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Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups

covalently attached to the N-terminal cysteine residue of the mature protein.

Lipoproteins are synthesized in precursor form with an N-terminal signal

sequence (SS) that targets translocation across the cytoplasmic or inner

membrane (IM). Lipid modification and SS processing take place at the peri-

plasmic face of the IM. Outer membrane (OM) lipoproteins take the

localization of lipoproteins (Lol) export pathway, which ends with the

insertion of the N-terminal lipid moiety into the inner leaflet of the OM.

For many lipoproteins, the biogenesis pathway ends here. We provide

examples of lipoproteins that adopt complex topologies in the OM that

include transmembrane and surface-exposed domains. Biogenesis of such

lipoproteins requires additional steps beyond the Lol pathway. In at least

one case, lipoprotein sequences reach the cell surface by being threaded

through the lumen of a beta-barrel protein in an assembly reaction that

requires the heteropentomeric Bam complex. The inability to predict surface

exposure reinforces the importance of experimental verification of lipopro-

tein topology and we will discuss some of the methods used to study OM

protein topology.
1. Introduction
Bacterial lipoproteins are important components of the Gram-negative cell

envelope. Although the name ‘lipoprotein’ is often used to describe a non-

covalent assembly of proteins and lipids, bacterial lipoproteins belong to the

class of so-called lipid-anchored proteins. These proteins contain covalently

attached acyl groups as a result of a post-translational modification. Eukaryotic

lipid-anchored proteins can be modified at different sites and the modifications

are sometimes reversible and may be involved in regulation of the protein’s

activity [1]. By contrast, bacterial lipoproteins are modified at a specific site cor-

responding to the N-terminal Cys residue of the mature lipoprotein [2–4]. This

modification is irreversible and happens on the periplasmic site of inner mem-

brane (IM). The lipid moiety causes membrane association of a protein that

usually does not contain a hydrophobic membrane targeting domain. Lipopro-

teins are then sorted to the IM or the outer membrane (OM) based on the

sequences which follow the conserved Cys residue. Lipoproteins which are des-

tined to OM are transported there by the localization of lipoproteins (Lol)

pathway and inserted in the inner leaflet of the OM [5]. For several decades,

lipoproteins were assumed to be simply soluble periplasmic proteins tethered

to the OM by their lipid, partly because methods to study OM topology had

not been developed. In this review, we will demonstrate, using Escherichia coli
as a model organism, that for many lipoproteins biogenesis does not end

with the Lol pathway. Lipoproteins can be further translocated onto the

cell surface and they can be assembled into OM protein (OMP) complexes

with transmembrane or surface-exposed topologies. We will also discuss

some of the commonly used techniques to study the topology of proteins in

the OM with its unique barrier properties.
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2. Lipoprotein maturation and processing
Lipoproteins are synthesized in the cytoplasm as protein pre-

cursors with an N-terminal signal sequence (SS) for transport

from the cytoplasm. The lipoprotein SS contains a character-

istic consensus sequence [LVI][ASTVI][GAS]C known as a

lipobox [6,7]. In E. coli, lipoproteins are translocated across

the IM by the Sec translocon, but in other organisms there

are lipoproteins dependent on Tat translocon [8,9]. Matur-

ation and processing of lipoproteins takes place on the

periplasmic side of IM (figure 1). The first step is the addition

of diacylglycerol to the sulfhydryl group of the conserv-

ed Cys residue by phosphatidylglycerol/prolipoprotein

diacylglyceryl transferase (Lgt) [10]. This modification is a

prerequisite for the SS cleavage by a dedicated lipoprotein

signal peptidase (LspA or signal peptidase II) [2,11,12] and

ensures that the apolipoprotein remains anchored in the IM

after SS cleavage. Signal peptidase generates diacylated apo-

lipoprotein with a new N-terminus provided by the

conserved Cys of the lipobox that is referred to as þ1 [3].

Finally, the amino group of the Cys residue is N-acylated

by phospholipid/apolipoprotein transacylase (Lnt) generat-

ing mature triacylated lipoprotein [13,14] (figure 1). Genes

encoding for all three enzymes are essential in E. coli and

highly conserved across Gram-negative bacteria [5]. How-

ever, lnt was recently found to be dispensable for viability of

Francisella tularensis and Neisseria gonorrhoeae [15], suggesting

that in some Gram-negative bacteria, mature lipoporteins

can exist in a diacylated form similar to what is observed in

low GC Gram-positive organisms which do not encode Lnt

homologues [16].
3. Export of lipoproteins to the outer membrane
Most of the mature lipoproteins in E. coli are targeted

for translocation to the OM by the Lol pathway unless they

contain a so-called Lol avoidance signal. The Lol avoidance

signal in E. coli is known as the þ2 rule because it is deter-

mined by the identity of the amino acid after the conserved

Cys [17]. According to this rule, an Asp residue at position

þ2 causes IM retention of the lipoprotein; it serves as a sort-

ing signal that differentiates IM and OM lipoproteins [17].

Although all native IM lipoproteins in E. coli have Asp at

þ2 and either Asp, Glu or Gln at position þ3, additional

combinations of þ2 and þ3 residues could act as IM retention

signals [18–20]. Although the þ2 rule is generally conserved

in enterobacteria [21], the rule does not always apply for

species outside this family. For example, in Pseudomonas
aeruginosa amino acids at positions þ3 and þ4 also play a

critical role in lipoprotein sorting [22,23]. OM lipoproteins

in Borrelia do not follow the þ2 rule either [24].

Lipoproteins destined for the OM are translocated by the

Lol proteins (figure 1). The Lol pathway was discovered and

characterized by a series of elegant biochemical experiments

in the Tokuda laboratory. In E. coli, five proteins (LolA–E)

are involved in lipoprotein transport. In the first step, the

OM lipoprotein is extracted from the IM by the LolCDE com-

plex and released to the periplasm in the form of a soluble

complex with the chaperone LolA [25,26]. This step is

energy-dependent and driven by ATP hydrolysis by the

ATPase LolD [26,27]. LolD is a cytoplasmic ABC-type

ATPase tethered to the IM by the interaction with the
homologous integral IM proteins LolC and LolE [26].

Although homologous LolC and LolE play different func-

tions in lipoprotein extraction from the IM, LolE recognizes

and binds lipoprotein substrates [28], whereas LolC recruits

the chaperone LolA [29]. ATP hydrolysis powers the transfer

of the lipoprotein directly from LolE to LolA [28]. A large

hydrophobic cavity within LolA binds the acyl chains of

protein substrates shielding this highly hydrophobic region

from the aqueous periplasm [30]. LolA delivers lipoprotein

substrates to the OM acceptor protein LolB [31]. LolB is an

OM lipoprotein itself and is a structural homologue of LolA

[30]. It also contains a hydrophobic cavity that has a higher

affinity for the acyl chains than LolA [32]. This difference in

affinity allows unidirectional ‘mouth-to-mouth’ transfer of

the substrate from LolA to LolB [32]. The hydrophobic

cavity of LolA undergoes conformational changes between

the ‘open’ or substrate-bound and the ‘closed’ or substrate-

free form [33]. After lipoprotein release, LolA in its closed

form returns to the LolCDE complex and is recycled

(figure 1). Lipoprotein release from LolB in the OM is not

well understood, but the protruding loop of LolB is somehow

important for this final step in lipoprotein transport [34,35].

The lol genes are essential in E. coli and homologues can

be found in all Gram-negative bacteria, suggesting that the

pathway is conserved. However, conservation of individual

genes varies. LolC and LolE are homologues but cannot func-

tionally substitute each other in E. coli [28]. However, some

bacterial genomes contain only one copy of a lolC/E gene

[15]; interestingly, in such cases, the protein product contains

sequence motifs of both LolC and LolE and likely represents

a functional hybrid of both proteins. The LolF name was pro-

posed to distinguish such proteins from obvious LolC and

LolE homologues [15]. lolB is the other gene that is only con-

served in b- and g-proteobacteria [5]. It is not clear whether

other Gram-negative bacteria contain functional analogues

which are not related in sequence to LolB or encode a func-

tional hybrid of LolA and LolB since these proteins also

have similar structures.
4. Lipoprotein destiny after outer membrane
insertion

Until recently, lipoprotein insertion in the OM by LolB was the

last known step for lipoprotein export in E. coli. Therefore, the

paradigm for OM lipoprotein topology was established that

all lipoproteins (at least in E. coli) are simply anchored in the

inner leaflet of OM by their lipid moiety with their protein

domain facing the periplasm (figure 2). Many surface-exposed

lipoproteins have been identified in a number of different

organisms [36]. In those organisms, surface-exposed lipopro-

teins have variety of functions: they participate in iron

uptake [37–40]; are enzymes such as phospholipases [41],

PPIases [42] or glucanases [43]; they participate in adhesion

and binding of host factors [44,45]; and others. In some organ-

isms, like Borrelia, lipoproteins are anchored in the outer leaflet

and exposed on the cell surface by default [24].

In most cases, how lipoproteins get to the cell surface is

unclear. Surface-associated lipoprotein pullulanase (PulA) of

Klebsiella oxytoca was the first lipoprotein for which the

export pathway was identified [43,46]. PulA contains a Lol

avoidance signal and is instead exported directly from the

IM to the cell surface by a specific transporter Pul, also
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Figure 1. Lipoprotein maturation and export pathway. Lipoprotein (green) is synthesized in the cytoplasm with the N-terminal SS (red) which targets it for trans-
location across the IM by the Sec or Tat translocon. The lipoprotein remains anchored in the IM by its SS and Lgt adds a diacylglyceryl moiety to the Cys residue.
LspA cleaves the SS and Lnt adds another acyl chain to the newly formed N-terminus. The lipoprotein is then recognized by IM LolCDE complex which powers
extraction of the lipoprotein from the IM using the energy of ATP. The lipoprotein is released to the periplasm in a complex with the chaperone LolA. LolA delivers
lipoprotein to the OM acceptor protein LolB which inserts it in the inner leaflet of the OM. Empty LolA returns to LolCDE and is recycled. (Online version in colour.)
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known as a type 2 secretion system [43,47]. Other known lipo-

protein substrates of type 2 secretion systems are surface-

exposed lipoprotein cytochromes in Shewanella oneidensis [48]

and lipoprotein SslE in enteropathogenic E. coli [49].

Neisseria meningitidis NalP and Bordetella pertussis
SphB1 are autotransporters which contain a lipoprotein SS

[50–53]. These proteins have a domain architecture typical

of autotransporters: a C-terminal translocation domain that

is required for the secretion of an N-terminal passenger

domain [54]. However, due to the presence of N-terminal

lipid on the passenger domain, it must remain associated

with the OM, at least for a while, where it functions as a

surface protease [50,51].

Many reports of surface-exposed lipoproteins from differ-

ent organisms are in contrast to the E. coli periplasmic

paradigm. However, of the 90 lipoproteins in E. coli fewer

than a dozen have been studied experimentally, mainly in

connection to peptidoglycan (PG) and envelope biogenesis.

Of those lipoproteins that have been examined, many adopt

quite complex topologies in the OM: they can exist in com-

plexes with beta-barrel proteins, form transmembrane

channels or be surface exposed.
5. Complex topologies of outer membrane
lipoproteins

(a) Plug in the barrel
LptE is the OM lipoprotein component of the LPS transport

(Lpt) machine; together with its beta-barrel partner LptD, it
forms an OM subcomplex that is required for LPS insertion

into the outer leaflet of OM [55,56]. N-terminal lipids

anchor LptE in the inner leaflet of OM; however, instead of

facing the periplasmic space, LptE is almost completely

buried inside the large lumen of LptD [57–59] (figure 2).

The interaction between LptE and LptD is highly specific

and the complex is very stable [59]. This is achieved by a large

number of specific contacts sites between LptE and LptD cov-

ering an interaction interface with the surface area of more

than 3000 Å2 [57,58]. LptE serves as a scaffold for the folding

of the LptD barrel at the Bam complex, and no LptD protein

can be assembled without its partner; unassembled LptD is

rapidly degraded [60,61]. In addition to its role in LptD fold-

ing, LptE functions as a plug that prevents small molecule

entry through the LptD barrel and it plays a direct role in

the surface assembly of the LPS glycolipid [62,63].
(b) Integral outer membrane lipoproteins
There are two lipoproteins with transmembrane topology

in E. coli, CsgG and Wza. Both lipoproteins are OM com-

ponents of secretion channels. CsgG functions in the

transport of curli subunits [64] and Wza transports group 1

(serotype K30) capsular polysaccharides [65]. The lipids of

both CsgG and Wza are anchored in the inner leaflet of

OM and both proteins form oligomeric complexes with

hydrophobic transmembrane domains and large periplasmic

domains [66–68]. Each oligomeric complex features a central

channel used for the secretion of the corresponding substrates

[66–68]. Despite the similarity in topology, CsgG and Wza
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Figure 2. Examples of topologies of OM lipoproteins in E. coli. OM lipoproteins (green) were assumed to adopt a typical topology with the protein domain in the
periplasm and lipid anchored in the inner leaflet of the OM. By contrast, the topology of experimentally studied lipoproteins is often more complex. Lipoproteins can
be assembled in interlocked complexes with beta-barrel proteins (blue) like RcsF/OMP and LptE/LptD, or they can form transmembrane multimeric channels like
CsgG and Wza. Assembly of the lipoproteins at the OM often results in surface exposure of parts of the protein (RcsF, CsgG and Wza). In the case of RcsF, the lipid
moiety anchors the protein in the outer leaflet of OM. (Online version in colour.)
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have completely different structures and interact with the

OM in different manners.

The CsgG channel is an oligomer of nine CsgG subunits

[66,67] (figure 2). Each subunit has alpha–beta structure,

and the transmembrane domain is made by amphipathic

beta strands. Each subunits donates four beta strands build-

ing up a composite 36-stranded beta-barrel which forms

a transmembrane channel with an inner width of 40 Å.

Although CsgG does not have long extracellular loops typical

of many OMPs, it still can be detected on the cell surface by

CsgG antibodies [69]. The large periplasmic domain is made

of a mixture of a-helices and b-strands, some of which extend

from the transmembrane beta-barrel. The periplasmic domain

of the CsgG nonamer also features a large cavity that is open

on the periplasmic side but gated in vivo by a partner protein

CsgE [67]. Based on the cryo-EM structure of the CsgG/E

complex as well as conductance measurements of the CsgG

and CsgG/E channels, a model was proposed in which

CsgE binding to CsgG entraps curli subunit protein CsgA

inside the CsgG chamber, creating conditions that favour dif-

fusion out through CsgG pore [67,70]. After diffusion, CsgA

subunits are nucleated into curli amyloid fibres by CsgB

[71]. Curli play an important role in adhesion, biofilm

formation and colonization of the host [72].

Wza has different structure and domain organization [68].

Wza is an octamer with four rings (R1–R4) of individual

domains (figure 2). The Wza octamer is described as an

amphora without handles, in which the R1–R3 domains

make up the periplasmic ‘vessel’ domain and R4 makes the

integral transmembrane ‘neck’ domain. The transmembrane

domains of each subunit are made by one long amphiphatic

helix, with the C-terminus exposed on the cell surface. Eight

amphiphatic helices create an alpha-barrel with a hydro-

phobic exterior for membrane insertion and a hydrophilic

interior for polysaccharide export. Thus, Wza represents a

new class of integral OMPs with a transmembrane domain

in the form of a barrel made of a-helices. At the centre of

the octamer, there is long hydrophilic cavity. Although the

structure shows the periplasmic side of the Wza octamer is

closed, it can probably undergo a conformation change

to open a translocation channel for polysaccharide chain

extrusion [73].
Assembly of CsgG and Wza oligomers at the OM does

not require the Bam complex, but the assembly pathways

remain known [74]. In both cases, the lipid moiety is required

for formation of functional multimers. When lipid is absent,

as a result of SS replacement, CsgG proteins accumulate as

soluble monomers in the periplasm and the few multimers

that can be observed have the incorrect symmetry. By con-

trast, lipid-less Wza can be still targeted to the OM to some

extent, but no stable, functional multimers are formed [75].

Interestingly, when both the transmembrane helix and the

lipid are removed, soluble multimers of the R1–R3 domains

are formed similar to what are observed in the full-length

Wza structure [76,77]. Hence, the lipid moiety of both pro-

teins is specifically required to direct multimer formation

into the OM.
(c) Surface-exposed lipoproteins
Perhaps another reason that contributed to the periplasmic

paradigm for lipoproteins is that the two best-studied lipo-

proteins in E. coli, Lpp and Pal, have clearly defined

periplasmic functions where they interact with the cell

wall. Lpp, also known as Braun’s lipoprotein, is the major

lipoprotein in E. coli. It is a small 6 kDa protein that exists

in two forms: one known as the ‘bound form’ represents

Lpp molecules that are covalently cross-linked to PG

[78,79]; another fraction is not attached to the PG and is

known as the ‘free form’ [80]. The function of the free form

is not understood. In contrast to Lpp, Pal interacts with the

PG by non-covalent binding [81]. Both lipoproteins contrib-

ute to general envelope stability by attaching the OM to the

cell wall and null mutations in either gene causes increased

OM vesiculation, sensitivity to detergents and other envel-

ope-related defects [82–84]. Both Lpp and Pal were used as

model lipoproteins in studies of the Lol pathway [25,26,31].

Because of their clear function in the attachment of the OM

to the cell wall, periplasmic localization of these proteins

had never been questioned until we discovered that the

‘free form’ of Lpp adopts a cell surface-exposed orientation

[85]. We uncovered this topology of Lpp in our effort to

characterize the surface proteome of E. coli by selective sur-

face biotinylation: Lpp was one of the major proteins that



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20150030

5
are labelled in E. coli. Although we do not know the precise

topology of surface-exposed Lpp, studies of biotinylation

sites demonstrate that at least the C-terminus of Lpp is

exposed on the cell surface [85]. Since then, the topology of

Pal has also been challenged and new data demonstrate

that Pal, like Lpp, may exist in this dual orientation with a

fraction of the protein being surface exposed [86]. Additional

surface-exposed lipoproteins reported in E. coli are TraT [87],

BamC [88] and YaiW [89].

The surface exposure of Lpp posed the question as to

whether there is a specific transporter to localize lipoproteins

to the cell surface. However, because the function of free form

Lpp is not known, we decided to look for a more experimen-

tally tractable system to probe the mechanism(s) that catalyse

lipoprotein surface exposure.

The lipoprotein RcsF stood out because of its function as a

sensory component of Rcs envelope stress response [90,91].

The Rcs stress response monitors envelope integrity and

can be activated by a number of cues such as LPS stress

[92,93], PG stress [94,95], osmotic stress [96,97] and defects

in lipoprotein biogenesis [98,99]. Our hypothesis that RcsF

may localize to the outer leaflet to sense LPS defects led to

the discovery of yet another surface-exposed lipoprotein in

E. coli [100]. Later, it was shown that RcsF activation to the

PG stress does not require surface localization RcsF [101],

suggesting distinct mechanisms for monitoring integrity of

different envelope compartments.

Not only is RcsF a surface-exposed lipoprotein, it displays

a novel OM topology: the N-terminal domain and the lipids

of RcsF are surface exposed, while the C-terminal domain

resides in the periplasm (figure 2). How could RcsF span

the OM if it does not contain a transmembrane domain?

The solution to this topological problem proved to rely on

RcsF interaction with several OMPs via a short amino acid

sequence which exists in an extended conformation that is

threaded through the OMP lumen where it is shielded from

the hydrophobic membrane interior. Therefore, like LptE,

RcsF is also found in an interlocked complex with a beta-

barrel protein. However, there are number of important

differences between RcsF/OMP and LptE/D complexes.

Unlike LptE, RcsF interacts with the beta-barrel via a short

unstructured region only, without extensive site-specific con-

tacts. This lack of barrel-specificity is further evidenced by the

fact that RcsF is capable of interacting with several different

OMPs such as OmpA, OmpC and OmpF. It is likely that

the presence of an unstructured region, rather than sequence

specificity, is the requirement for formation RcsF/OMP com-

plexes. Strikingly, a similar type of interaction was observed

for the unstructured linker region of a colicin during its entry

through the OmpF lumen [102,103]. Finally, LptE is abso-

lutely required for the folding and assembly of LptD. RcsF

is not required for the folding and assembly of any OMP.

Having established the surface exposure and topology of

RcsF, we wanted to examine the assembly mechanism

responsible. How can the unstructured region of RcsF be

threaded into the lumen of an OMP? RcsF cannot enter the

lumen from N-terminus because even though it is unstruc-

tured [104,105], it is tethered to the membrane by a lipid

moiety that cannot be extracted from the membrane without

an energy source, and even if it could be, the hydrophilic

lumen of a folded OMP would not allow the passage of the

hydrophobic lipid. Likewise, the folded C-terminal domain

of RcsF cannot pass through the lumen because it is simply
too big and is folded at an early step of RcsF biogenesis

with the help of periplasmic disulfide oxidase DsbA, and

the disulfide isomerase DsbC, which catalyse the formation

of the two non-consecutive disulfide bonds necessary to

stabilize the structure [104,105]. Therefore, to explain the

transmembrane topology, it seemed necessary to suggest

that the OMP beta-barrel is folded around the RcsF during

the process of OMP assembly.

We have provided two lines of evidence to support the

hypothesis that the RcsF/OMP interaction is formed during

OMP assembly. First, we showed that RcsF cannot form a

complex with folded OmpA in vitro; however, the complex

can be reconstituted when urea-denatured OmpA is refolded

in the presence of RcsF. Second, all OMPs are folded in vivo
by the heteropentomeric Bam complex [106], and we

showed that RcsF also interacts with BamA, an essential

component of the Bam complex. Although BamA is itself a

beta-barrel, site-specific cross-linking revealed that the

RcsF/BamA interaction is different from the RcsF/OMP

interaction, suggesting that the RcsF/BamA cross-linking

observed could represent a step in the assembly pathway of

RcsF/OMP at the Bam complex. Indeed, when the function

of the Bam complex is compromised, fewer RcsF/OMP com-

plexes are assembled at the OM. These results argue that Bam

complex catalyses RscF surface exposure by assembling the

RcsF/OMP complexes at the OM.

The study of RcsF uncovered novel functions for Bam

complex in the biogenesis of surface-exposed lipoproteins.

BamA can recognize lipoproteins and translocate the lipid-

ated N-terminus into the outer leaflet and then assemble

the OMP beta-barrel around the short, unstructured linker

between the N- and C-terminus. We think it is likely that

other lipoproteins exist in similar OMP complexes in E. coli
as well as other bacteria and that the Bam complex is

involved in their assembly. Clearly, as is demonstrated by

PulA, the Bam complex is not required for the surface local-

ization of every lipoprotein. We think it is possible that

other structural groups (e.g. a-helical proteins) have their

own dedicated assembly pathway.
6. Common methods to study topology of outer
membrane lipoproteins

The examples above demonstrate that lipoproteins vary in

their structures and topologies, and the latter has to be experi-

mentally determined. Generally, any method commonly

used to study membrane protein topology can be employed

to study OM lipoproteins [107,108] but the unique features

of the OM have to be taken into account when designing

the experiment. All methods can be divided into three

groups: those based on protein labelling; based on antibody

binding; and accessibility for proteolysis.

Techniques based on selective protein labelling use com-

pounds that chemically modify certain amino acids in the

protein and allow the detection of the modified protein.

The two most commonly used chemistries are N-hydroxysuc-

cinimide (NHS) esters which react with primary amines

(e.g. protein lysines), or maleimides which react with sulf-

hydryls (e.g. non-oxidized cysteines) [109]. These functional

groups can be coupled chemically to biotin and this allows

detection of the modifications using anti-biotin antibodies

or streptavidin conjugates. PEG linkers of different length,
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which allow detection of the modification based on a protein

size shift during immunoblot analysis, can also be used.

There are a huge variety of labels that vary in their size

and hydrophobicity, and choosing the right one requires

understanding the two important properties of the OM that

differentiate it from other biological membranes [110]. First,

the OM is not permeable to hydrophobic compounds because

of the presence of charged, highly interactive lipopolysac-

charide molecules that cover the cell surface. Second, the

OM is permeable to the small soluble compounds due to

the presence of porins which allow water and nutrients to

freely enter the cell [110]. Therefore, selection of compounds

for labelling OM proteins is somewhat counterintuitive com-

pared to other membrane proteins: hydrophobic compounds

will selectively label the cell surface [85], while small hydro-

philic compounds can enter the periplasm and can label

protein on both sides of the OM. The size exclusion limit of

porins in E. coli was determined to be around 600 Da [111],

so using water-soluble labels of much larger molecular

weight will result in selective surface labelling as well. In

our laboratory, we used a hydrophobic biotin label to study

Lpp surface exposure [85] as well as for the initial discovery

of surface-exposed RcsF [100]. We also used a hydrophilic

maleimide with high molecular weight to study the confor-

mation change in extracellular loop 6 of BamA [112]. It is

worth mentioning that perhaps not all Gram-negative bac-

teria have such an asymmetric OM and the natural

resistance to hydrophobic OM compounds that E. coli does,

and protein labels should be evaluated in each case.

Surface proteolysis is another commonly used method to

test protein surface exposure [46,113]. Extracellularly added

proteases cannot enter the cell and hence periplasmic pro-

teins are protected from cleavage while surface-exposed

proteins are degraded. Cleavage or complete degradation

can be analysed by immunoblotting. However, it should be

noted that many surface-exposed proteins in bacteria are

inherently protease resistant, so negative results cannot be

interpreted with confidence, even if proper controls have

been done.

Using extracellularly added antibodies follows the same

logic as surface proteolysis. Antibodies can bind only

surface-exposed epitopes and this binding can be detected

either by using antibodies labelled with fluorescent dyes or

enzyme conjugates. Whole-cell antibody-based assays

include dot blots, whole cell ELISA, immunofluorescence

and FACS analysis [114–116]. However, cell fixation tech-

niques can disrupt OM integrity as well as producing other

artefacts and it is best for antibody labelling to be performed

with live cells [117].

Labelling techniques, especially biotinylation, are widely

used for proteomic discovery of surface-exposed proteins

because they do not require the generation of protein-specific

antibodies: labelled proteins can be easily affinity purified

and analysed by mass spectrometry [118,119]. Quantitative

proteomics can be also employed to study surface-exposed

proteins by comparing relative abundance of the protein

before and after the protease treatment [120]. Employing a

combination of different methods provides more reliable

identification of surface-exposed proteins [113].

All of the methods described can be used to study native

proteins and do not require making protein fusions or

mutants for site-specific labelling. However, the limitation

is that ability to detect a protein with any of the methods
depends not only on protein localization to the cell surface

but also on the presence of accessible sites for labelling, pro-

teolysis or antibody binding. Lack of such sites can generate

false-negative results. One example of such false-negative

results that we have encountered is BamC. BamC is an OM

lipoprotein component of the Bam complex [106]. We have

highly specific polyclonal anti-BamC antibodies [121] which

do not bind to whole cells [100] and we could not detect

BamC biotinylation [85]. Therefore, we concluded that

BamC is a periplasmic lipoprotein, and we have used BamC

as a negative-control for lipoprotein surface exposure

[85,100]. However, independently raised polyclonal anti-

bodies against BamC can recognize the protein on the cell

surface, indicating that at least part of BamC is surface exposed

[88]. The apparent discrepancy between these results can

be explained by differences in antibody epitope recognition.

Identifying these epitopes would help in understanding the

topology of BamC. It is likely that only a portion of the protein

is exposed on the cell surface; the structure of BamC/BamD

complex shows that the N-terminal domain of BamC is

involved in the interaction with periplasmically localized

lipoprotein BamD [122].

One of the other disadvantages of using these methods

to study native proteins is that they seldom give informa-

tion about precise OM topology. Therefore, a number of

approaches were developed to introduce labelling sites

(e.g. Cys accessibility assay), proteolytic sites for specific pro-

teases (e.g. TEV protease, enterokinase) or epitopes for

antibody-binding (His, HA, FLAG, Strep epitopes) at specific

positions of the protein. This method was successfully used to

study OMPs. For example, labelling of native and engineered

Cys was used in studies of the ferrichrome-binding extracellu-

lar loop of FhuA [123], and epitope insertions were used to

study the topology of several OMPs in E. coli [124–127]. Inser-

tion of proteolytic sites was used to determine that surface-

exposed lipoproteins in Borrelia are anchored to the outer leaf-

let of OM [128]. These approaches are recommended only

when assays to test protein function and/or folding are avail-

able to demonstrate that epitope insertions do not interfere

with native protein topology. In our study of RcsF, we used

biotinylation, proteolysis and polyclonal RcsF antibodies to

show that RcsF is surface exposed [100]. However, FLAG epi-

tope walking across the entire protein sequence allowed us to

uncover the fact that RcsF has an N-out C-in topology.
7. Concluding remarks
The lipoprotein biogenesis pathway, including lipoprotein

maturation and export to the OM by the Lol machine, has

been characterized in great molecular detail. Because lipopro-

tein insertion into the inner leaflet of OM is the last step in the

Lol pathway, the periplasmic paradigm for lipoproteins, in

which all lipoproteins are viewed as soluble periplasmic pro-

teins simply anchored to the inner leaflet of the OM by

N-terminal lipid moieties, was established. This assumption

delayed the discovery of many lipoproteins that interact

with the OM differently: some lipoproteins are anchored in

the outer leaflet of the OM, some are transmembrane proteins

and some exist in protein complexes shielded from the peri-

plasm. Identification of such proteins made us acknowledge

that our long-held view on lipoprotein topology was over-

simplified and our understanding of lipoprotein biogenesis
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was far from complete. We suggest that a periplasmic top-

ology should no longer be assumed for OM lipoproteins

but instead a predicted topology should be experimentally

tested. We believe that this would lead to the discovery

of even more examples of OM lipoproteins with unusual

structures and topologies, presenting us with even more

challenges for understanding OM biogenesis.
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