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cortex remodelling are
predicted to work in
harmony to retract blebs
Thomas E. Woolley, Eamonn A. Gaffney

and Alain Goriely
University of Oxford, AndrewWiles Building, Radcliffe Observatory Quarter,
Woodstock Road, Oxford OX2 6GG, UK

Numerous cell types undergo an oscillatory form of dynamics
known as blebbing, whereby pressure-driven spherical pro-
trusions of membrane (known as blebs) expand and contract
over the cell’s surface. Depending on the cell line, blebs play
important roles in many different phenomena including mitosis
and locomotion. The expansion phase of cellular blebbing
has been mathematically modelled in detail. However, the
active processes occurring during the retraction phase are
not so well characterized. It is thought that blebs retract
because a cortex reforms inside, and adheres to, the bleb
membrane. This cortex is retracted into the cell and the attached
bleb membrane follows. Using a computational model of a
cell’s membrane, cortex and interconnecting adhesions, we
demonstrate that cortex retraction alone cannot account for bleb
retraction and suggest that the mechanism works in tandem
with membrane shrinking. Further, an emergent hysteresis loop
is observed in the intracellular pressure, which suggests a
potential mechanism through which a secondary bleb can be
initiated as a primary bleb contracts.

1. Introduction
Many animal cells have the ability to produce large, dynamic
protrusions such as lamellae, filopods, microspikes and pseudo-
pods [1]. Each of these four protrusion types rely on the
polymerization of actin filaments in order to push the cell
membrane outwards. Often, cells use these membrane extensions
to undergo motility [2]; however, they can also be involved in a
number of other different phenomena, such as mitosis [3].

Here, we are interested in a specific protrusion type known
as a cellular bleb, which plays an important role in the
locomotion of tumour cells, embryonic cells and stem cells
[4–7]. Unlike the previously mentioned ‘actin-driven protrusions’,
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Figure 1. Confocalmicroscopy for a uniform timecourse showing a single bleb on amuscle stem cell being retracted over, approximately,
1 min.Usedwithpermission fromtheSkeletalMuscleDevelopmentGroup,University of Reading. Thefluorescencehighlights polymerized
actin. Scale bar, 1.5µm.

blebs do not extend because of actin filaments pushing the membrane outwards. Instead, blebs occur
when a cell’s lipid membrane bilayer delaminates from its actin cortex. If a cell’s internal pressure
is higher than the external pressure, then the pressure difference induces a flow of the cell’s cytosol
driving the membrane away from the cell and into a spherical protrusion, known as a bleb [8]. This
localized swelling requires additional membrane to cover the bleb, but it is not currently known how
this extra membrane can be produced and removed as quickly as observed. It has been hypothesized
that extra membrane stems from high levels of wrinkling in the cellular surface [9]. Alternatively, it has
been suggested that endo- and exo-cytosis processes could account for the membrane activity through
localized recruitment [10]. In both cases, the growth of the membrane can be modelled as an increase in
reference configuration, which is the approach taken here.

After approximately 10–30 s, the bleb expansion stops and an actin cortex reforms inside the bleb.
Over a longer timescale of 1–2 min, the cell retracts the newly formed cortex within the bleb (which is
coupled to the membrane), causing the bleb to shrink back into the cell, and allowing the process to begin
again (figure 1). It is thought that myosin motors contract the cortex, causing it to shrink and, potentially,
thicken [10]. It is this retraction phase that we are interested in modelling in this paper because bleb
retraction is required for cells to move efficiently.

One should note that these ‘pressure-driven’ bleb protrusions, differ in mechanism, character and
behaviour from actin-driven protrusions. For example, it has been shown that cellular motion dependent
on blebs is much faster than many forms of lamellipodial movement. Further, blebbing cells are able to
change the direction of their migration much quicker [11,12]. Owing to the fast-moving properties of
the blebs over small spatial scales, it can be difficult to generate experimental insights into the physical
processes that couple together to make blebbing possible, motivating the use of mathematical models to
investigate the blebbing process.
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Although blebbing is an extremely complex behaviour, the structural shape of a cell is thought

to depend on three components: a flexible lipid bilayer membrane, a stiff actin cortex and adhesion
proteins that couple these two structures [8]. Mathematical modelling offers a framework within which
hypotheses can be tested, generating new predictions concerning the underlying mechanisms that
control the blebbing expansion and retraction cycle. The hypothesis currently present in the biological
literature is that blebs shrink simply due to the retraction of the bleb’s reformed cortex, implying that
the membrane is slave to the dynamics of the cortex [10]. Here, we test the biophysical and mechanical
plausibility of experimentally suggested mechanisms that induce bleb retraction. However, an absence
of molecular-level knowledge entails that we implement a phenomenological model of membrane and
cortex retraction which captures the concept that myosin motors induce cortex shrinkage, but without
detailed dynamics.

In terms of previous work, there are a number of different theoretical frameworks available
considering diverse aspects of blebbing. Although some groups focus on using very high-level models to
capture the entire blebbing expansion–retraction cycle [13,14], the majority deal with only the expansion
phase of blebbing [15–19]. Our aim is to extend our previous model [20] to include mechanisms that will
describe the retraction of spherical protrusions in order to investigate the expansion and retraction of
blebbing in a unified mechanical model.

In our framework, the cell’s membrane is an extensible, axisymmetric, elastic shell. The adhesion
proteins that link the cortical cytoskeleton to the plasma membrane are thought to be members of
the highly conserved ezrin–radixin–moesin (ERM) family [21]. Based on the work of Liu et al. [22],
we model the adhesion molecules as piecewise neo-Hookean springs, in that their retraction force is
a nonlinear function of their extension, up until a critical length. Beyond this critical extension, the
adhesion molecules detach from the membrane, leaving the cortex and membrane no longer connected.
Finally, the cortex is represented simply as a stiff elastic structure in which the adhesions are fixed.

Other frameworks for the cell membrane do exist; for example, it can be treated as a highly viscous
fluid. However, we encompass these features within the solid mechanics framework as viscosity can
be represented by a membrane with an evolving reference configuration. Equally, the growth of the
membrane through a change in the arc-length kinematically captures all possible internal effects such as
growth by addition of new material, resorption and fluid-like properties.

We begin in §2 by reproducing the key equations of the previously presented shell model of a bleb [15,
16,20] and extend it to include the production of a new cortex in the bleb, the retraction of this new cortex
and membrane shrinking. The initial results in §3 demonstrate that cortex retraction cannot produce bleb
retraction on its own. Cortex retraction is then coupled to membrane shrinkage and it is observed that we
are able to reproduce the observed bleb retraction, as well as produce membrane wrinkling depending
on the ratio of timescales between the cortex retraction and membrane shrinking mechanism. Finally, in
§4, we summarize the results and suggest how bleb retraction may lead to the initiation of further blebs,
thus allowing cells to undergo self-consistent cyclical bleb dynamics.

2. Mathematical framework
The geometry and shell mechanics [23] are defined as in previous articles [16] and the pertinent equation
system coupling the membrane, adhesions and cortex is briefly recapitulated here and explained below.
A brief overview of the variables can be found in table 1 and further detail can be found in appendix A.
The equations are

geometry

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y
∂σ

= λs cos(θ ),

∂z
∂σ

= −λs sin(θ ),

∂θ

∂σ
= λsκs,

∂s
∂σ

= λs,

(2.1)

principal curvatures

⎧⎪⎪⎨
⎪⎪⎩

∂κs

∂σ
= λs

y

(
cos(θ )(κs − κφ) − Qs

M

)
,

κφ = sin(θ )
y

,
(2.2)



4

rsos.royalsocietypublishing.org
R.Soc.opensci.2:150184

................................................
Table 1. Reference table for the variables and parameters in system (2.1)–(2.5). See text for further details.

name description

variables that alter as the simulations progress
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y vertical coordinate of the solution profile
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z horizontal coordinate of the solution profile
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ȳ vertical coordinate of the reference configuration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z̄ horizontal coordinate of the reference configuration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yc vertical coordinate of the cortex
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zc horizontal coordinate of the cortex
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ solution profile normal angle measured anticlockwise from the z-axis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s solution profile arc length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ reference configuration arc length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κs longitudinal principal curvature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κφ azimuthal principal curvature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λs arc length stretch ratio
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ts = yts scaled form of the surface tension, ts, along the arc length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tφ surface tension along the azimuthal coordinate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qs = yqs scaled form of the normal shear stress, qs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parameters that are constant throughout a simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�P pressure difference across the membrane
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C concentration of adhesions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F adhesion force
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E adhesion extension
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E0 adhesion resting length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ec adhesion breaking length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ neo-Hookean spring constant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α andβ intrinsic adhesion properties scaling the force–extension relationship
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η1 rate of cortex retraction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η2 rate of membrane retraction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ radius of the initial reference configuration sphere
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ0 initial reference configuration arc length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ relative extensibility of the membrane in the azimuthal and longitudinal directions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tangential force balance
∂Ts

∂σ
= λs(tφ cos(θ ) + Qsκs), (2.3)

normal force balance
∂Qs

∂σ
= λs((�P − FC)y − κφytφ − κsTs), (2.4)

and adhesion force

⎧⎪⎨
⎪⎩

F(σ ) = κ

(
αE2(σ ) − β

E(σ )

)
,

E(σ ) =
√

(z(σ ) − zc(σ ))2 + (y(σ ) − yc(σ ))2.
(2.5)

To close the equation, system-suitable boundary conditions and constitutive equations need to be
specified (see appendix A and A.1).

Equation set (2.1) defines the axisymmetrical geometry of the shell around the axis of rotational
symmetry, here taken to be the z-axis (figure 2). As the two-dimensional shell is axisymmetric, we
only need to consider a one-dimensional cross-section, at which point the radial coordinates can be
related to the standard rectilinear Cartesian coordinates. Specifically, a reference configuration, (z̄, ȳ),
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Figure 2. Definition of geometric variables concerning the coupling of the membrane, (z, y), the reference configuration, (z̄, ȳ), and the
cortex, (zc, yc). (a) The initial set-up where the membrane is adhered uniformly to a porous cortex. (b) The profile of the system once
adhesions near the z-axis have been ablated and the reference configuration is allowed to grow. θ is the outward pointing normal angle
between the membrane and the z-axis. See text for further details.

corresponding to the unstressed state, is parametrized by its arc length σ and measured from the
intercept of the curve with the z-axis.

Initially, the reference configuration is a sphere of radius ρ, thus σ = σ0 ∈ [0, ρπ ]. The bleb production
simulations are initiated by removing adhesions at the front of the cell, around σ = 0. After the initial
ablation of adhesions, the membrane deformation arises through reference configuration remodelling.
This means that the arc length and profile of the reference configuration are able to update according
to some postulated evolution rule. Critically, we only remodel the reference configuration within the
unadhered region, σ ∈ [0, σ̂ ]. Using the biologically demonstrated fact that strains are small [24], we fix
the reference configuration update rule to be linear. Explicitly, if ȳ(σ , t) and σ = σ (σ0, t) are the profile of
the reference configuration and corresponding arc length at time t, respectively, then

∂ ȳ
∂t

(σ , t) = η1(y(σ , t) − ȳ(σ , t)), (2.6)

ȳ(σ , 0) = ρ sin
(

σ0

ρ

)
, (2.7)

and

∂σ

∂t
= η1(s − σ ), (2.8)

σ (σ0, 0) = σ0 ∈ [0, σ̂0]. (2.9)

Once the equilibrium state of system (2.1)–(2.5) has been found, ȳ and σ are updated. These new values
for the reference configuration and arc length are then substituted back into the equations (2.1)–(2.5) and
boundary conditions and the system is solved again. Critically, growth of the reference configuration
ensures that the membrane does not stretch too far as it is well known that membrane tears after only a
4% area stretch [9] (see [15] for further details).

The solution configuration represents the shape that the reference configuration takes once it has
been pressurized and is defined by the horizontal and vertical coordinates (z, y). Furthermore, s
measures the arc length of the solution configuration and θ is the outward pointing normal angle
of the membrane measured anticlockwise from the z-axis. Finally, in order to complete the geometric
definition, we define κs and κφ through equation set (2.2), respectively, to be the principal curvatures of
an axisymmetric surface.

Time evolution is applied through assuming that we are able to step the system through adiabatic
approximations, while updating the reference configuration. Thus, during each iteration of the
simulation, all forces acting on the shell are assumed to balance as summarized by equations (2.3)
and (2.4), where the surface tensions ts and tφ are given in appendix A. The pressure difference, �P,
is a Lagrange multiplier for the constraint of constant cell volume. Further, because the shell can support
a small, but non-zero amount of bending, we define M in equation (2.2) to be the membrane bending
modulus and note that there may be non-zero normal shear stresses, qs, which act along the membrane’s
normal direction. To aid efficient numerical simulation of the system, we formulate the model in terms
of Ts = yts and Qs = yqs, which allows us to remove singularities from all but the equation for κφ .
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Figure 3. Creating a new cortex. (a) Schematic diagram illustrating the calculation of the reformed cortex location. (b) Blebbed cell
showing the membrane as a solid (black) line. The old cortex, which was a sphere of radius rc = 4.98µm, is the dashed and dotted
(blue) line. The new cortex, calculated using equation (2.14), is the dashed (red) line, just beneath the membrane. The resting length is
E0 = 0.01µm.

Equation set (2.5) defines the relationship between the adhesion resistance force and the adhesion
extension. Although the relationship between extension and force could be approximated by many
different nonlinear equations, we have shown [20] that variations in the relationship have very little
effect on the resulting behaviour of the system. This insensitivity to the force–extension relationship is
because the extension range of the adhesions is very small. Thus, we adopt a constitutive law inspired
from the uni-axial extension of a neo-Hookean material [25]. This choice captures the correct geometric
behaviour in large deformations. In particular, it produces an infinite force when the adhesion’s length
tends to zero, which prevents the cortex and the membrane from penetrating each other. The parameters
α and β are chosen such that the resting length is E0 = 10−2 µm and a Hookean constant close to this
length is κ . Solving these conditions simultaneously,

F(10−2 µm) = 0 and
∂F
∂E

(10−2 µm) = κ (2.10)

provides us with the constants α = 100
3 µm−1 and β = 1

30000 µm2, respectively. Note that the sign of the
repulsive force is negative (without loss of generality) due to our arbitrary choice of force direction (see
force vector of the adhesions in figure 3a). Also observe that since F is force per adhesion it is multiplied
by an adhesion concentration, C, providing a force per area (pN µm−2), which counter-acts the pressure
gradient. Finally, it should be noted that we are focused on the retraction phase of the blebbing cycle. For
simulations focusing on how the membrane peels away from the cortex in the neck region, we direct the
reader to our previous work [20].

In order to calculate the extension through equation (2.5), we need to know the position of the cortex.
During bleb expansion, the cortex is assumed be a stiff sphere that contracts by a small amount, thus its
coordinates are (zc, yc) = (rc cos(σ0/ρ), rc sin(σ0/ρ)), where rc is the radius of the cortex and ρ is the radius
of the initial spherical reference configuration (figure 2).

Cortex contraction is simulated by reducing the cortex radius by a constant, small amount, δ, after
each iteration. The reason we choose to reduce the radius by a constant amount each time is because its
reduction is extremely small (of the order of 10–20 nm, which is below the resolution of current confocal
microscopy). Algebraically, this is

∂rc

∂t
= −δ. (2.11)

Alternatively, if the pressure from the cytosol acts on the actin skeleton as well as the membrane then,
instead of the cortex contraction being an active process, cortex contraction could occur passively due
to the bleb expansion reducing the pressure, which, in turn, would cause the actin skeleton to contract
with δ ultimately expressible in terms of the cortex stiffness. In either case, because the radial change is
so small we choose to approximate the cortex contraction through a linear decrease in radius.

We define the key parameters for the blebbing process illustrated in figure 2. Blebbing is initiated
by removing adhesions within the region σ0 ∈ [0, σ̂0). During the simulation further adhesions may
break. The point, along the arc length, at which the membrane transitions from adhered to the cortex
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to unadhered is denoted σ̂ . The neck width is y(σ̂ ) and the bleb extension distance is z(0) − z(σ̂ ). Finally,
the widest point of the bleb satisfies ∂y(σ )/∂z = 0, for σ ∈ [0, σ̂ ) if such a point exists, otherwise the widest
point is at y(σ̂ ).

As demonstrated previously [20], equations (2.1)–(2.5) produce accurate bleb morphologies with
the width of the bleb’s neck smaller than the bleb’s maximum width, known as small-necked blebs
(figure 3b). The simulation of these blebs progresses as follows: adhesions are removed from the region
[0, σ̂0). This adhesion removal mimics experiments performed by Tinevez et al. [18], where adhesions
were ablated using a laser causing blebs to appear. After this initial ablation of adhesion, the membrane
deformation arises through reference configuration remodelling. For a given reference configuration, the
solution configuration of system (2.1)–(2.5) is found. The reference configuration is updated using the
new solution and the iteration process of finding a solution and updating the reference configuration is
repeated.

2.1. Bleb retraction
Using the mathematical formulation presented in §2, we are able to iterate the system through adiabatic
steps of membrane growth in order to produce a blebbed protrusion that matches the observed spherical-
cap shape (figure 3b). We take this small-necked bleb as the initial condition for the retraction process. The
retraction is initiated by creating a new cortex and adhering it to the membrane such that the adhesions
are at their resting lengths (figure 3). Explicitly, because the adhesions align along the membrane normal
direction, θ , the cortex coordinates, (zc(σ ), yc(σ )), at a given point σ are the solutions to (figure 3a)

(y − yc)2 + (z − zc)2 = E2
0 (2.12)

and
tan(θ )(zc − z) + y = yc, (2.13)

namely

yc = y − E0| sin(θ )| and zc = z − E0| sin(θ )|
tan(θ )

. (2.14)

Note that due to the high localization of the cortex reconfiguration, we only insert new cortex and
adhesions in the blebbed region. The adhesions in the rest of the cell start from the initial expanded
state and are allowed to relax during the simulation.

Once the new cortex has been formed adiabatic iterations are simulated, once again. However,
whereas the bleb is formed by increasing the membrane’s arc length, bleb retraction is produced through
a reduction of the cortex and membrane arc lengths. Explicitly, the cortex is returned to its original
configuration through the following equations:

∂zc

∂t
= η1

(
rc cos

(
σ0

ρ

)
− zc

)
(2.15)

and
∂yc

∂t
= η1

(
rc sin

(
σ0

ρ

)
− yc

)
. (2.16)

Equally, the membrane is also updated through the following equations:

∂σ

∂t
= η2(σ0 − σ ) (2.17)

and
∂ ȳ
∂t

= η2

(
ρ sin

(
σ0

ρ

)
− ȳ

)
. (2.18)

Observe that equations (2.15) and (2.16) will cause the cortex in the bleb to retract into the cell, while the
cortex in the cell body expands slightly due to the fact that blebs are created through cortex contraction
(see equation (2.11)). Simultaneously, equations (2.17) and (2.18) will cause the membrane to shrink back
to its initial length.

The two additional mechanisms of cortex retraction and membrane shrinking are associated with
timescales η1 and η2, respectively (see equations (2.15)–(2.18)), through which the speed of each
mechanism can be controlled. We are able to consider each mechanism individually, through setting
one of the timescales to zero, as well as their coupled interactions.

As the bleb is retracted, the system is effectively always in quasi-steady state as the system
is overdamped. Hence retraction is driven by remodelling timescales. Equally, the impact of any
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Table 2. Parameter values used in all simulations, unless otherwise stated.

parameter value

α 100
3 µm−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 1
30000 µm2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 400 pNµm−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ 1
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M 10−2 pNµm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E0 10−2 µm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ec 4 × 10−2 µm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κC 4 × 103 pNµm−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�P 20 pNµm−2 (initial value)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

heterogeneity in the thickness of the cortex is unclear, because we cannot be sure that it is accompanied
by enhanced myosin aggregation and, thus, greater contractile forces, or if a thicker cortex would be
harder to manipulate and, thus, slower to retract. Without further information, we have presented the
simplest case of constant heterogeneous structures.

Furthermore, the modelled process of cortex retraction is phenomenological—the cortex within the
modelling framework has a memory of its original configuration, approximating the observations that
the cortex does retract along the given path [10]. Equally, although the membrane is known to shrink, it
is also seen to wrinkle. In §3, we will be able to show that large wrinkles are seen if the cortex shrinks
faster than the membrane (figure 7). The appearance of wrinkles in this case is to be expected as it has
been shown that when a small substrate is attached to a larger membrane a buckling instability occurs
in the membrane [26]. However, the solid mechanical framework we are using is unable to resolve
the extremely small spatial creases that occur in the membrane as the bleb shrinks. In particular, we
expect that the continuum approximation of the membrane is not valid at the small length scales of the
highly oscillatory membrane wrinkles and we suggest that a discrete model of the lipid molecules would
be needed to capture the wrinkling detail. Thus, understanding these limitations and without further
data on how the cortex and membrane actually contract we use the current update rules as a way of
encapsulating and approximating these unknown details without capturing molecular-level resolution.

Note that although membranes cannot support compressive stresses, there is a well-defined wrinkling
theory for membranes that allows for stress computation (but not the shape) [27]. However, if we also
take into account the contribution of the cytoskeleton, then we obtain a theory of shells that can support
stresses and, in principle, wrinkles can be computed. However, there is insufficient experimental data,
on both the effective bending modulus and the wrinkles (they are observed in some experiments but not
controlled with respect to any accessible parameters), to warrant a detailed analysis of wrinkles.

3. Results
In all solutions, unless otherwise stated, the parameters are as given in table 2. The value of the ratio
η1/η2 can be found in the caption of each simulation. The parameter values have been taken from a wide
range of blebbing and membrane literature [12,22,24,28–30] and offer a scale of magnitude, if not an
exact quantity.

Before we discuss the results of bleb retraction, we first, briefly, address the matter of simulation
work flow and, in particular, bleb production. The whole simulation can be envisioned as an iterated
root finding problem. Specifically, upon initialization, system (2.1)–(2.5) is solved as a boundary value
problem (boundary constraints are discussed in appendix A(A.1) for various different values of �P. The
value of �P is iterated until the difference between the volume of the output solution and the initial
volume constant is below a given tolerance. Once this tolerance is achieved the reference configuration
and cortex are updated, if needed. Since each iteration only modifies the solution a small amount, we
would expect the next solution state to be approximately similar to the previous solution state. Thus,
the updated reference configuration and cortex curves are fed back into the root finding algorithm,
along with the previous solution state. The algorithm uses the previous solution as an initialization
state, around which to search for the new solution. Throughout the simulation, it was ensured that the
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Figure 4. Result of retracting the cortex only. In (a,b) and all following cell profile images, the plotting scheme remains the same.
The solid (black) line represents the membrane, while the dashed (red) line represents the cortex. (a) The initial state of the bleb with
regenerated cortex, before it begins to retract. (b) Membrane and cortex profiles during cortex retraction. Note that as the simulation
progresses the membrane begins to squeeze the cortex neck. The insets in (a,b) show the full cell profile and illustrate that the bleb
hardly retracts before problems arise in the neck. (c) Extension of the adhesions for the profiles illustrated in images (a,b). The dashed
lines illustrate that, as intended, the cortex in theblebbed region in (a) is initializedbeneath themembrane such that thenewadhesions in
the bleb are at their natural resting length. The solid line shows that the adhesions in (b) are compressed in the neck region, whereas they
are being stretched at the front of the membrane. In addition to the parameters fixed in the text, the timescale of membrane shrinking
is η2 = 0 s−1, while η1 > 0 s−1 and, thus, η1/η2 = ∞.

numerical errors were never greater than the errors included due to the linearization of the boundary
points (data not shown).

How the reference configuration and cortex curves are updated depends on whether the bleb is
expanding or contracting. During the expansion phase, we demonstrated that small-necked blebs can be
formed through two very different methods [20]: either the membrane is allowed to undergo localized
growth, or the cell undergoes global cortex contraction. In either case, equations (2.6)–(2.9) are used to
update the reference configuration of the membrane. Although there are multiple ways of producing a
bleb, we propose only one method of retracting a bleb using equations (2.15)–(2.18), discussed in §2.1.
The results in this paper are based on retracting blebs that have been produced through global cortex
contraction. However, the retraction mechanism has been applied to the case of localized growth as
well, where it also works and most results are not significantly different. The only result that is different
between these two initialization methods is presented in the discussion of hysteresis in §3.5, where it is
seen that initiation by global cortex contraction can offer emergent properties that are not seen in the case
that blebs are initiated by localized membrane growth.

3.1. Cortex retraction only
As stated in §2.1, retraction of the blebs relies on the interacting timescales of cortex retraction and
membrane shrinking. We begin this section by presenting the case in which membrane shrinkage does
not occur, i.e. η2 = 0. Our aim is to theoretically demonstrate that cortex retraction is not solely capable
of shrinking a bleb.

Figure 4 demonstrates the problems that occur when only cortex retraction occurs. As the simulation
progresses, the cortex begins to pull the bleb towards the cell, with the adhesions becoming stretched
at the front of the cell, near σ = 0. However, owing to having a bleb neck smaller than the widest part of
the bleb, the membrane in the bleb neck region begins to move towards the cortex, thereby compressing
the adhesions in this region. Since the adhesions have a natural resting length of E0 = 0.01 µm, they are
able to undergo some compression. However, as shown in figure 4c the adhesions in the neck region are
being crushed between the membrane and cortex. This is of course unphysical, because, as noted in §2,
the repelling force provided by the adhesions becomes very large as the adhesions are compressed. This
increased force in the neck region would cause the membrane to crush the cortex, which is physically
not possible.

3.2. Membrane shrinking only
Blebs also do not contract if cortex retraction is stopped and only membrane shrinking occurs. This
should come as no surprise, primarily because the cortex forms a barrier, beyond which the membrane
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2 .

cannot move. However, by comparing the adhesion extension results from the cortex retraction
simulation (figure 4c) with the adhesion extension results from membrane shrinking simulations
(figure 5c) we observe that these two mechanisms have opposite effects on the evolution of the adhesion
curves. Namely, in the case that only the cortex retraction is allowed, adhesions at the front are stretched
while the adhesions in the neck are compressed. Antithetically, in the case that only the membrane
shrinking is allowed, the adhesions at the front of the bleb are compressed and the adhesions in the
neck are stretched. Thus by combining cortex retraction and membrane shrinking appropriately, there is
the possibility that the bleb might retract without producing a situation where any of the adhesions are
stretched, or compressed, beyond realistic expectations.

3.3. Coupling cortex retraction with membrane shrinking
In figure 6, both cortex retraction and membrane shrinking are active and we clearly see that the bleb
can be retracted. Moreover, we see that although the adhesions are not homogeneous in length during
the simulation they are neither stretched more than the critical length, Ec, nor are they compressed more
than their resting length, E0, anywhere in the bleb. Note that as the bleb is finally retracted into the cell
the adhesion lengths do homogenize as it approaches the spherical membrane solution, from which the
bleb was first initiated.

Although we have shown that bleb retraction is possible using cortex remodelling and membrane
shrinking, figures 4c and 5c suggest that this is only mechanically consistent with adhesion dynamics
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for a certain range of values of η1/η2. If η1/η2 � 1, then the bleb retraction process is dominated by
membrane shrinking, leading to the case shown in §3.2, where the adhesions at the front of the bleb are
heavily compressed. Similarly, if η1/η2 � 1, then the simulation is dominated by cortex retraction leading
to compressed adhesions in the neck.

3.4. Wrinkling
In the case that η1/η2 is around unity then the bleb can be contracted completely; however, by increasing
the ratio further wrinkling can occur, as seen in figure 7a,b. As discussed in §2.1, these wrinkles appear
because the arc length of the membrane is not shrinking as fast as the cortex’s arc length. This concept
is firstly evidenced in figure 7c, where we observe that in the case of bleb retraction (with η1/η2 = 1

2 ) the
curves representing the arc lengths of the membrane and cortex match each other closely (solid line of
figures 6c and 7c). Secondly, when η1/η2 = 2 wrinkles occur and the arc lengths of the membrane and
cortex diverge (dashed line of figure 7c). Since the membrane is larger than the cortex to which it is
attached, the unwrinkled state becomes unstable and thus membrane oscillations appear.

3.5. Expansion and retraction
Our final result links both the expanding and retraction phases. In figure 8, we consider the force–
extension curve produced when blebs are initiated in two different ways. Figure 8a illustrates the
evolution of the force that is present when the bleb is produced through global cortex retraction. This
method has been used throughout the paper and is described in §2. Alternatively, figure 8b illustrates the
force–extension curve in the case that the bleb is initiated through a local membrane growth mechanism.
Although not explicitly discussed here in detail, extended examination of bleb production through local
membrane growth can be found in our previous work [20]. The essential difference between the two
bleb production mechanisms is that in the case of local membrane growth, the cortex does not undergo
global contraction, instead it remains stationary. Furthermore, the membrane only grows within a fixed
region, even if the membrane and cortex peel further apart. This can be compared with the global cortex
contraction method, where the membrane is assumed to grow wherever the membrane and cortex are
separated.

As we have discussed in previous articles [15,16,20], the intracellular pressure is one of the best
measures of cellular dynamics. Figure 8 demonstrates that certain features of the force–extension curve
are independent of the initialization mechanism. Namely, bleb expansion greatly reduces the intracellular
pressure and, thus, the expansion force acting on the bleb, which matches the predictions of our
previous work [15,16,20]. Further, we observe that as the bleb is retracted the cell repressurizes to its
initial pressure difference, confirming the cyclical nature of the blebbing dynamics. Note also that the
expansion–retraction oscillation forms a hysteresis loop. This is particularly pertinent in figure 8a since,
for a given expansion, the force acting on a contracting bleb is always larger than the one acting on an
expanding bleb.
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Figure 8. Force–extension curves for the expansion and retraction of blebs from different initiation mechanisms. (a) Bleb created
through global cortex contraction. (b) Bleb created through localized membrane growth. In both cases, as a bleb expands, the cellular
pressure (and, hence, force acting on the bleb) drops because of the assumption of constant solution volume. Conversely, as the bleb
retracts the pressure increases. Note that hysteresis is present in the force–extension blebbing cycle. Parameters are the same as in
figure 6.

Critically, figure 8 also presents a clear difference between the two initiation mechanisms. Note that
in figure 8a the force increase during the retraction phase is not monotonic. This non-monotonicity in the
force occurs due to the bleb being created through cortex contraction. As the bleb retracts, the entire
cell relaxes back to its original spherical state, namely, the bleb shrinks and the cell body expands.
Since the cell remodelling speed is assumed to be proportional to the difference between the reference
configuration and the initial spherical state (see equations (2.15)–(2.18)), the bleb retraction will be
quicker than the cell body expansion, because the bleb is further removed from the spherical state. Thus,
as the bleb is retracted the reference configuration volume will evolve to be slightly smaller than its initial
value, causing the pressure to increase above the initial pressure difference. However, as the cell body
finally relaxes to the initial spherical state the pressure decreases to the original pressure difference.

This non-monotonicity in force increase does not occur when blebs are retracted in the local growth
case (figure 8b), because the reference state volume is never smaller than its initial value. However, what
is seen is that as the bleb expands initially adhesion breaking occurs, causing the membrane to peel away
from the cortex. This extra unadhered membrane deviates away from the cortex and causes the pressure
difference, and therefore the force, to fall quickly. Once the bleb has extended to approximately 0.5 µm,
the pressure has dropped to a sufficient level such that no more adhesions break. Thus, the pressure drop
after the extension of 0.5 µm arises purely from the bleb growing due to localized membrane growth.
Overall, figure 8 allows us to demonstrate the ability of force, and in particular intracellular pressure, to
act as an excellent proxy measure for the dynamics of the cell.

Note that the area enclosed inside the hysteresis loop of figure 8a is calculated to be 77.9 pN µm =
77.9 × 10−18 J. This energy represents an estimate for the energy dissipated during a single bleb cycle.
Further, taking 1 min to be a characteristic timescale of one cycle allows us to suggest that the power
output of a single bleb is 1.3×10−18 W. These values are consistent with the adhesion energies estimated
by Charras et al. [10].

4. Summary and conclusion
Extensive mathematical modelling work has been performed on the expansion phase of cell protrusions
known as blebs. Here, we have developed a mathematical model for the retraction of these spherical,
pressure-driven expansions. The framework couples an axisymmetric, elastic shell to a stiff reconfiguring
surface through nonlinear springs that can break and reform. These three components model the
membrane, the actin skeleton and interconnecting ezrin adhesions, respectively. Blebs are initiated by
locally removing adhesions around the axis of axisymmetry. High intracellular pressure causes a bleb
to extend from the ablated region, which is devoid of actin and adhesions. Once the bleb has extended
to approximately 1.5 µm, bleb growth is stopped within the model and the actin cortex and adhesions
are treated as having reformed within the bleb, which, save for a small delay, is a representation of
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the observations presented in figure 1. From this state, we investigated which mechanisms are able
to successfully retract the bleb. Specifically, we demonstrated that membrane shrinking and cortex
retraction must be carefully coupled.

If only one mechanism is considered, either cortex retraction or membrane shrinkage, we find
that local regions of highly compressed adhesions are created, while adhesions in other regions are
stretched. Critically, the adhesion regions that are compressed and stretched through the cortex retraction
mechanism are exactly the regions that are stretched and compressed through the membrane shrinking
mechanism. Thus, these two mechanisms can balance each other, ensuring that no region is stretched
or compressed beyond physical constraints. Fortunately, this is consistent with observation that if
cortex retraction is inhibited then blebs are unable to retract [31]. Furthermore, our model predicts
that if membrane shrinking was separately inhibited bleb retraction would not occur, since either
retraction stops or the membrane ruptures (which is implicitly assumed to induce cell death and stop
bleb retraction).

Although these results may appear intuitively obvious and partially known through experimentation,
the fact that our mathematical framework is able to reproduce them is extremely positive and represents
an a posteriori evaluation that we are modelling (at least some of) the dominant mechanisms that are
important in the blebbing process. Further, the model has allowed us to investigate and explain how
these mechanisms breakdown in the case that blebs do not retract. Moreover, we have been able to predict
that successful bleb retraction only occurs within a relatively small region of values for the ratio η1/η2,
which is a measure of cortex retraction timescale to membrane shrinking timescale. This fine tuning in
the coupling suggests that the mechanisms maybe jointly regulated. Equally, the model has allowed us
to find, and explain the presence of, hysteresis loops in the blebbing force profiles, an idea which, to the
authors’ knowledge, has not previously been suggested.

The demonstration of hysteresis in the expansion and retraction loop of figure 8a allows us to offer
an explanation behind the high frequency of blebs seen in numerous cell lines. Since for a given bleb
extension distance the force acting on the cell is higher during the retraction phase than the expansion
phase, this suggests that a new bleb could occur before the last one has fully retracted. Further, the
force–extension curve shown in figure 8a offers a mechanism which initiates the next bleb formation. As
the bleb retracts, the pressure difference, and therefore the force, increases beyond the initial spherical
cell resting value. This increase in force coupled with stochastic adhesion binding and unbinding may
trigger a local delamination and, thus, lead to the formation of a new bleb somewhere on the cell.
This suggests that blebs can stimulate further blebbing events in a continual cascade of expansions and
retractions. This result highlights that cortex contraction and expansion are important for predictions of
such dynamics.

Through this and previous work [15,16,20], we have produced a complete mathematical framework
of bleb expansion and retraction. Our solid mechanics model does have its limitation; for example, the
geometry is specified to be axisymmetric, thus we are only able to consider blebs along the central axis
of symmetry [16]. However, modelling single blebs is justified as our simple model has allowed us to
understand the important factors pertaining to the expanding and contracting blebbing cycle, which in
the future can be extended to further more complex bleb interactions.

Our aim throughout this body of work was to investigate factors constraining the size of the
protrusions, which is highly correlated with their action. In particular, this paper focuses on investigating
the ability of a cell to retract its blebs. Although our framework contains all the basic mechanics that
allow the cell to bleb cyclically, there is still extensive work to be done in elucidating the mechanisms
behind bleb initiation and cell polarization. Further, this model only supports axisymmetric protrusions
and, thus, we will be looking to generalize our system to include multiple blebs over the entirety of
the cell. Equally, this work depends on the assumption that the blebbing dynamics are in an adiabatic
limit. The importance of this adiabatic assumption can be investigated through the addition of a
hydrodynamic description for the cytosol, which in turn could be used to produce a temporally evolving
blebbing system.

Even though the present framework is simple, it allows us to reach conclusions as to how blebbing
is regulated. Firstly, the expansion phase of the blebbing process is dominated by membrane growth.
This growth is essential in maintaining membrane stretches that are less than 4%. Secondly, although we
have maintained a constant volume throughout all of this work, the pressure drop produced by a single
bleb would seriously inhibit further bleb production, until the original bleb is significantly retracted.
Experimentally, it is observed that multiple blebs can expand and contract simultaneously. We also note
that the predictions of a drop in intracellular pressure with blebbing suggests the need for quantitative
experimental measures of pressure using, for example, nanoscale Fabry–Perot resonators [32]. The
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resulting data would fundamentally inform our mechanical understanding of blebbing, as would a
careful assessment of whether cell volume is conserved. Finally, we have shown that both biologically
motivated mechanisms of membrane shrinking and cortex retraction are needed to accomplish bleb
shrinking completely and that these mechanisms are able to generate a non-trivial elastic hysteresis
curve, which in turn suggests a mechanism for bleb-induced blebbing.
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Appendix A. Mathematical system
In further detail to §2, boundary conditions and constitutive relations need to be specified in order to
close the system (2.1)–(2.5). Parameters and variables are defined in table 1. First we provide constitutive
relations that couple the surface tensions ts and tφ to the reference and solution configurations. Explicitly,
these are

ts = A(λ2
s + μλ2

φ − (1 + μ)) (A 1)

and

tφ = A(μλ2
s + λ2

φ − (1 + μ)), (A 2)

where reference and solution membrane configurations are related by two stretch ratios. The first stretch
ratio, given by

λφ = y(σ )
ȳ(σ )

, (A 3)

is the radial stretch ratio, which measures the axisymmetric deformation. The second is λs, which is defined
in equation system (2.1) and represents the arc length stretch ratio, which, in turn, characterizes the local
stretching of the body coordinates with respect to arc length.

Further, the parameter A characterizes the elastic properties of the membrane and μ measures the
relative extensibility of the membrane in the azimuthal and longitudinal directions [23]. We have also
assumed that the bending moments are isotropic and proportional to the mean surface curvature, i.e.

mφ = ms = M(κs + κφ − K0), (A 4)

where K0 is the mean curvature of the reference configuration and M is the bending modulus.

A.1. Boundary conditions
Since equations (2.1)–(2.5) contain a singularity at σ0 = 0 and πρ, the accompanying boundary conditions
are not trivial. We expand y, θ , s, ts and λs in powers of ε near σ0 = 0 and in powers of πρ − ε near σ0 = πρ.
Here, we specify only the boundary conditions near σ0 = 0, with the conditions at σ0 = πρ being similar.

The expansions have the form

y = y0 + εy1 + ε2y2 + · · · , (A 5)

where the other variables are given mutatis mutandis. Since we are imposing that the z-axis is the axis of
spherical symmetry, the cell cuts the z-axis at both boundary points; thus, we immediately fix y0 = θ0 =
Ts0 = Qs0 = Qs1 = s0 = 0. On expanding the equations near σ0 = 0 we find that

y1 = λ1, (A 6)

θ1 = κs0λ1, (A 7)

s1 = λ1 (A 8)

and Ts1 = λ1A(λ2
1

(
1

ȳ2
1

+ μ

)
− (1 + μ)), (A 9)
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where λ1 satisfies the following quartic

0 = κs0A

(
1

ȳ2
1

+ μ

)
λ4

1 − 1
2

(�P + 2κs0A(1 + μ) − F(0)C(0))λ2
1 + Q2

s2. (A 10)

By construction, we take the root that connects continuously to the real, positive root that exists when
Qs2 = 0. Equations (A 6)–(A 9) form the four boundary conditions needed to be satisfied at σ0 = ε � 1.
The final three come from deriving analogous equations at σ0 = πρ − ε and noting that we do not need
to specify two boundary conditions for the variable s. This is because the equation for ∂s/∂σ decouples
and can be determined as an initial value problem, once the rest of the system has been solved as a
boundary value problem.
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