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Abstract

A parametric working memory network stores the information of an analog stimulus in the form of 

persistent neural activity that is monotonically tuned to the stimulus. The family of persistent 

firing patterns with a continuous range of firing rates must all be realizable under exactly the same 

external conditions (during the delay when the transient stimulus is withdrawn). How this can be 

accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent 

cortical network model of irregularly spiking neurons that was designed to simulate a 

somatosensory working memory experiment with behaving monkeys. Our model reproduces the 

observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves 

of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment 

of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned 

network can integrate stimulus inputs over several seconds. Assuming that such time integration 

occurs in neural populations downstream from a tonically persistent neural population, our model 

is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in 

prefrontal cortex.

Introduction

The physical world is described in terms of continuous (analog) quantities, such as space, 

direction, time, velocity and frequency. Through evolution, animals and humans must have 

developed the mental ability not only to encode analog physical quantities as sensory 

stimuli, but also to remember such quantities by virtue of an active internalized 

representation in working memory. A basic question in neuroscience is how analog physical 

stimuli are represented and stored in memory in the brain. Starting in the 1980s, 
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neurophysiologists have investigated this question, with a focus on spatial information. In a 

delayed response task, an animal is required to remember the spatial location of a sensory 

cue across a delay period of a few seconds. Neurons in the parietal cortex (Gnadt and 

Anderson, 1989; Chafee and Goldman-Rakic, 1998) and prefrontal cortex (Funahashi et al., 

1989; Rainer et al., 1998) show persistent activity that is correlated with memory 

maintenance during the delay period. Mnemonic neural activity is selective to spatial 

locations, quantified by a bell-shaped tuning. That is to say, a given neuron shows an 

elevated delay in activity only for a relatively narrow range of positional cues, and the 

spatial information is encoded by ‘what’ neurons fire significantly during the memory 

period. A similar coding strategy is also used by the neural system that encodes and predicts 

an animal’s head direction (see Sharp et al., 2001; Taube and Bassett, 2003).

More recently, another form of working memory for analog quantities was discovered in a 

somatosensory delayed response experiment (Romo et al., 1999; Brody et al., 2003). In this 

task, the monkey is trained to compare the frequencies of two vibrotactile stimuli separated 

in time by a delay of 3–6 s; therefore the behavioral response requires the animal to hold in 

working memory the frequency of the first stimulus across the delay period. It was found 

that neurons in the inferior convexity of the prefrontal cortex show persistent activity during 

the delay, with the firing rate of memory activity varying monotonically with the stimulus 

frequency. Therefore, the stimulus is encoded by the firing rates at which all neurons 

discharge spikes. Similarly, in the oculomotor system that maintains a fixed eye position 

between quick saccades, persistent neuronal activity is proportional to the eye position 

(Robinson, 1989; Aksay et al., 2000). We emphasize that the meaning of tuning curve for 

delay period activity is profoundly different from that of responses to sensory inputs. 

Conventionally, the stimulus selectivity of neuronal firing during stimulus presentation is 

quantified by a tuning curve. For example, the higher the input intensity, the larger the 

neural response. By contrast, in a working memory task, the mnemonic neural activity is 

measured after the transient stimulus is withdrawn, during the delay period. If a working 

memory network exhibits a family of delay period activity that is monotonically tuned to a 

feature of the transient stimulus, this entire family of mnemonic activities with different 

firing rates must be all realizable under exactly the same external conditions (during the 

delay when external inputs are absent). How a cortical network, for example in the 

prefrontal cortex, can be capable of such a feat presents an intriguing open question in 

neuroscience.

Persistent neural activity during working memory is generated internally in the brain, either 

by recurrent circuit mechanisms (Lorente de Nó, 1933; Goldman-Rakic, 1995) or by 

intrinsic cellular mechanisms (Camperi and Wang, 1998; Egorov et al., 2002). According to 

the attractor model of persistent activity (Amit, 1995; Wang, 2001), a neural assembly has a 

resting state at a low firing rate, as well as a stable active (‘attractor’) state at an elevated 

firing rate that is self-sustained by reverberative excitation. Recently, this idea has been 

extended to the realm of working memory of an analog physical quantity, and tested 

rigorously using biophysically based recurrent network models. In models of spatial 

working memory, the spatial locations are encoded by a continuum of ‘bell-shaped’ 

localized persistent states (‘bump attractors’) (Camperi and Wang, 1998; Compte et al., 
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2000; Gutkin et al., 2001; Tegnér et al., 2002; Ermentrout, 2003; Renart et al., 2003a). In 

neural integrators in the oculomotor circuit, persistent firing rate of each neuron varies 

linearly with the gaze position (Cannon et al., 1983; Robinson, 1989). As a result, if rates of 

different neurons are plotted against each other, they fall on a straight line in the ‘firing-rate 

space’. This observation led to the theoretical concept of ‘line attractors’ (Seung, 1996).

It was recognized (Cannon et al., 1983; Seung et al., 2000a,b) that very fine tuning of 

synaptic feedback is necessary to create such monotonically tuned neural integrators in 

models. The feedback must be finely tuned, so that if the firing rate of a neuron is altered by 

a transient input, then the resulting change in synaptic feedback to the neuron is exactly the 

amount required to maintain the new firing rate. Any mis-tuning of the feedback results in 

an exponential decay or growth of firing rates away from the desired memory state to one of 

a few stable levels. The drift occurs with a persistence time proportional to the synaptic time 

constant divided by the fractional error in the tuning (Seung et al., 2000b), such that 

synaptic weights must be tuned to one part in a hundred if the desired network time constant 

(10 s) is 100-fold longer than the synaptic time constant (100 ms).

Koulakov et al. (2002) recently proposed a mechanism without the fine-tuning requirement. 

The idea is to combine many robust, bistable groups to form a system with multiple stable 

states. If there are enough bistable units, which switch to persistent active states following 

transient stimuli of different strengths, the summation of neural units’ outputs will become 

indistinguishable from a continuous quantity that encodes the stimulus feature. Such an 

integrator or memory device is similar to the stable digital memory of a computer (which 

can simulate analog quantities). One salient feature of the Koulakov model is that each 

individual neuron’s tuning curve of delay period activity displays a significant jump in the 

firing rate between the resting state and active memory states. Whether this prediction is 

consistent with experimental data from neural integrators (Aksay et al., 2000; Nakamagoe et 

al., 2000) remains unclear.

In this paper, we present a new model of persistent activity monotonically tuned to an 

analog stimulus feature. Our model was designed to reproduce the prefrontal neural activity 

in the vibrotactile delayed matching-to-sample experiment (Romo et al., 1999; Brody et al., 

2003). Conceptually, this model is similar to that of Seung et al. (2000a), and we present a 

mathematically precise description of what is meant by the requirement of network fine-

tuning for this class of working memory models. Furthermore, in order to apply our model 

to the prefrontal cortex during parametric working memory, we elaborated on existing 

models in several important ways. First, we used large neural networks (12 000 neurons), 

appropriate for cortical circuits, in contrast to the oculomotor neural models with only tens 

of neurons. Secondly, our model has a locally structured circuit architecture, whereas in 

Seung et al.’s model (Seung et al., 2000a) synaptic connections are globally determined by a 

gradient-descent optimization algorithm. Thirdly, noise is absent in the models of Seung et 

al. (2000a) and Koulakov et al. (2002), and the robustness of network behavior against noise 

was not assessed. Cortical neurons receive a large amount of background noise inputs, 

which are taken into account in our model. Fourthly, in both integrator models (Seung et al., 

2000a; Koulakov et al., 2002), neurons are silent in the resting state. By contrast, prefrontal 

neurons show spontaneous activity at low rates prior to stimulus presentation, and our model 
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reproduces such spontaneous neural activity in the resting state. Fifthly, our model includes 

both excitatory and inhibitory neural populations. Finally, we propose a two-network model 

that reproduces both positively and negatively monotonic neurons which have been 

observed experimentally in prefrontal neurons.

Materials and Methods

Network Architecture

Our network model represents a cortical local circuit composed of a number (typically two 

sets of 12) of neural groups or ‘columns’ (Fig. 1). The two halves of the network represent 

the two sets of cells that receive either positively monotonic or negatively monotonic 

transient input from neurons in S2 (Salinas et al., 2000). Each neural group (labeled by i = 1, 

2,…, 12; 1*,2*,…, 12*) contains 400 excitatory cells and 100 inhibitory cells, so we 

simulate 12 × 2 × 500 = 12 000 cells in total. With such a large number of neurons per 

column, the instantaneous firing rate of the group is a meaningful quantity that encodes the 

information in the network. Individual spike times are noisy, and any data for a single 

neuron are only uncovered by averaging over many trials.

The connectivity from group j to group i, Wj→i, is structured such that synaptic connections 

are stronger between cells within a column than between two columns. The strong recurrent 

excitation within a column means that each column is close to being bistable — that is, the 

self-excitation within a column is not enough to raise the firing rate when all cells are in the 

spontaneous state, but is almost enough to maintain a high firing rate if the cells are given 

transient excitation. The strengths of connections with other groups is key to the 

maintenance of higher firing rates, and to obtaining a large number of different stable states. 

The neurons within a column are all connected identically (all-to-all), so receive identical 

recurrent input. They are only differentiated by the background noise they receive.

The connection strength between two neural groups decays exponentially with the difference 

in their labels, as shown in Figure 1 for the E-to-E connections between excitatory cells. All 

connections with inhibitory cells (E-to-I, I-to-E and I-to-I) are strongest within a column and 

decay symmetrically between columns. The E-to-E network architecture has a ‘high-to-low’ 

asymmetry, in the sense that if j > i, then Wi→j < Wj→i. This results in a gradient of effective 

excitability across the network, with the groups with the lowest labels being most excitable. 

Such a distribution of excitability is important for the network to show a graded response to 

a range of stimuli.

A fixed gradient of intrinsic thresholds (produced by a range of leak conductances for 

example) can be used to generate a range of excitabilities to external stimuli. Both Koulakov 

et al. (2002) and Seung et al. (2000a) used such a network. Koulakov et al. included 

symmetric connectivities between neurons of differing thresholds, but with very low 

strength, such that the feedback to a neuron within a group was significantly greater than the 

feedback to a neuron from its effect on other neurons with different thresholds. Hence, the 

concept of Koulakov et al.’s network is one of a discrete set of bistable groups, each of 

which switch to an excited state following a different magnitude of input.
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In Seung et al.’s network, far more feedback comes to a cell through its connections to other 

cells (apart from the most excitable cell, which is bistable while all others are silent). In 

Seung et al.’s line attractor network, asymmetrical connections are necessary, with stronger 

synaptic weights from low- to high-threshold neurons. This is because the whole network is 

designed to have a linear input–output relation. When just one cell (the lowest threshold) is 

firing, the change in output comes solely from that cell, so connections from that cell are 

strong. When all neurons are firing, the same change in input causes all cells to increase in 

output. For the total change in output to be the same, the output from higher threshold cells 

must be progressively smaller. Hence high-to-low connections are weaker than low-to-high.

In all three cases, a range of excitabilities is used to ensure that a wide range of inputs leads 

to different responses in the network. A single bistable group of neurons can only 

distinguish whether a stimulus is greater or lower than its single threshold. A range of 

thresholds allows for more stimuli to be distinguished. In the prefrontal cortex, it is unlikely 

that there are columns or neural groups with large systematic differences in their intrinsic 

excitability. Hence we use systematic differences in the synaptic strengths between 

populations (which are readily altered through learning mechanisms) to create groups of 

neurons that require different strengths of stimulus for their firing rate to deviate strongly 

from their spontaneous rate. Such a network results in stronger connections from higher 

threshold to lower threshold neurons. This is evident, as it is the extra excitation arising from 

the stronger synaptic weights from higher-threshold populations that causes low-threshold 

populations to be more readily excited by external input. Since silent cells cannot influence 

the activity of other cells, however strong the connections, this effect is absent without 

spontaneous activity. Such is the case in the other models (Seung et al., 2000a; Koulakov et 

al., 2002).

Our complete model contains two such networks connected by reciprocal inhibition (Fig. 1). 

The model receives input from two types of cells, which mimic the outputs of two neuronal 

types in cortical area S2 that show responses to vibrotactile stimuli (but not persistent delay 

activity). The positively monotonic cells increase their firing rate with larger stimulus 

frequency, while negatively monotonic cells act oppositely (Salinas et al., 2000). We 

assume that the two types of transient inputs from S2 project to the two different networks in 

our model. This assumption automatically leads to both positively and negatively monotonic 

tuning of the PFC cells in our model.

Single Neurons and Synapses

In the spiking network model, we simulate the individual cells as leaky integrate-and-fire 

neurons (Tuckwell, 1988). All inputs to a cell are given in terms of excitatory or inhibitory 

conductances, which give rise to currents that are integrated over time in the membrane 

potential. Once the membrane potential reaches a threshold, the cell fires an action potential 

and the membrane potential is reset to a fixed value for a refractory time, before temporal 

integration continues. The full dynamical equations are presented in the Supplementary 

Material.

Our network makes the simplification that afferent input reaches cells through AMPA 

receptor-mediated (AMPAR) synapses of 2 ms time constant, while recurrent activity is 
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transmitted purely through the slower NMDA receptors (NMDARs), with 100 ms time 

constant. The importance for working memory of the relative abundances and strengths of 

AMPARs and NMDARs has been investigated elsewhere (Wang, 1999; Compte et al., 

2000), showing the deleterious effect of a large ratio of AMPARs to NMDARs in recurrent 

synapses. Here, we utilize the slow time-constant of NMDARs in recurrent connections to 

enhance the time-constant of the entire network (Seung et al., 2000b).

All excitatory, recurrent synapses exhibit short-term presynaptic facilitation and depression 

(Varela et al., 1997; Hempel et al., 2000). We implement the scheme described by Matveev 

and Wang (2000), which assumes a docked pool of vesicles containing neurotransmitter, 

where each released vesicle is replaced with a time constant, τd. The finite pool of vesicles 

leads to synaptic depression, as when the presynaptic neuron fires more rapidly than vesicles 

are replaced, no extra excitatory transmission is possible. Such synaptic depression 

contributes to stabilizing persistent activity at relatively low rates, strongly enhancing the 

postsynaptic effect of NMDAR saturation. For example, a synapse with 16 docking sites and 

a docking time constant of 0.5 s has a maximum rate of vesicle release of 32 per second. 

Such saturation in the recurrent excitation reduces the excitatory feedback significantly, 

even for firing rates of <20 Hz. This allows the network to have stable states of persistent 

activity with relatively low firing rates (e.g. 15 Hz), where the incremental increase in 

feedback excitation is already diminishing as the firing rate rises.

Synaptic facilitation helps to stabilize the network to noise, because brief fluctuations in 

activity do not get transmitted through recurrent excitatory synapses — in particular, the 

resting, spontaneous state of each group is more stable. Whereas the cues of 0.5 or 1 s 

duration, which cause a response in the network, elicit many action potentials and facilitate 

the synapses in a group that is driven into the active persistent state. Note that our network is 

not designed to use the longer time constants of the facilitating synapses as the basis of 

temporal integration (Shen, 1989).

Stimulus

The stimulus to the network is modeled by fast synaptic excitation mediated by AMPA 

receptors, with a maximum conductance of 3 nS. The sensory stimulus frequency, s, is 

expressed in terms of the rate, λ, of the presynaptic Poisson spike train. Here specifically, we 

used λ = 5s, with s ranging from 10 to 40 Hz (the flutter range). When the positively 

monotonic cells receive the lowest stimulus input, the negatively monotonic cells receive the 

highest, and vice versa. Hence the negatively monotonic cells receive a stimulus of 

approximately (50 – s) Hz, where s is the vibrational stimulus frequency. Note that for a 

given cue, the stimulus is of the same strength to all neurons with the same sign of tuning.

In the last section, where we analyze the ability of the network to integrate a stimulus over 

longer periods of time, we apply the Poisson input to the positively monotonic neurons only.

Experimental Data

The experimental data we compared with our model were taken from extracellular 

recordings from microelectrodes in the inferior convexity of the prefrontal cortex in 
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macaque monkeys, as described elsewhere (Romo et al., 1999; Brody et al., 2003). The task 

was a delayed comparison of vibrational frequency, which required the monkey to 

remember the ‘flutter’ frequency of an initial vibrotactile stimulus on its finger, during the 3 

or 6 s delay period. In this paper, we present some examples of spike trains from single 

neurons that exhibited persistent stimulusdependent activity throughout the delay.

Data Analysis

Unless otherwise stated, all firing-rate histograms and tuning curves for the simulations were 

calculated from single neurons separately, averaged over ten simulations with different 

seeds in the random number generator for external noise. We used a Gaussian smoothing of 

time window 150 ms before binning spikes to generate the histograms. For model 

simulations, tuning curves were obtained with an average firing rate of between 3 and 6 s 

after the offset of the stimulus. The tuning curves for the experimental data contain an 

average firing rate of between 0.5 and 2.5 s after the offset of the stimulus for a 3 s delay 

protocol, and between 0.5 and 5.5 s after the end of the stimulus for a 6 s delay protocol. We 

did not use the initial and final 0.5 s of the delay, because different activity during the 

stimulus or response could affect the data in these time intervals after smoothing.

Results

Monotonically Tuned Persistent Activity

The neural spiking in our model is compared with that seen during the delay period of the 

somatosensory delayed-frequency comparison experiment of Romo (Romo et al., 1999; 

Brody et al., 2003). The experiment consists of an initial somatosensory vibrational stimulus 

of fixed (0.5 or 1 s) duration followed by a delay period (of 3–6 s), then a second stimulus of 

identical duration but different frequency to the first. The monkey must indicate which 

stimulus frequency is the greater, a task which requires memory of the initial stimulus 

frequency during the delay. The monkey is able to perform the task, and indeed, Romo’s 

group observed neurons whose firing rates vary monotonically with stimulus frequency, 

persistently during the delay. Such neurons could subserve the mnemonic function necessary 

for the task. By careful adjustment of the connectivity strengths between neural groups, our 

model network reproduces such persistent neural activity. The issue of fine-tuning of 

parameters will be discussed later.

The tuned model was simulated with a stimulation protocol similar to that used in the 

experiment. The network is initially in a resting state, where most excitatory neurons fire in 

the range of 1–8 Hz. A transient (1 s) stimulus is introduced to all the neurons in the 

network, with an intensity assumed to be proportional to the vibrational frequency in the 

experiment (see Materials and Methods). Neurons increase their spike discharges in 

response to the stimulus, which leads to reverberative excitation through recurrent 

connections. This intrinsic synaptic excitation is able to sustain persistent activity after the 

stimulus offset. Our network is in two halves, each half corresponding to neurons that 

receive either positively monotonic or negatively monotonic input from S2. S2 contains such 

oppositely tuned cells, which do not show persistent activity (Salinas et al., 2000).
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Figure 2 shows the activities of two representative neurons. In Figure 2a, a single neuron 

shows delay period activity that monotonically increases with the stimulus frequency. This 

neuron belongs to the first half of our network model which receives a stronger input with a 

higher stimulus frequency. The larger transient neural responses recruit more recurrent 

excitation which can sustain persistent activity at a higher rate. In contrast, the neuron in 

Figure 2b shows a monotonically decreasing tuning of its mnemonic activity. This neuron 

belongs to the second half of our network model, which receives less inputs with a higher 

stimulus frequency, hence the recruited recurrent excitation as well as the resulting 

persistent activity is lower.

Our model simulations (Fig. 2) can be compared with the experimentally observed neural 

activity in the prefrontal cortex during the vibrotactile experiment (Fig. 3). The model 

neurons fire most strongly during the transient response to stimulus, then settle to a 

persistent rate which is monotonically dependent on the stimulus frequency (middle panels). 

The tuning curves (lower panels) are clearly monotonic and demonstrate parametric working 

memory. The average firing rates of neurons in the interval between 2 and 5 s after the end 

of the stimulus exhibit a quasi-linear or sigmoidal dependence on stimulus frequency.

Different neural groups have different activation thresholds, and show persistent activity at 

different rates for a given stimulus. This is similar to the models of Seung et al. (2000a) and 

Koulakov et al. (2002). In these cases, neurons have different intrinsic input thresholds for 

spike discharges. In the present model, the synaptic connections are asymmetrical (Fig. 1; 

see Materials and Methods). As a result, neural groups receive progressively more overall 

recurrent excitation from left to right across the network. This way, neural group 1 has the 

lowest threshold and group 12 has the highest threshold, when driven by external inputs. 

This range of excitability allows the network to have a range of responses to varying stimuli. 

Because the tuning is monotonic, the stimulus frequency is encoded and stored in memory 

not by what neurons fire significantly, but at what rates all neurons fire. Because of 

background noise, and because the network is sensitive to parameter tuning (see below), 

even the averaged population firing rate of an individual neural column shows significant 

temporal fluctuations. The memory of the stimulus is better maintained by persistent activity 

pooled across the entire network of all neural groups.

The experimentally observed tuning curves of prefrontal neurons are very diverse; some are 

linearly tuned with the vibration frequency, others show sigmoid-shaped tuning (Fig. 4A). 

Our model reproduces to a large degree this diversity of tuning curves of single neurons 

(Fig. 4B). Our model has four types of neurons, both positively and negatively monotonic 

types of pyramidal cells and interneurons. The interneurons have different intrinsic 

properties (see Supplementary Material), as they are designed to be fast-spiking and 

generally have a higher firing rate than pyramidal cells. We found that the tuning curves of 

interneurons are more linear than those of pyramidal cells. This can be explained by the fact 

that interneurons receive broad excitation from the pyramidal cells; averaging over a few 

hard sigmoid functions yields a more linear function.
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Robustness to Heterogeneity

A key issue in evaluating the biological feasibility of our network is a determination of its 

robustness to variations of the parameters. The key parameters that we tuned were the 

connection strengths. To assess the effects of mis-tuning, we multiplied the synaptic 

strengths Wi→j by (1 + ηg
i→j)(1 + ηn

i→j) where ηg
i→j is sampled for each group of neurons, 

drawn from a Gaussian distribution with standard deviation σg, while ηn
i→j is sampled 

separately for each neuron, drawn from a Gaussian of standard deviation σn. The leak 

conductances also varied, with a standard deviation of 1.2 nS (i.e. ±3%).

We found that the more deleterious way to mis-tune is to scale up or down all the connection 

strengths for a particular neural group (σg > 0). We find that 5% population heterogeneity 

causes a clear drift in firing rates to a few stable persistent states. The network loses its 

ability to discriminate many different inputs, and a large gap in firing rates (typically up to 

15–20 Hz) opens up for some neurons when the stimulus is strong enough to propel the 

network from one discrete stable state to another. The time constant for drift is still long (2–

3 s), but that is diminished enough to limit the network’s ability to distinguish >3 or 4 

stimulus strengths after 6 s. A less damaging variation is to scale up or down all connections 

to individual neurons separately and randomly (σg = 0 and σn > 0). Indeed, the mnemonic 

ability of the network is maintained with a 10% variation in synaptic strengths for each 

individual neuron, while the heterogeneity in the inter-group connection strength is ±1%. 

The firing rates after different stimuli remain separate throughout the delay period of 6 s and 

neuronal responses are qualitatively indistinguishable from those presented in Figures 2 and 

4. Such heterogeneity within a population does lead to a greater variety of tuning curves, as, 

unlike the homogeneous case, heterogeneity allows tuning curves to be different for each of 

the 100 inhibitory or 400 excitatory cells within a population.

Such stability to heterogeneity within a population may not be a surprise. Assuming that 

neurons are uncorrelated or weakly correlated, heterogeneities of single neurons can be 

averaged out across a large neural population. Indeed, a 10% variation of individual 

neuronal properties results in only an ~0.5% variation in the average properties of 400 

neurons. However, our results do indicate that with the large numbers of neurons available 

in the cortex, tuning of single neuronal parameters no longer needs to be extremely precise.

Mean-field Analysis of Model Networks

To elucidate the precise requirements for parametric working memory behavior, we carried 

out mathematical analysis of the mean-field approximation of our biophysically based 

spiking model. The mean-field approach (Amit and Brunel, 1997; Hansel and Sompolinsky, 

1998; Brunel, 2001; Brunel and Wang, 2001; Renart et al., 2003b) is to replace quantities 

such as synaptic conductances by their averages, ignoring their fluctuations due to individual 

spikes. The mean-field approximation is useful, as it allows us to describe a whole 

population of spiking neurons with their average activity. Hence, we can rapidly solve for 

the stable states of the system, and observe how those states change as a function of 

parameters like the connection strengths, or intrinsic excitability. A detailed account of the 

mean field equations can be found in the Supplementary Material. We found that the mean-

field calculations are confirmed qualitatively by simulations of the original spiking model, 
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but an adjustment of parameters is necessary to match precisely the behaviors of the two 

models quantitatively.

To help understand the results of our mean-field analysis, let us first consider schematically 

one neural group with recurrent excitation. When the recurrent strength WE→E is above a 

critical value, a bistability between the resting spontaneous state and an active persistent 

state is produced by strong recurrent excitation. The bistability persists over a range of 

applied excitation, determined by the excitatory synaptic drive conductance, gApp, to the 

neurons. This is illustrated schematically in Figure 5, where the network behavior is shown 

on the plane of the two parameters WE→E and gApp. While WE→E is a measure of the 

recurrent excitation, multiplying feedback from within the neural group, gApp is a constant 

excitatory drive, which would arise, for example, from other neural groups. A change in 

intrinsic parameters which alters the firing thresholds of neurons, will shift the whole 

diagram along the axis of gApp. In particular, the larger the leak conductance, gL, the larger 

the required drive, gApp, to achieve firing threshold and bistability.

With WE→E far above the critical value (point A on the left panel of Fig. 5), the bistability 

range of gApp is wide and the behavior is robust. However, there is a large gap in the firing 

rates between the active and resting states (right panel of Fig. 5). In order to realize a quasi-

continuum of firing rates, WE→E should be as close to the critical value as possible (the 

point B, which is called a ‘cusp’ in the theory of dynamical systems). However, in this case 

the value of gApp must be precisely tuned (Seung et al., 2000b). Moreover, for a single 

neural group, the quasicontinuous range of firing rates is actually quite small (a few Hertz), 

largely determined by the properties of a single neuron’s input–output relation (Brunel, 

2001). The range of response should be increased for two reasons. First, a wider range 

allows a wider range of stimulus strengths to be encoded by the network. Secondly, if 

neurons encode the stimulus over a large range of firing rates, the sensitivity of the network 

is increased, as different stimuli cause larger changes in firing rates that are more easily 

decoded. The limited range can be increased by utilizing a large number of interconnected 

neural groups with different thresholds. The recruitment of each new neural group increases 

the excitatory drive to, hence activity of, those already active neural groups, leading to a 

much larger quasi-continuous range of persistent firing rates.

The mean-field analysis of our complete two-network model demonstrates a large number of 

stable states over a very narrow range of synaptic drive (Fig. 6). Our model network has as 

many cusps as the number of excitatory neural groups, and tuning the whole network to a 

continuous attractor requires an alignment of cusps so that the system can be tuned to all of 

them at once. The ideal vertical line of Figure 5 becomes wavy on a fine scale when many 

neural groups are combined to make a continuum. It is the nearness of the system to many 

cusps that allows the stable states to be close together, and results in a long time constant for 

drift following any stimulus. If connections within the system are varied randomly, the cusps 

are no longer aligned, but as there are a large number of cusps, the system will still be near a 

few of them and typically have more than one stable state. Hence, random mis-tuning does 

not cause a severe detriment to the network properties. However, a global mis-tuning (such 

as a global scaling of all synapses) will result in drifts of firing rates as described in previous 

work (Seung et al., 2000a,b).
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Time Integration

A line attractor network converts a transient input into a persistent output which is 

proportional to the input amplitude, so in that sense it performs an integration of the input. 

However, if the computation is truly mathematical integration, neurons should also be able 

to integrate over time, i.e. the firing rate of persistent activity should reflect the time 

duration of an input stimulus. To assess the temporal properties of integration by our 

network, we carried out a series of trials where the strength and frequency of the stimulus 

were fixed but the duration of the stimulus changed.

The results presented in Figure 7 show that the network can integrate an input slowly in 

time, over many s (Fig. 7A). Equivalent slow integration is observed in the mean-field 

network described in the previous section. Such a slow time course of integration is 

remarkable given that the longest biophysical time constant of the model is 100 ms. Once 

the stimulus ends, the network maintains a level of activity that is monotonically dependent 

on the stimulus duration (Fig. 7B). Optimal time integration occurs provided that the input 

strength is not too small (below a critical threshold) or too large (beyond which saturation 

occurs).

The threshold and saturation effects imply that the integration is not ‘pure’ in the sense that 

if average firing rates are plotted as a function of the product of stimulus frequency and 

duration, they do not fall on a universal curve. A doubling of the stimulus duration with a 

halving of the frequency, in general produces a smaller response. Experimental tests of the 

temporal scaling properties of integration in both the oculomotor system and working 

memory system would be illuminating.

Ramping Neurons

Finally, we investigated the issue of diversity of neural responses observed in the 

somatosensory discrimination experiment. During the delay period, persistent activity of 

many prefrontal-cortical neurons is not tonic, but evolves slowly over time. Some neurons 

tune to the stimulus early in the delay, others late in the delay. Moreover, average rates of 

some neurons ramp down or ramp up. The two types of temporal dependence are correlated 

with each other, but are not identical. Here, we investigate the two subtypes of neurons, 

which do not necessarily show any stimulus dependence, but whose average rates ramp up 

or ramp down during the delay. These are only two kinds of time dependence, out of a 

greater variety reported by Brody et al. (2003).

To generate such neurons, we extended our model to include three sets of neurons (each 

having 12 neural groups), each structured like the positively monotonic half of our previous 

network (Fig. 8A, upper right). The first neural population shows tonic persistent activity 

during the delay, as in our original model, but at a saturated rate that is independent of 

stimulus strength (Fig. 8A, upper left). It is assumed that the first neural population sends 

excitatory projections to the second population which integrates the inputs slowly in time, as 

in the previous subsection. Consequently, the second neural population shows slow ramp-up 

spike discharges during the delay period (Fig. 8A, lower right). Furthermore, the second and 

third neural populations are reciprocally connected by inhibition (Constantinidis et al., 
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2002). The transient stimulus activates the third neural population and, as the second neural 

population ramps up over a few s, the third population is progressively inhibited; therefore 

its activity ramps down during the delay (Fig. 8A, lower left). Similarly, the initial activity of 

the third population delays the ramping up of the second population in a closely matched 

tug-of-war that is resolved by the extra tonic input from the first to the second population. 

Note that these ramping behaviors occur during the delay, while there is no applied stimulus.

Experimentally it was found that the rate of evolution of time-dependent neurons is plastic. 

For example, when the delay duration is doubled from one block of trials to another (say, 

from 3 s to 6 s), the ramping slope of delay activity is roughly reduced by a factor of 2, so 

that a ramping neuron reaches the same final activity level at the end of the delay (Brody et 

al., 2003). Our model (Fig. 8A, upper right) suggests a synaptic mechanism for such 

plasticity. Since ramping neurons integrate inputs from the tonic neural population, the ramp 

slope depends on the strength of synapses between the two neural populations. Indeed, when 

this synaptic conductance is reduced by one-third (from g1 to 2g1/3) the time course of a 

ramping neuron is delayed and slowed (Fig. 8B, left panel). However, if the timescale is 

compressed by a factor of two, the ramping time course becomes superposable with that in 

the control case (Fig. 8B, right panel), similar to the experimental observations (Brody et al., 

2003).

Discussion

In this paper we presented a large-scale cortical network model (with 12 000 neurons) for 

parametric working memory. The main results are threefold. First, our model reproduces the 

salient neural activity data from monkey prefrontal cortex in a somatosensory delayed 

discrimination experiment (Romo et al., 1999; Brody et al., 2003). A model with two 

inhibitorily coupled networks reproduces positively and negatively monotonic neurons, and 

a diversity of tuning curves of memory activity. Secondly, we show that there is a trade-off 

between robust network behavior with large jumps in the tuning curves, and fine-tuned 

network behavior with a quasi-continuum of attractor states. The fine-tuning of our model is 

mathematically identified to be a precise alignment of cusps in the bifurcation diagram of 

the network. This is also true for the model of Seung et al. (2000a) (data not shown). 

Thirdly, we show that the finely tuned network can integrate stimulus inputs over many s, 

even though single neurons and synapses operate at timescales of 10–100 ms. Assuming that 

such time integration occurs in downstream neural populations that receive inputs from a 

tonically persistent neural population, our model is able to reproduce the ramping-up and 

and ramping-down behaviors of some time-dependent neurons observed in the prefrontal 

cortex (Romo et al., 1999; Brody et al., 2003).

The key to the ability of a neural network to encode monotonically and remember a 

continuous quantity, and integrate inputs in the mathematical sense, is to achieve an 

effective time constant of many seconds. At least three biological implementations of such 

integration are conceivable.

First, single neurons and synapses may possess mechanisms with very long intrinsic time 

constants, such as synaptic facilitation (Shen, 1989) or intracellular calcium release from 
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stores (Loewenstein and Sompolinsky, 2002). Alternatively, a single neuron could tune 

positive internal feedback (from calcium channels) to generate a longer cellular time 

constant from its faster intrinsic mechanisms (Durstewitz, 2003). Recently, Egorov et al. 

(2002) reported experimental evidence for a slow (seconds) integration process in single 

neurons of the rat layer V entorhinal cortex. The underlying mechanisms remain to be 

elucidated.

Secondly, a network may contain a number of bistable and independently switchable neural 

groups (Koulakov et al., 2002). The continuous variable can then be encoded by the number 

of neural groups that are switched on; and such a digital code can be close to a continuous 

representation if the number of neural groups is large. However, this scenario predicts 

significant gaps in the tuning curves of memory neurons, due to the jumps between the 

resting state and active persistent states, that are not seen in neural data from working 

memory experiments. It remains to be seen whether gaps in the firing rate could be rendered 

insignificant with biophysically realistic mechanisms.

Thirdly, a network can be tuned judiciously toward a continuum of attractor states (Seung, 

1996; Seung et al., 2000a). Our simulations show that a finely tuned model compares 

favorably with the experimental data, without large gaps in the tuning curves of mnemonic 

neural activity. The inherent problem of a trade-off between robustness to noise and 

heterogeneity versus a continuum of stable states is ameliorated by the cross-inhibition 

between positively and negatively monotonic groups, as well as the large number of neurons 

in the system. In our network there are a total of 24 excitatory neural groups, each with 

strong recurrent feedback adjusted to be at the ‘cusp’ to produce a continuous attractor over 

a small range of inputs (Figs 5 and 6). With 24 continuous attractors available, the whole 

network is able to be in the vicinity of several of them robustly. Near the attractor states the 

effective time constant of the network is much longer than the intrinsic cellular or synaptic 

time constants (Seung et al., 2000b).

In the brain, fine-tuning of a recurrent network is likely to be accomplished by some 

activity-dependent homeostatic mechanisms (Marder, 1998; Turrigiano et al., 1998; 

Turrigiano, 1999; Turrigiano and Nelson, 2000; Renart et al., 2003a). For example, consider 

a neural group with excitatory feedback (shown in Fig. 5). Assuming that regulatory 

processes (operating at timescale of days) stabilize the long-term firing rate of neurons at 

~8–15 Hz (the ‘goal’ or ‘target’ rate), then the network will be naturally tuned to the narrow 

parameter region near the cusp (with continuous attractor states). Figure 6 emphasizes that 

for the tuned system shown, the average firing rate can only be in the range of 8–15 Hz if 

the conductance offset, gApp (in this case zero) exactly matches the position of the vertical 

line. Hence a coarse monitoring of average firing rate (Turrigiano, 1999; Turrigiano and 

Nelson, 2000) could lead to a very fine tuning of neuronal parameters.

Such a homeostatic mechanism would combat and compensate any mis-tuning of cellular or 

synaptic parameters, so that the network would be stabilized near the cusp in spite of 

parameter mis-tuning. Theoretical work suggests that such a homeostatic mechanism works 

effectively in a continuous attractor model for spatial working memory (Renart et al., 
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2003a). It would be interesting to see whether the same kind of ideas can be applied to 

parametric working memory models.

It can be noted from Figure 5 that tuning a system to a cusp requires adjustment of two 

parameters. Durstewitz (2003) has suggested that as well as mean firing rate, a cell could 

monitor its variance in activity as a second parameter to tune. Noting that the variance is 

typically maximal at a line attractor, where fluctuations are not damped, Durstewitz suggests 

that a neuron can utilize such information. Further experimental work will be very useful to 

demonstrate the feasibility of such cellular tuning processes.

With appropriate network connectivity (Fig. 8) our model can reproduce cells which have a 

delay from the end of the stimulus until they begin to ramp up. Moreover, the length of 

delay and rate of ramping-up can be scaled in time by modification of synaptic strengths. 

Other mechanisms could produce delays, such as utilizing slow currents within neurons, but 

there are no known mechanisms whereby such intrinsic currents could change their time 

constants. Durstewitz (2003) has suggested a similar synaptic learning mechanism, but 

where the strength of input from other cells affects a neuron’s intrinsic ramping rate. 

Experimentally, whether a change in the duration of the delay does give rise to the kind of 

synaptic modification suggested by our model is not known and remains to be studied in the 

future.

As well as a time variation of average firing rates, neurons in the prefrontal cortex can also 

exhibit a time variation in their tuning to the stimulus. The two behaviors are correlated, 

because when the average firing rate is very low, there is typically little stimulus 

dependence, as a strong stimulus dependence would cause a range of firing rates across 

stimuli, resulting in an average firing rate that differs significantly from the spontaneous 

rate. However, during the delay some neurons can maintain a near constant, typically high 

average firing rate, while the spread of firing rates is large only early or late in the delay. We 

speculate that a strategy similar to the one we outlined above could generate many of these 

other types of time-dependent behavior observed experimentally.

To conclude, we would like to emphasize that, at present, it remains unproven that the 

continuous attractor paradigm is a necessary and accurate description of spatial or 

parametric working memory circuits. Because of experimental constraints, typically only a 

relatively small number (<10) of stimuli are used in working memory experiments, such as 

the oculomotor response task (Funahashi et al., 1989) or the somatosensory discrimination 

task (Romo et al., 1999). Moreover, even if a large number of discrete stimuli are sampled, 

animals tend to categorize these values when possible, and avoid the difficult task of 

memorizing a continuous quantity (Hernandez et al., 1997). Hence, further experiments are 

desirable to rigorously test whether the internal representation of an analog stimulus in 

working memory is truly continuous.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic model architecture with asymmetric connectivity. Two mirror networks of 

positively and negatively monotonic neurons receive transient input respectively from 

positively and negatively tuned neurons in S2. Each network has an excitatory pyramidal 

cell population (squares) and an inhibitory interneuron population (circles). Neurons are 

divided into 12 groups per network. Synaptic connections are stronger within the same 

group than between two groups. The connectivity is asymmetrical, so that the activation 

threshold by stimulus is the lowest for neural group 1 and highest for neural group 12. 
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Populations of inhibitory interneurons are shown as circles. The two networks interact 

through pyramid-to-interneuron connections, resulting in cross-inhibition. See text for more 

details.
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Figure 2. 
Persistent neural activity of the parametric working memory model. (a) A positively 

monotonic, excitatory cell. Top panel: rastergrams, showing spikes in blocks of 10 trials, 

each block corresponding to a fixed stimulus frequency. The cell initially fires spikes at a 

few Hertz spontaneously. A transient stimulus (shaded) produces a large response, followed 

by persistent activity after the stimulus offset. The firing rate of both the transient response 

and persistent activity increases with the stimulus frequency. Middle panel: trial-averaged 

neural firing rate, where darker shades of gray represent increasing stimulus frequency. 

Bottom panel: the tuning curve shows the average rate in the last 5s of the delay period 

following each stimulus. (b) A negatively monotonic inhibitory interneuron, same plots as 

(a).
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Figure 3. 
Sustained delay activity of prefrontal cortical neurons recorded from macaque monkeys 

during parametric working memory. (a) A positively monotonic neuron. (b) A negatively 

monotonic neuron. Same format as Figure 2
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Figure 4. 
Diversity of tuning curves of persistent neural activity in prefrontal neurons and our model. 

(A) Examples of positively monotonic (left) and negatively monotonic (right) tuning curves 

from the experimental database. (B) Examples chosen to indicate the full variety of tuning 

curves from model simulations. Note the quasi-continuous nature of the curves, with small 

rate jumps. Filled circles: excitatory cells; open circles: interneurons.
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Figure 5. 
Fine-tuning of parametric working memory model. Schematic illustration of a neural group 

with recurrent excitation. Left panel: network behavior as a function of the recurrent 

strength WE→E and applied excitatory input, gApp. When WE→E is above a critical value 

(e.g. point A), a bistability between a resting state and an active persistent state occurs in a 

range of gApp. This range shrinks to zero at the critical value of WE→E, point B, which is 

called a ‘cusp’. Right panel: there is a trade-off between robust bistability but with a large 

gap in the firing rates of the two stable states (upper figure) and fine-tuning to the cusp 

where there can be a continuous range of firing rates (lower figure).
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Figure 6. 
Bifurcation diagram of the finely tuned parametric working memory model, as a function of 

applied synaptic drive conductance, gApp. Synaptic drive is an offest conductance for 

demonstration purposes, that we add to the positively montonic neurons and subtract from 

the excitatory input to negatively monotonic neurons. A negative drive means the positively 

monotonic neurons have reduced synaptic excitation. A shift in any intrinsic neuronal 

parameter has a similar effect on the system. All the stable states are computed using the 

mean field theory for the entire network of twelve positively monotonic and twelve 

negatively monotonic, excitatory and inhibitory, neural groups. These persistent states are 

plotted as the firing rates of cells in neural group 3. (A) A quasi-continuum of stable firing 

rates is possible with correct tuning of applied synaptic drive. (B) An enlargement of the 

region near the quasi-continuous attractor indicates a discrete number of stable persistent 

states close to the number of neural groups, with small changes in firing rate between states. 

Portions of the curve with negative slopes are the branches of unstable states (dashed lines).
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Figure 7. 
Time integration of a stimulus with different duration and amplitude. (A) The network can 

integrate a stimulus over a long time (1, 3 and 5 s), as shown by the rastergrams and 

population firing rates. (B) The firing rate of persistent activity (averaged between 3 and 6 s 

after the stimulus offset) is plotted as a function of stimulus duration, different curves 

correspond to different stimulus frequencies (4, 8, 12 and 16 Hz, with increasingly darker 

shades of gray). Note that linear dependence on the time duration of the stimulus occurs for 

moderate input strengths.
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Figure 8. 
Diversity of delay period activity: tonic, early and late neurons. (A) Schematic diagram of an 

extended model with three neural populations (all are positively monotonic with the 

stimulus frequency). The first network (Tonic) shows tonic persistent activity and projects 

with strength g to a second network (Up), which integrates the inputs slowly to generate 

ramping-up activity during the delay. The third network (Down) displays a transient 

activation by the stimulus, and ramping-down time course of delay period activity due to the 

progressive inhibition from population 2. The trial-averaged firing rates for three different 
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cells from each type of network are shown for 5 s following the stimulus frequency. (B) 

Neurons in population 2 ramp-up with a slope and a delay that depend on the input synaptic 

strength. Left panel: control (black, solid), and when the synaptic strength, g, from the tonic 

population 1 is reduced by one-third (gray, dashed). Right panel: when the time is scaled by 

half for the gray, dashed curve, the two time courses closely resemble each other.
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