressed as linear combinations of harmonic 

states, and in order to use this kind of expression in calculation of Franck-Condon integrals, 

we would have to perform a large number of computations for each RR peak, with a 
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prohibitive computational cost, bar for the smallest molecules. Because we are interested in 

applying our methodology to medium-large sized systems, we choose instead to limit the 

treatment of anharmonicity effects to the vibrational energies, which are employed in 

equation 6, in place of the harmonic ones, with no additional computational cost for the 

vibronic part. As already pointed out, computing the excited-state anharmonic frequencies 

with a full VPT2 treatment is computationally too expensive, and can only be done in 

conjunction with an electronic structure method for which analytical second derivatives of 

the excitation energy are available. We choose instead to use the ground-state anharmonic 

frequencies to estimate the excited-state ones, following the scheme proposed by some of 

us.64 Since in general the excited-state normal modes differ from the ground-state ones, the 

anharmonic shifts computed for the latter cannot be directly applied to the former. To solve 

this problem we compute the scaling factors between the harmonic ground-state energies 

and their anharmonic counterparts and then use the Duschinsky transformation to estimate 

the corresponding scaling factors for the excited state. The estimated excited state 

anharmonic frequencies can then be written as:64

(7)

Empirical scaling factors are commonly used to estimate anharmonicity effects for the 

ground state, and in fact they have also been used in the context of RR calculations.25,69–71 

Computing the scaling factors using vibrational perturbation theory, as opposed to using 

empirical ones, poses no transferability problems and is therefore much more suited for the 

estimation of the excited-state frequencies. The excited-state anharmonic frequencies are 

then inserted into equation 6 along with the ground-state ones, ands are also used in the 

recursion formulas used to compute the Franck-Condon integrals. It is worth noting that 

anharmonic frequencies are systematically lower than their harmonic counterparts, therefore 

if anharmonicity effects were included only in the ground state vibrational energies, the 

denominators in equation 6 would increase, leading to systematically lower absolute 

intensities. Because the anharmonicity shift tends to be much higher for higher-energy 

modes, this effect is also heterogenous along the spectrum, leading to an error in the relative 

intensities, in addition to the absolute ones. It is therefore crucial that anharmonicity effects 

be included for both electronic states.

This method of treating the anharmonicity of excited states can be validated by applying the 

full VPT2 treatment to excited states which, because of symmetry or other reasons, require 

no TDDFT response calculations. It should be noted that our vibronic method is not 

applicable in cases where there is a very large change in geometry and normal modes of the 

excited state with respect to the ground state’s because in that case the Duschinsky 

transformation is not sufficient to faithfully describe the relation between the two sets of 

normal modes. To summarize, our method for estimating anharmonic frequencies in the 

excited state seems suitable for those systems for which the vibronic spectrum can be 

computed in this framework. To support our claim, we computed the anharmonic 

frequencies of imidazole in its ground singlet state, and in its first triplet (T0) and ionized 
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(D0) states. We then computed the Duschinsky matrix and the anharmonic shifts for the T0 

and D0 states using equation 7 and compared the results.

While this method of treating anharmonic effects exonerates us from the calculation of high-

order geometric derivatives of the excitation energy, computing the anharmonic frequencies 

for the ground state alone is still very demanding, and scales unfavorably with system size. 

Fortunately, RR spectroscopy can benefit greatly from the use of a reduced-dimensionality 

scheme. Usually one is only interested in a specific region of the spectrum, therefore it is not 

necessary to compute the anharmonic frequencies of the normal modes which lie outside of 

it. Computationally, this means that the energy Hessian need only be computed after 

displacing the molecular geometry along the selected normal modes rather than the full 

ensemble, with a proportional saving in computational time. Unless the modes that are not 

included in the anharmonic treatment are very strongly anharmonic and strongly coupled to 

the selected modes, the discarded terms contribute marginally to the anharmonic correction, 

and can safely be eliminated, so peak positions are almost unaffected.72,73 In addition, a 

very small effect on the computed RR intensities can be expected because the harmonic 

frequencies will be used in place of the anharmonic ones for the non-selected modes in 

equation 6. In our examples, the effect of anharmonicity on intensities is not very big, 

therefore we can safely apply our reduced dimensionality scheme in the most complex 

cases.

4 Environmental effects on resonance Raman spectra

Though some reports of RR spectra of molecules in the gas phase exist,74–77 RR spectral 

measurements are most often performed on molecules in solution or more complex 

environments. The connection between the RR spectral response and the molecular 

environment is in fact so strong that RR measurements have been used to evaluate solvent 

reorganization energies associated with the electronic transition.78–80 The most evident 

environmental effect on the spectrum is the change in the positions of the peaks, related to 

the change in the vibrational energies, which can be quite significant.56 This change is one 

of the consequences of the change in the PESs and, by extension, in the vibrational 

wavefunctions that enter equation 3, causing a change in the intensity of the peaks, as well 

as their positions. Therefore we need a suitable computational protocol able to model the 

effects of the environment on all these parameters, having the capability of accurately 

calculating the energies, geometries, frequencies and vibrational wavefunctions of the 

system. While these requirements can be met by means of numerical algorithms, there are 

other issues which have to be solved before the model can be considered suitable for 

modeling RR spectroscopy. By limiting ourselves to solvated systems (similar 

considerations also apply to generic systems composed of a core molecule interacting with 

an external environment), it should be taken into account that RR scattering is a dynamical 

process. Therefore, the response of the solvent to the core system interacting with the 

external field will occur at different timescales, depending on the different degrees of 

freedom of the solvent molecules surrounding the core system. This results in both 

homogeneous and inhomogenous broadening effects of the spectral response caused by the 

presence of the solvating environment.81 The component of the solute-solvent interaction 

that acts at the polarizability level can be modeled by including an additional time-
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dependent dephasing term in the exponent of equation 4, and if this is simplified by a 

constant term, there is a resulting increase in the observed value for the damping constant γ 

that appears in equation 3, so it can no longer be attributed solely to the finite life-time of the 

excited electronic state. The choice of an appropriate value for the damping constant to be 

used in the spectrum simulation should therefore take into account the experimental 

conditions. In addition, the spectral peaks will also be broadened because of the presence of 

the solvent, and this latter effect can be empirically considered by using an arbitrarily chosen 

lineshape, such as a Gaussian or Lorentzian distribution function.

Coming back to the modeling of solvent effects on PESs, vibrational wavefunctions, and 

electronic excited states, a possible strategy consists in performing QM calculations within 

the framework of the Polarizable Continuum Model (PCM),82,83 which has been used in the 

past to model solvent effects in the context of RR spectroscopy.8,21,26,84–88 PCM is a so-

called focused model, which treats the solvent as a continuum polarizable dielectric medium 

that hosts the solute molecule, treated quantum mechanically, within a molecule-shaped 

cavity. The presence of the polarizable continuum alters the solute electronic density, via an 

effective solvent-dependent term in the molecular Hamiltonian, which in turn affects the 

solvent response, until self-consistency, which finally results in mutual solute solvent 

polarization effects. Besides such direct effects on the molecular electronic wavefunction, 

the presence of the continuum dielectric also alters the solute PES, i.e. its equilibrium 

geometry, vibrational frequencies and normal modes, resulting in a change in RR peaks’ 

positions, but it also affects all excited state properties required in RR calculations (i.e. 

transition dipole moments, excited state forces, etc.).

PCM has been extensively used to model solvent effects on both vibrational and electronic 

spectroscopies thanks to the development of algorithms to include solvent contributions in 

the different terms entering equation 3.

The peculiar nature of RR as a mixed vibrational-electronic property calls for care when 

considering the solvent time evolution, in order to correctly account for the dynamical 

aspects of the solute-solvent interaction,89 which differ if purely electronic,90,91 

vibrational57,92 or mixed electronic/vibrational phenomena89,93 are considered.

In the simple case of electronic absorption spectra, a possible (and most often used) partition 

of the solvent response to the electronic changes in the solute assumes the solvent electronic 

degrees of freedom to quickly equilibrate to the time-evolving solute electronic density, 

whereas the rest stay equilibrated to the unaltered ground state solute charge density, thus 

resulting in a non-equilibrium solute-solvent regime.89–91 The same also applies to 

vibrational spectroscopies,57,92 however the partition of the solvent response has to be done 

differently, because both the electronic and vibrational solvent degrees of freedom can, in 

this case, follow the solute charge density evolving in time. This formally results in a 

different definition of the non-equilibrium solvation regime.57,61,94

Unlike simple one-photon (electronic or vibrational) absorption, RR is at the same time a 

vibrational and an electronic phenomenon, therefore the definition of the physically 

consistent solvation regime to be used in the calculation of the RR polarizability is to be 
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done with care.89 By adopting a time-dependent picture, the RR polarizability can be seen as 

originating from the evolution in time of the starting vibrational wavepacket on the excited 

state PES. Therefore, depending on the timescale of such an evolution, it might be assumed 

that some of the solvent’s nuclear degrees of freedom remain static. To simulate such 

behavior within the PCM framework, extension of the vibrational non-equilibrium 

approach92,95 to excited states, within the further account of electronic non-equilibrium 

effects would be necessary. Such a model has never been proposed so far. In this paper, in 

order to partially account for such effects we will assume the PCM cavity to stay fixed, i.e. 

the geometrical arrangement of the solvent stay equilibrated to the solute equilibrium 

geometry. This implies the PCM cavity geometric derivatives to be discarded in the 

evaluation of excitation energy gradients and/or Hessians. As far as the ground state is 

concerned, we will instead make use of the aforementioned vibrational non-equilibrium 

regime57,92 It is worth remarking that the use of a fixed cavity cannot completely freeze the 

solvent’s nuclear degrees of freedom, because the nuclear solvent response, which 

contributes to the PCM excited state computed properties, is evaluated within the nuclear 

equilibrium regime. A further approximation which we will exploit in the following consists 

of performing a numerical differentiation of the (electronic) non-equilibrium excitation 

energy, where each atom is displaced along each cartesian coordinate first in the positive 

and then in the negative direction, and the derivative is then computed numerically. The 

PCM cavity is also kept fixed. A univocal assessment of the (nuclear+electronic) solvation 

regime to be exploited in modeling RR spectra is far from trivial. Therefore, in the following 

we will compare three different approaches to compute the parameters required for a RR 

calculation:

1. Equilibrium solvation: all solvent degrees of freedom are equilibrated with the 

solute. Both ground state and excitation properties are computed in this manner and 

the PCM cavity is mobile.

2. Fixed cavity: the PCM cavity is kept fixed in the calculation of all energy 

derivatives, for both the ground state and excitation properties, where the former 

are computed under the vibrational non-equilibrium regime, and the latter are 

computed in the electronic equilibrium solvation regime.

3. Non-equilibrium: in addition to keeping the cavity fixed, the vertical excitation 

energy is computed under (electronic) non-equilibrium conditions, and is 

numerically differentiated.

The choice of the solvation regime should also be coherent with the treatment of the excited-

state PES: in an adiabatic scheme, where the excited-state geometry is optimized and the 

PCM cavity is displaced along with it during the optimization, the equilibrium solvation 

should be selected. The other two regimes can be used in vertical treatments (VG or VH). In 

order to apply the other two solvation regimes to adiabatic schemes, the excited-state 

geometry optimization must also be performed with a fixed PCM cavity.

5 Computational details

All DFT, RR, and vibronic absorption calculations were performed using a development 

version of the Gaussian suite of quantum chemistry programs.47 The B3LYP96,97 functional 
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is adopted for imidazole and chlorophyll a1, while PBE098 is used in the case of pyrene, 

following previous studies establishing this functional as appropriate for this system.87 

Some test computations on pyrene were also performed with the CAM-B3LYP99 and the 

M06-2X100 functionals. The basis set was chosen taking each system’s size and consequent 

computational cost of each task into account. For imidazole the aug-cc-pVTZ101 was used 

for all calculations, for pyrene and chlorophyll a1 the ground state harmonic frequencies 

were computed with the double-zeta SNSD basis set102 whereas anharmonic effects and 

excited state frequencies were computed with the smaller 6-31G* basis set.

Solvent effects were taken into account using the Polarizable Continuum Model (PCM).82,83 

The PCM cavity was built using a system of interlocking spheres with the following radii 

expressed in Ångstroms: 1.443 for hydrogen, 1.926 for carbon, and 1.830 for nitrogen, 

1.7500 for oxygen, and 1.5105 for magnesium, each multiplied by a factor of 1.1. The 

solvents’ static and optical dielectric constants used are ε0 = 78.36 and ε∞ = 1.78 for water, 

ε0 = 35.69 and ε∞ = 1.81 for acetonitrile, and ε0 = 32.61 and ε∞ = 1.77 for methanol.

All Complete Active Space Self-Consistent Field (CASSCF) and Multi-State Complete 

Active Space Second-Order Perturbation Theory (MS-CASPT2)103 calculations were 

performed using the MOLCAS package (version 7.8).104–106

6 Imidazole in aqueous solution

Imidazole was chosen for its role in biological systems and because its small size and 

solubility in water allow for a very extensive analysis of the various contributions to the 

final spectra and of the different levels of approximation involved. For our study, we 

focused on the very bright π − π* transition, which appears around 210 nm. Because this 

transition is strongly allowed,107 we performed our calculations at the FC level.

6.1 Anharmonicity effects

As already mentioned, imidazole is an ideal candidate to illustrate our method for treating 

anharmonicity effects in RR spectroscopy. We performed the full VPT2 anharmonic 

analysis65–68 for imidazole in its ground S0 state and first triplet state T0, and for the radical 

cation ImH+ in the lowest energy D0 state. The calculations in each case involve a geometry 

optimization (see figure 1 for the three optimized geometries), followed by the calculation of 

harmonic force constants (to obtain the normal modes of vibration), and finally the 

numerical differentiations of the energy Hessian.

From the harmonic analysis of the three species, it is possible to compute the Duschinsky 

matrix and shift vector that relate the normal modes of the cation and the triplet to the 

normal modes of the singlet. Using equation 7 the anharmonic frequencies of the ground 

singlet state were used to estimate the anharmonic frequencies of the cation and triplet, 

which were compared to their VPT2 counterparts to assess the validity of our scaling 

scheme. The results are reported in table 1. The anharmonic frequencies obtained with the 

Duschinsky method are in excellent agreement with the VPT2 ones in the case of the 

doublet cation, with an average deviation of 0.4% and a maximum deviation of 1.1% for 

normal mode 15. A much larger deviation is observed in the case of the triplet state, with 
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deviations as high as 43% for the first normal mode. This behavior can be explained from 

the observation of the optimized structures (figure 1). The optimized structure for the triplet 

state presents a significant piramidalization of two atoms in the ring, resulting in a different 

molecular symmetry. The normal modes of the triplet state are poorly described in terms of 

the singlet state normal modes using a simple affine transformation such as the Duschinsky 

relation, leading to a very dense Duschinsky matrix (see Supporting Information for a 

pictorial representation of the Duschinsky matrices), with many elements of significant 

magnitude for each row (or column). In this case our vibronic model is not applicable. From 

these results it is reasonable to suggest that this method of estimating anharmonic 

frequencies rests upon the same assumptions behind the vibronic model itself, i.e. there 

should be a limited structural deformation associated with the electronic transition.

Figure 2 shows the harmonic and anharmonic RR spectra calculated for an incident 

wavelength of 224 nm, a damping of 500 cm−1, and with peaks convoluted with Gaussian 

functions with a half-width at half maximum (HWHM) of 10 cm−1. The spectra were scaled 

to have the same maximum intensity to compare them more easily. As expected, anharmonic 

bands are systematically redshifted with respect to the harmonic ones, and there is also a 

significant difference in the computed relative peak intensities. Notice also that in the 

anharmonic spectrum there is a very small peak at 1136 cm−1 which, in the harmonic 

spectrum, is obscured by the intense peak close to it. We finally note that imidazole is a 

small system, i.e. it has a limited number of vibrational modes, thus the resulting spectrum is 

relatively simple. In case of more complex systems, the combination of peak displacements 

and changes in relative intensities can potentially lead to notable differences in the 

bandshapes.

6.2 Effect of the solvation regime

As pointed out previously, solvent effects can be crucial in RR spectroscopy, and the choice 

of the solvation regime is of particular relevance. Because of water’s high polarity, the 

distinction between equilibrium and non-equilibrium solvation can have very dramatic 

consequences on spectroscopic properties. As already pointed out in section 4, for RR, as 

well as vibrationally resolved absorption and fluorescence spectra, it is necessary to make a 

distinction between electronic and vibrational non-equilibrium solvation, depending on 

which degrees of freedom of the solvent are allowed to relax and thus remain at equilibrium 

with the solute evolving with a timescale characteristic of the spectroscopic phenomenon. In 

the framework of a time-dependent picture, the vibronic structure characteristic of any 

electronic excitation and the RR response arise from the evolution of the initial vibrational 

wavepacket on the excited state PES, which may last long enough to allow for the relaxation 

of the solvent’s electronic (and, possibly, nuclear) degrees of freedom. The choice of the 

most appropriate solvation regime depends on the system and is by no means trivial. We 

have investigated the effect of the different approaches on RR and vibrationally resolved 

OPA spectra of imidazole in water by performing the calculations under the three distinct 

conditions described in section 4. First we considered the solvent in full equilibrium with the 

system, both in its electronic and nuclear degrees of freedom, then we considered the effect 

of keeping the PCM cavity fixed (where the vibrational non-equilibrium regime is employed 

in the computation of the harmonic or anharmonic vibrational ground state frequencies and 
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normal modes), and finally we performed the calculation with the addition of electronic non-

equilibrium effects on excited state properties. Note that we also included anharmonicity 

effects in all cases.

Electronic and nuclear non-equilibrium affects the computed spectra at different levels. 

Keeping the PCM cavity fixed only influences the calculation of the gradients (and, if 

required, Hessian and higher order derivatives) of the ground state energy and excitation 

energy that are used to model the PESs. Conversely, under equilibrium conditions, it is 

necessary to include in the derivatives additional terms accounting for the displacement of 

the cavity. This effect does not change the vertical energy or dipole strength of the transition 

(the latter accounted for by the FC terms), since neither involves any geometrical 

derivatives, but affects the shape of the excited-state PES and the HT and higher terms in the 

Taylor expansion of the dipole moments. It should be clear that the question of the 

vibrational non-equilibrium does not arise in the modeling of one-photon spectroscopies 

(e.g. absorption and fluorescence) unless one is interested in the vibronic bandshape, but is 

always present in the case of RR, for which even the simplest computational models require 

the calculation of the excited state gradient. Electronic non-equilibrium has a more dramatic 

effect, as it influences the calculated vertical excitation energies and can even affect the 

order of the excitations. Figure 3 shows the computed vibronic OPA spectra, the RR 

excitation profile (i.e. a plot of the RR intensity against the incident frequency at a fixed 

Raman shift) corresponding to the 8th normal mode (an in-plane bending motion, see the 

Supporting Information for a pictorial representation of the normal modes mentioned 

throughout the article), and the RR spectrum, under the three solvation regimes discussed in 

section 4. All spectra were computed at the Vertical-Gradient Franck-Condon (VG|FC) 

level, with the inclusion of anharmonic effects. Each band in the vibronic OPA spectrum 

was convoluted with a Gaussian function with a HWHM of 150 cm−1, while the peaks in the 

RR spectra were convoluted with Gaussian functions with a HWHM of 10 cm−1. The RR 

and RR excitation profile spectra employ a value for the damping constant of 500 cm−1. All 

spectra are shown in arbitrary units. The RR spectra were computed for an incident 

wavelength of 224 nm and, since we are more interested in comparing relative intensities 

rather than absolute ones, they were subsequently scaled to have the same maximum 

intensity.

All three vibronic OPA spectra show a similar convolution; the lowest energy band 

corresponds to the 0-0 transition, while the other bands arise mainly from the superposition 

of different peaks corresponding to transitions from the vibrational ground state to a 

combination of normal modes 11, 13, 14, and 15 in the excited state PES. The spectra show 

that there is only a slight change when the PCM cavity is held fixed (dashed orange line), 

and the resulting spectrum is almost superimposed to the spectrum obtained with a mobile 

cavity. The position of the peaks is expected to be almost identical in the two cases, as 

keeping the cavity fixed does not directly affect the vertical transition energy. The same 

behavior is observed in the case of the RR excitation profile. The RR spectrum instead 

shows a much more pronounced difference: the position of the peaks is heavily influenced 

by the solvation regime employed to compute the ground state anharmonic frequencies, with 

a smaller yet clearly discernible effect on relative intensities. A much larger change can be 

observed in the case of the electronic non-equilibrium: in this case the vertical transition 
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energy is blueshifted by about 1500 cm−1 (roughly 7.5 nm) and both the OPA spectrum and 

the RR excitation profile appear translated. In addition, the relative intensities of the 

absorption peaks are affected by the variation of the solvation regime, and the same behavior 

is observed in the excitation profile. The change in both intensity patterns is a consequence 

of the change in the computed excited-state forces under the two different solvation regimes. 

The RR spectrum shows a very different behavior, as there is very little change with respect 

to the fixed-cavity regime. The position of the peaks is a property of the ground state, 

therefore it is not influenced by the way excitation properties are calculated, and while a 

small change in the intensity pattern is noticeable, it is by no means as significant as in the 

case of the RR excitation profile, though this depends upon the chosen incident wavelength.

These results greatly highlight the nature of RR spectroscopy as a mixed electronic-

vibrational phenomenon which is heavily influenced by the environment and the choice of 

solvation regime.

6.3 Comparison with experiment

So far we have analyzed the effect of anharmonicity and solvation environment employing 

the simplest model for the vibronic transition (VG|FC). Before comparing our results with 

experimental data we needed to study the effect of Duschinsky mixing on the spectrum. To 

do so we compared the anharmonic (VH|FC) RR spectrum with the (VG|FC) one 

represented as a dashed orange line in figure 3 (whithin the fixed-cavity solvation regime). 

The results are represented in figure 4 a. Of course, peak positions are unaffected by the 

introduction of Duschinsky mixing, but relative intensities experience significant changes.

The comparison with experiment is complicated by the great number of parameters 

involved. First, one has to choose an incident frequency and a suitable damping constant, 

which can assume a wide range of different values. The incident frequency may be chosen 

to differ from the calculated vertical energy by the same amount as the experimental laser 

frequency differs from the measured absorption maximum.87 If the absorption spectrum is 

very broad this method may not be very precise. Note also that a lower damping constant 

may cause the spectrum to depend more strongly upon the chosen incident frequency.8 In 

addition, the solvation regime greatly affects both the vertical transition energy and the RR 

intensity pattern. The comparison may be greatly facilitated if both the experimental RR 

spectrum and RR excitation profile are available. We compare our results with experimental 

one by Balakrishnan et al,108 (see figure 4b), who measured the RR spectrum at an 

excitation wavelength of 229 nm, which corresponds to the very start of the absorption band 

of imidazole. The comparison of the experimental spectrum with the calculated VH one 

(figure 4a) shows that peak positions are reproduced well enough to permit an assignment. 

The band that appears around 1100 cm−1 is enhanced with respect to the experimental one, 

while the one at 1260 cm−1 has a lower than expected intensity, otherwise the agreement is 

fairly good, and the VH spectrum shows a better agreement with experiment than the VG 

one, owing to the effect of Duschinsky mixing. The small peaks between 1050 cm−1 and 

1150 cm−1 are in-plane bending motions of the C-H bonds;108 they are not visible in the 

theoretical spectrum because of their negligible calculated intensity or because they are 

obscured by the higher-intensity peak at 1100 cm−1. One possible source of errors may be 
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that imidazole in water can form hydrogen bonds with solvent molecules, whose effect is not 

fully captured by our implicit solvation model. A way to overcome this limitation is to use 

atomistic models for the environment, such as the QM/FQ/PCM model we have recently 

implemented.109–111 Because the experimental incident frequency is on the tail of the 

absorption bandshape there may also be contamination from the non-resonant Raman 

spectrum.

7 Pyrene in acetonitrile solution

The RR spectra of pyrene (D2h symmetry) and its derivatives have been previously studied 

both experimentally112 and theoretically.87,113,114 In this contribution we wish to draw upon 

the previous work by some of us87 and expand it by including anharmonicity and non-

equilibrium solvent effects in the spectrum calculation. The interesting property of the RR 

spectra of pyrene is the interference between different excited states. Contrary to what 

happens in the case of OP spectra, in RR the contributions from different electronic states 

must be added at the amplitude (polarizability) level rather than at the intensity level (the 

Raman cross section is quadratically dependent on the polarizability). The result is that the 

total spectrum is not simply the sum of the spectra arising from the different electronic 

states. The three excited states that should be taken into consideration are, in order of 

increasing energy, the 1B1u, 2B2u, and 2B1u states.87,112 In the case of pyrene calculations 

we chose the intermediate solvation regime, with ground state harmonic and anharmonic 

frequency calculations performed with vibrational non-equilibrium effects, and we kept the 

cavity fixed in all calculations involving the excited states. We performed a ground state 

geometry optimization followed by a normal mode calculation at the PBE0/SNSD102 level 

of theory. We also optimized the ground-state geometry and computed the anharmonic 

vibrational frequencies using the smaller 6-31G* basis set in order to obtain them at a 

reduced computational cost. The PBE0/SNSD harmonic frequencies were combined with 

the PBE0/6-31G* anharmonic shifts to obtain the anharmonic vibrational energies to be 

used in the subsequent RR calculations. The PBE0/6-31G* level of theory was also used for 

all excited-state calculations, and the model chosen for the excited PESs is AH, which 

requires a geometry optimization followed by harmonic frequency calculations. All RR 

spectra were computed using a damping constant of 500 cm−1 and the RR peaks were 

convoluted with Gaussian functions with a HWHM of 15 cm−1.

As already pointed out, it is not essential to accurately reproduce the excitation energy to 

compute a RR spectrum because the incident frequency used in the calculation can be easily 

adjusted to compensate for this error. However, whenever multiple states are involved it 

may be crucial to correctly reproduce the energy difference between the states. For example, 

a spectrum may contain peaks which are enhanced by resonance with different electronic 

states, and if the energy difference between those states is overestimated, it may be 

impossible to find an incident frequency for which all peaks are visible. A comparison 

between the experimental and theoretical vibronic absorption spectrum can be used to check 

the reliability of the chosen electronic structure model. Moreover, if the vibronic resolution 

is clearly visible in the experimental spectrum, the latter can be used to extract the energy of 

the 0-0 transitions for each electronic state, and those energies can then be employed in the 

calculation of the RR spectra. This is the case of pyrene, whose experimental and calculated 
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vibronic absorption spectra are shown in figure 5. While the bandshapes are correctly 

reproduced, the calculated spectrum is not merely shifted with respect to the experimental 

one because the energy of the 1B1u state is underestimated by a larger amount with respect 

to the 2B2u, and 2B1u states. To compensate for this error we therefore shifted the energy of 

each state individually before computing the RR spectra and excitation profiles.

We also checked whether other DFT functionals or a multireference method would yield 

better results. We therefore computed the vertical excitation energies using the CAM-

B3LYP99 and M06-2X100 functionals with the SNSD basis set, as well as by MS-

CASPT2103 with the ANO basis set with the contraction 4s3p1d for carbon atoms, and 2s1p 

for hydrogen atoms.115,116 A full valence π space which comprised 16 electrons distributed 

in 16 orbitals (16,16) was used. The DFT calculations included solvent effects by means of 

PCM, while the MS-CASPT2 calculations were performed for the molecule in the gas 

phase, so we also computed the excitations with PBE0 without PCM, to estimate the solvent 

shift. The PBE0/SNSD ground state optimized geometry was used in all cases. The 

calculated vertical transition energies cannot be directly compared with the energy of the 0-0 

transition obtained from the experimental spectrum, though their difference can be estimated 

theoretically from the vibronic spectrum calculated with the PBE0 functional, giving 2690 

cm−1 for the 1B1u state, 2188 cm−1 for the 2B2u state, and 2967 cm−1 for the 2B1u state. 

These values were then subtracted from the calculated vertical excitation energies. Table 2 

summarizes the results. M06-2X gives the best results for the excitation energies, however it 

has been shown that it is less reliable for calculation of harmonic frequencies,117 therefore 

we still preferred to use PBE0 to compute all spectra because, as shown in figure 5 and in 

the analysis by Avila Ferrer et al.87 this functional gives a very good description of the 

shape of the PESs. The MS-CASPT2 results do not show a significant improvement with 

respect to the TDDFT ones, though they lack a description of solvation effects which, as can 

be seen from the comparison of the gas-phase and acetonitrile solution results obtained for 

PBE0, give a large contribution.

Often the resolution of the experimental spectrum is not sufficient to clearly identify the 

energy of the 0-0 transition (especially if the states are very close in energy and their spectra 

overlap). In that case it may be useful to perform additional calculations with different 

electronic structure methods to estimate the energy differences between the excited states.

To show the effect of the excitation-energy shift and of anharmonicity on the RR spectrum 

we computed the harmonic and anharmonic spectra using the PBE0/SNSD excitation 

energy, as well as the anharmonic spectrum calculated using the excitation energies from 

experiment. We chose an incident frequency of 42000 cm−1 (238 nm) to compute the latter 

spectrum, and an incident frequency of 39500 cm−1 (253 nm) to compute the two former 

ones (in order to adjust the energy of the 2B1u state without touching the energy differences, 

as would be normally done). The incident energy is at the edge of the 2B1u band in the 

experimental spectrum in figure 5, so it is affected by interference with the lower-energy 

2B2u state. Figure 6 shows the results. As in the case of imidazole, anharmonicity causes a 

redshift of all bands, as well as minor intensity changes. The spectrum computed using the 

experimental excitation energies shows an additional change in intensity, especially visible 

for the band that appears around 1700 cm−1. This kind of effects are not very big in the case 
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of pyrene because there is quite a large separation between the three electronic states, but 

they may be more relevant in cases where the energy difference between the states is grossly 

overestimated or underestimated by the chosen electronic structure method.

8 Chlorophyll a1 in methanol solution

To illustrate how our approach can be applied to larger systems we computed the RR 

spectrum of chlorophyll a1 (ChlA1, figure 7), a large system of 46 atoms that is often used 

as a model for chlorophyll a, a pigment found at the heart of the biological machinery 

responsible for photosynthesis.118 RR spectroscopy has already proved to be an invaluable 

tool in the study of multichromophoric systems, such as those involved in photosynthesis, 

thanks to the possibility of tuning the incident frequency to selectively excite the different 

chromophores.119,120 In this work we studied the influence of a solvent on the RR spetrum, 

postponing the case of more complex environments, such as proteins, to future works. We 

also compared our results with the experimental ones by Hanf et al.121 who measured the 

RR spectrum of protochlorophyllide a (PChlide) in methanol solution. PChlide has an 

identical π structure to chlorophyll a1, but with additional alkylic substituents which do not 

significantly alter the shape of the absorption spectrum. We calculated the RR spectrum of 

ChlA1 in methanol solution with the inclusion of Duschinsky mixing, Herzberg-Teller, 

solvent, and anharmonicity effects combined (anharmonic AH|FCHT model with 

equilibrium solvation). The RR spectrum was calculated for the bright Soret band which 

appears at about 420 nm in the experimental spectrum,122,123 and the solvation regime 

chosen in this case is the equilibrium one. Since the magnesium atom at the center of the 

ring is expected to be hexacoordinated, with one solvent molecule on either side of the ring, 

to overcome the limitations of the continuum solvent model we explicitly added these 

solvent molecules to the part of the system treated quantum-mechanically.

We first note that the dimensionality of the system requires great care in the choice of the 

computational level. The most demanding step in our calculations is by far the evaluation of 

ground state anharmonic frequencies, which is accomplished by displacing the molecular 

geometry along each normal mode in the positive and negative directions, computing the 

energy Hessian at each step, and obtaining the numerical third and semi-diagonal fourth 

energy derivatives. The computational cost of this approach scales unfavorably with system 

size (even though the calculations can be done in parallel if multiple machines are 

available). Similarly to what was reported for pyrene, we employed the SNSD102 basis set to 

compute the harmonic frequencies while resorting to the smaller 6-31G* basis set to 

compute the anharmonic shifts. In the case of ChlA1, even with the smaller basis set, the full 

anharmonic calculation is computationally too expensive so, to further reduce its cost, we 

resorted to a reduced-dimensionality approach,72,73 limiting the evaluation of the required 

anharmonic derivatives to the normal modes in the 1100-1800 cm−1 region, and thus 

restricting the computed RR spectrum as well. The reduced-dimensionality approach is 

especially useful for the calculation of anharmonic RR spectra because it is always possible 

to focus on the frequency region in which the final RR spectrum is to be computed, while 

for vibronic OP spectra this is not possible. Restricting the calculation to a smaller region 

also saves time in the subsequent TI-RR spectrum calculation, though it must be emphasized 

that, notwithstanding the large number of peaks and the great number of states included in 
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the TI expression for each peak, this is still the cheapest step in the overall calculation. To 

present this last point in deeper detail we show in figure 8a the relative computational times 

for each step leading to the final spectrum. Note that, even with a reduced-dimensionality 

approach, the most expensive step is by far the calculation of anharmonic frequencies, 

followed by the calculation of excited state frequencies. Anharmonicity and Duschinsky 

effects can sometimes be ignored, but the calculation of ground state frequencies is essential 

for vibrational spectroscopies and it is still more expensive than the final spectrum 

calculation. Note in addition that in figure 8a we report the time needed to obtain the RR 

spectrum in the selected spectral region with the inclusion of first overtones and 

combination bands (the calculation of the fundamental bands only is in fact so cheap that it 

would not be visible in the reported pie chart). Thanks to our parallel implementation we are 

able to compute the RR spectrum of medium-large systems with a reasonable cost, and the 

limiting factor is represented by all other steps that are necessary to define the two PESs. 

Figure 8b shows the relative computational time required for the TI-RR spectrum 

calculation as a function of the number of processors used. The computational gain is close 

to the maximum theoretically possible: with 8 processors the computational time is reduced 

to 15.4% (as opposed to ⅛=12.5%).

Before computing the RR spectrum, we simulated the vibronic bandshape of the UV-vis 

absorption spectrum in order to assess the quality of our approach for the specific system. A 

TD-DFT vertical excitation energy calculation reveals that the band we are interested in is a 

superposition of two different π − π* excited states, S3 (HOMO-1–LUMO+1) and S4 

(HOMO–LUMO+1). The S1 (HOMO–LUMO) and S2 (HOMO-1–LUMO) states, have 

lower intensity and calculated vertical excitation wavelengths of 637 nm and 618 nm 

respectively. Figure 9 shows a graphical representation of the Kohn-Sham orbitals involved 

in the transitions.

Figure 10 shows the comparison between the experimental spectra of PChlide121 and 

ChlA1122 and the calculated vibronic spectrum of ChlA1, which was obtained by 

convoluting each peak with a Gaussian function with a HWHM of 250 cm−1. For both 

electronic states that appear in the calculated spectrum, the band with highest intensity 

corresponds to the 0-0 transition, and both show a similar vibronic progression, which is due 

to the excitation of several very diffuse in-plane bending motions. The experimental spectra 

of PChlide and ChlA1 show a similar band-shape which justifies the use of the latter as a 

model for the former in the calculation of the RR spectrum. The calculated band-shape 

reproduces experiment fairly well, even though DFT predicts the two excited states to be 

further apart than they would appear from the experimental spectrum. The calculated 

spectrum almost overlaps with the experimental PChlide one, with the maximum appearing 

at 434 nm and 437 nm in the experimental and calculated spectrum, respectively, whereas 

the maximum of the experimental ChlA1 spectrum appears at 417 nm. Overall, the chosen 

model seems appropriate for the description of our system.

Figure 12 shows the calculated and experimental121 RR spectra. The calculations were 

performed with an incident frequency of 24550 cm−1 (407 nm), and a damping constant of 

500 cm−1. The experimental spectrum of PChlide was also recorded with a 407 nm incident 

radiation. Because the calculated ChlA1 UV-vis spectrum overlaps with the experimental 
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PChlide one, we did not need to apply any shift to the incident frequency. The peaks were 

convoluted with Gaussian functions with a HWHM of 10 cm−1. The top and middle panels 

show the harmonic and anharmonic spectra, respectively. As already reported for imidazole, 

the effect of anharmonicity mainly consists of a redshift of all bands but, because the shift is 

different for each peak, the convoluted spectrum also shows some clearly visible differences 

in the bandshape. Figure 12 also shows the separate contribution of each excited state: the S4 

state gives a greater contribution, as is expected from its greater intensity in the absorption 

spectrum and from the fact that it lies closer to the incident frequency. The S3 state still 

gives a non-negligible contribution thanks to the fact that the tail in its absorption spectrum 

reaches the value of the incident frequency. As explained above, the total spectrum is not 

simply the sum of the two separate spectra because of interference effects acting at the 

polarizability level. We also computed the spectrum with the inclusion of overtones and 

combination bands of up to two quanta transitions, but we found that they all have negligible 

intensities resulting in an almost identical spectrum (see Supporting Information).

The bottom panel in figure 12 shows for comparison the experimental spectrum of PChlide 

recorded with a 407 nm laser frequency.121 The experimental spectrum shows a strong band 

around 1360 cm−1 which the authors assign to C-C breathing vibrations of the porphyrin, a 

band around 1570 cm−1 assigned to C=C stretching vibrations, and one at 1700 cm−1 

assigned to the C=O bending of the ciclopentanone ring. These features are all reproduced in 

the calculated spectrum, though with notable differences. The computed frequencies are 

lower than the experimental ones, causing a shift of the whole spectrum. The 1400 cm−1 

zone in the computed spectrum shows a few bands of significant intensities, which 

correspond to very diffuse C=C bendings, that are not observed in the experimental 

spectrum. The high-intensity peaks that appear between 1500 and 1600 cm−1 in the 

anharmonic calculated spectrum are due to C=C stretching motions and they are separated 

by a gap which is not found in the experimental spectrum, but our calculations reveal that 

there are actually no normal modes with an energy that would place them whithin that gap. 

These differences may be attributed to the additional side chains of PChlide, which would 

result in a greater number of peaks.

The effect of changing the incident frequency can be grasped by looking at the 3D plot in 

figure 11, where the axes hold the Raman shift, incident frequency, and spectrum intensity. 

The behavior of the different bands seems irregular because the two excited states affect the 

various peaks in different ways, and their large number means that they often overlap to give 

rise to the visible bands. The potential interpretative power of theoretical calculation is then 

evident as it can help to unravel complex spectroscopic responses such as RR which, as an 

additional complication, does not benefit from the simple selection rules valid for non-

resonant Raman scattering.

9 Conclusions and perspectives

In this work we have presented a parallel implementation of the TI calculation of RR spectra 

with the inclusion of anharmonicity and solvent effects. We have shown that it is possible, 

by carefully choosing the computational methods and employing appropriate reduced-

dimensionality schemes, to coherently include anharmonicity, Duschinsky, and solvent 
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effects in the calculation of RR spectra of medium-to-large sized systems. We have 

demonstrated that the cost of the calculations required to accurately model the ground-state 

and excited-state PESs far outweighs the simulation of the final TI-RR spectrum, therefore 

the best way to extend the applicability of the method to ever-larger systems is to find 

cheaper means to perform the former tasks. This goal may be accomplished through analytic 

implementations of excited state energy second derivatives,124,125 which scale very 

favorably with system size with respect to their numerical counterparts, and through the use 

of less expensive methods such as semi-empirical ones, especially for the evaluation of 

anharmonic frequencies.126

With the goal of extending the method to larger and more complex systems, another issue 

calling for deeper investigations is the choice of internal coordinates for the simultaneous 

description of electronic states possibly characterized by quite different geometries. Several 

studies have shown that normal modes built from cartesian coordinates represent the most 

straightforward and robust choice when small displacements occur. In such circumstances 

the full adiabatic Hessian (AH) model, possibly including leading anharmonic corrections, 

shows a remarkable agreement with experiment, provided that the quantum mechanical 

method chosen to build the PES is accurate enough. When large structural displacements 

take place between the different electronic states, the situation is more involved, especially if 

inversions and/or torsions are present.127 Recent works suggest that in such circumstances 

cartesian coordinates face significant difficulties for a correct description of curvilinear 

displacements and a proper account of the Duschinsky mixing within the AH model, where 

the PESs of the different electronic states are quadratically expanded around their own 

equilibrium geometry.127–129 Although the theory behind the use of internal coordinates is 

well known127 and several works have been published concerning specific systems,128,129 a 

general implementation of this model is still lacking and is one of the most important tasks 

on which our group is concentrating its e orts. On the other hand, the good agreement 

between the results issuing from the vertical hessian (VH) model and experimental line 

shapes indicates that this approximation, in which all the normal modes are evaluated at the 

equilibrium geometry of a single reference electronic state, is a good alternative to deal with 

systems exhibiting large displacements. The use of this model can be, however, problematic 

when imaginary frequencies arise.130

Motivated by the fact that there is a well-known strong relationship between the RR spectral 

response and the molecular environment, we have also studied the effect of the solvation 

regime on the final spectrum. We have employed three different solvation regimes with the 

intent of modeling the behavior of the different degrees of freedom of the solvent as they 

either remain fixed or equilibrate with the time-dependent evolution of the starting 

vibrational wavepacket of the solute that generates the spectral response, according to their 

characteristic timescales. It should be noted that the different solvation regimes we have 

considered can be viewed as limiting cases of the real behavior of the solvent: in reality the 

solvent’s degrees of freedom always start from a non-equilibrium situation, and then, if the 

lifetime of the vibrational wavepacket on the excited state PES is long enough to allow it, 

they gradually evolve to re-equilibrate with the solute. Nonetheless, our results show that the 

change in the solvation regime does have a great influence on the final RR spectrum and 

excitation profile, which could stimulate more research in this area. In particular, by 
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performing the calculation in the time-dependent picture, it could be possible to model the 

evolution of the solvent’s polarization more accurately by considering an additional time-

dependence of all the terms in the equation caused by the solvent, though the assessment of 

how the solvent’s evolution affects the excited state PES and the transition moments is far 

from trivial. The choice of the appropriate solvation regime may be particularly important in 

the case of more complex environments, such as a chromophore embedded in a protein, 

which cannot freely rearrange itself to adapt to the evolution of the chromophore. In this 

case though, implicit solvent models may fail to capture the specificity of the interactions, 

therefore atomistic models may be more appropriate. A possible strategy to overcome such 

limitations can be the hybrid multi-scale QM/FQ/PCM scheme109–111 we have recently 

proposed, to treat explicit interactions between a molecular system and its environment. An 

additional limitation of the implicit model used in this work is the absence of non-

electrostatic effects in the solvent respose in its basic formulation. Several methods have 

been proposed to include non-electrostatic effects within the PCM framework,131–133 

though, to the best of our knowledge, none have been applied to RR spectroscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Optimized structures of imidazole (singlet), imidazole cation (doublet), and imidazole 

(triplet).
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Figure 2. 
Harmonic (continuous red line) and anharmonic (dashed blue line) RR spectra of imidazole 

in water.
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Figure 3. 
UV-Vis (Top panel), RR excitation profile (middle panel), and RR spectra (bottom panel) of 

imidazole in water calculated with three different solvation regimes: equilibrium solvation 

(finely dashed blue line), fixed cavity (dashed orange line), and non-equilibrium (continuous 

green line).
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Figure 4. 
Calculated VG|FC (top, solid green line) and VH|FC (top, dashed purple line) RR spectra, 

and experimental108 (bottom, black line) RR spectrum of imidazole in water.
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Figure 5. 
Experimental (top black line) and calculated (bottom lines) vibronic absorption spectra of 

pyrene in acetonitrile. The dashed red line is the unshifted spectrum (PBE0/SNSD band 

positions), the continuous blue line is the shifted spectrum according to the experimental 

transition energies.
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Figure 6. 
Calculated harmonic (bottom red line) and anharmonic (middle green line) RR spectra 

obtained using the PBE0/SNSD excitation energies, and anharmonic spectrum (top blue 

line) obtained using the experimental excitation energies of pyrene in acetonitrile.
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Figure 7. 
Structure of chlorophyll a1 with two additional methanol solvent molecules.
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Figure 8. 
(a) Relative computational cost of the different steps leading to the final RR spectrum of 

ChlA1. Ground state frequencies (SNSD basis set) are in blue, anharmonic shifts (6-31G* 

basis set) are in orange, excited state frequencies (6-31G* basis set) are in yellow, and the 

final RR spectrum between 1100 and 1800 cm−1, up to the first overtones and 1+1 

combination bands is in green. (b) Relative cost of the RR spectrum calculation with 

increasing number of processors.

Egidi et al. Page 37

J Chem Theory Comput. Author manuscript; available in PMC 2015 November 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 9. 
Kohn-Sham orbitals of chlorophyll a1.
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Figure 10. 
Calculated (continuous blue line) and experimental122 (dotted purple line) absorption spectra 

of ChlA1 in methanol. The continuous black line is the experimental absorption spectrum of 

PChlide,121 and the dashed orange and green lines are the calculated absorption spectra for 

the S3 and S4 states respectively.
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Figure 11. 
Calculated 2D-RR spectrum of ChlA1 in methanol, where the spectrum and excitations 

profiles are shown at the same time.
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Figure 12. 
Harmonic (top panel) and anharmonic (middle panel) RR spectra of ChlA1 in methanol. The 

continuous blue line is the total spectrum, the dashed orange and green lines the spectra for 

the S3 and S4 states respectively. The bottom panel shows the experimental RR spectrum of 

PChlide.121
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Table 2

Energies of the 0-0 transitions (in cm−1) computed with different methods, and their experimental 

counterparts.112 PBE0(g) denotes gas-phase excitation energies, while all other TDDFT results include solvent 

effects.

State MS-CASPT2 PBE0(g) PBE0 CAM-B3LYP M06-2X Exp112

1B1u 25688 27333 25773 27219 27700 29940

2B2u 36180 35271 33761 35944 35931 36765

2B1u 41469 40768 38328 39527 39902 41667
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