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Abstract

Globally, greater than 30 million individuals are afflicted with disorders of the nervous system 

accompanied by tens of thousands of new cases annually with limited, if any, treatment options. 

Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and 

chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative 

mechanisms that can impact apoptotic and autophagic programmed cell death pathways through 

protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. 

Translation of the cytoprotective pathways of EPO into clinically effective treatments for some 

neurodegenerative disorders has been promising, but additional work is necessary. In particular, 

development of new treatments with erythropoiesis-stimulating agents such as EPO brings several 

important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work 

that can effectively and safely harness the complexity of the signaling pathways of EPO will be 

vital for the fruitful treatment of disorders of the nervous system.
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2. INTRODUCTION

In the large developing nations that include India and China, the number of elderly 

individuals will increase from current levels of approximately 5 percent to almost 10 percent 

over the next several decades. Aging of the population also is occurring at a significant rate 

in developed nations around the globe. In these nations, the number of individuals over the 

age of 65 has doubled during the prior 50 years (1). Life expectancy is increasing in these 

developed countries and is accompanied by a one percent decrease in the age-adjusted death 

rate from the years 2000 through 2011(2). Although improvements of healthcare and stable 

environments are important factors for the increased longevity of the world’s population, a 

rise in chronic pathologic disorders has paralleled the aging of the world’s population. 

According to the World Health Organization, more than 60 percent of the 57 million global 

deaths result from noncommunicable diseases (NCDs) and almost 80 percent of these NCDs 

occur in low and middle-income countries (3). In particular, a rise in the incidence of 

neurodegenerative disorders is expected to ensue (4, 5). Acute and chronic 
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neurodegenerative disorders lead to disability and death in more than 30 million individuals 

worldwide (6).

Chronic neurodegenerative disorders such as Alzheimer’s disease (AD) can impact a large 

proportion of the global population (7). Although familial cases of AD represent less than 2 

percent of all presentations (8), usually occur prior to age 55 (9), and represent an autosomal 

dominant form of a mutated amyloid precursor protein (APP) gene as well as mutations in 

the presenilin 1 or 2 genes (10), 10 percent of the global population over the age of 65 are 

affected with sporadic AD. For disorders such as Parkinson’s disease (PD), also a chronic 

progressive neurodegenerative disease (11, 12), approximately 50,000 new cases present in 

the United States alone each year. It is estimated that 1 to 4 percent of individuals over 60 

suffer from PD in the world and this number of affected individuals may double by the year 

2030.

Acute neurodegenerative disorders also place a severe burden on the world’s population (13, 

14). Cerebrovascular disease leads to multiple complications that affect both the livelihood 

and minimal daily function of an individual (15, 16). Approximately 15 million individuals 

suffer from a stroke every year, one of the five leading causes of death (17). NCDs such as 

cardiovascular disease and diabetes can contribute to acute neurodegenerative disease that 

include stroke (18, 19). In the United States, almost 800,000 strokes occur per year at an 

annual cost of 75 billion US dollars (13). Traumatic brain injury (TBI) also leads to 

neurological disability and death throughout the world (20, 21). TBI can have a two-fold 

effect to result in acute injury to the nervous system as well as subsequent chronic 

impairment (22–24). In the United States, approximately 50,000 individuals die every year 

as a result of TBI and more than 100,000 individuals suffer with chronic disability (25). If 

severe trauma occurs, almost one half of these individuals will eventually die.

3. THE GROWTH FACTOR AND CYTOKINE ERYTHROPOIETIN

3.1. Background of erythropoietin

Both acute and chronic neurodegenerative disorders comprise a broad array of pathologies 

in the nervous system. As a result, numerous therapeutic strategies are under development 

for neurodegenerative disease. These include therapies directed against oxidative stress (20, 

24, 26–34), exposure to metal toxicity (35–39), loss of sirtuin activity (4, 7, 40–48), 

poly(ADP-ribose) polymerase-1 (PARP-1) over-activation (49–59), decreased metabotropic 

glutamate activity (60–72), cellular metabolic dysfunction (19, 28, 73–78), defects in 

gamma-aminobutyric acid (GABA) signaling (79–83), transcription factor activation (4, 47, 

80, 84–99), Src homology-2 (SH2) domain phosphorylation (100–107), components of the 

mechanistic target of rapamycin (mTOR) pathway (7, 16, 108–120), and growth factors 

(119, 121–125).

In the armamentarium of new agents under development, the cytokine and growth factor 

erythropoietin (EPO) offers exciting and new prospects for the treatment of 

neurodegenerative disorders. The EPO gene resides on chromosome 7, represents a single 

copy in a 5.4. kb region of the genomic DNA, and encodes for a polypeptide chain that has 

initially 193 amino acids (126). Once generated as a protein, EPO is then processed and 

Maiese Page 2

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cleaved of a 27 amino acid hydrophobic secretory leader at the amino-terminal to result in a 

166 amino acid peptide (127). A mature protein is subsequently formed with the removal of 

a carboxy-terminal arginine166 in the mature human and recombinant human EPO (rhEPO) 

to generate a circulatory EPO protein of 165 amino acids with a molecular weight of 30.4. 

kDa (128–131) (Table 1).

The concept of circulatory and potentially protective proteins in the body actually predated 

the discovery of EPO. Ernest Sterling in 1905 introduced the term "hormones", a term with 

Greek origins meaning to "excite" or "arouse”, to describe the action of agents that are blood 

borne to target distant organs of the body (132). Prior to this discussion, Arnold Adolphe 

Berthold described messenger signals that could communicate among the different bodily 

organs (133). In addition, Claude Bernard spoke about the internal secretion of chemicals in 

the body with the release of glucose from glycogen in the liver (129, 134).

3.2. Expression of erythropoietin

EPO and its receptor (EPOR) are expressed in numerous tissues and initially it was 

presumed that EPO functioned only as a circulatory agent in the body. In 1906, Carnot and 

Deflandre performed studies to show that following a bleeding stimulus in rabbits, immature 

red blood cells in these animals would be produced (135). Carnot and Deflandre termed this 

agent as “hemopoietine”. This work was repeated and confirmed by other investigators to 

observe reticulocytosis in bled animals (136–138).

The agent responsible for this reticulocytosis was later termed EPO. Human EPO protein 

was eventually purified. The gene for EPO was cloned and allowed for the development of 

recombinant EPO for clinical use (139, 140). At present, erythropoiesis-stimulating agents 

(ESAs), which include EPO, are approved for the treatment of anemia that results from 

chronic kidney failure, human immunodeficiency virus, chemotherapy, and to reduce blood 

transfusions for surgery (141, 142). The primary site for the production and secretion of 

EPO are the kidney peritubular interstitial cells (143). EPO also is present in other organs 

that include the brain, uterus, and liver (143–147).

During development, production of EPO and EPOR are modified (129). EPO production in 

gestation is increased, but later EPO is suppressed following birth to be regulated by the 

tissue oxygen supply. Although elevated expression of the EPOR is present in early 

embryonic neuronal tissues, EPOR expression is significantly reduced following the 

maturation of the brain. EPO secretion in the brain is more sustained than in peripheral 

organs such as the kidney, suggesting that EPO production may originate in the brain and 

possibly crosses the blood-brain barrier to reach the blood and peripheral organs. Primary 

neurons and neuronal cell lines also are able to retain the capacity to express EPO in an 

oxygen-dependent manner (126, 141).

3.3. Structure and activity of erythropoietin

The integrity of EPO is dependent upon the structure and the maintenance of the 

oligosaccharide side chains (147, 148) (Table 1). EPO contains four glycosylated chains that 

include three N-linked and one O-linked acidic oligosaccharide side chains (149). The N-
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linked glycosylation sites occur at aspartyl24, aspartyl38, and aspartyl83. The O-linked 

glycosylation site occurs at serine126. The N- and O-linked chains may be required for the 

production and secretion of the mature EPO (148). The carbohydrates are important for the 

clearance of EPO, since EPO molecules with high sialic acid content can be easily cleared 

by the body through the liver (150).

The molecular structure of EPO also determines the biological activity of this protein. The 

oligosaccharides in EPO have been reported to provide protection from free radical activity 

(151) and the carbohydrate chains of EPO stabilize the protein (152). The glycosylated 

chains also protect EPO from free radical oxygen degradation (149). In addition, reduction 

of the two disulfide bonds formed between cysteine7 and cysteine160 and between cysteine29 

and cysteine33 leads to the loss of activity of EPO. Alkylation of the sulfhydryl groups leads 

to irreversible loss of the activity of EPO. Re-oxidization of EPO after reduction by 

guanidine restores almost 85 percent of the biological activity of EPO (153).

3.4. Production of erythropoietin

Almost seven decades prior, EPO was correlated to depressed oxygen levels. In parabiotic 

rats when only one partner was exposed to hypoxia, EPO was demonstrated to increase 

hemoglobin levels (154). Prior to such studies, EPO levels were believed to be correlated 

with decreased red blood cell counts. However, EPO expression is now known to be 

regulated by changes in oxygen tension and not by the concentration of red blood cells (144, 

155, 156) (Table 1). Hypoxia-inducible factor 1 (HIF-1) modulates the expression of EPO 

and the EPO receptor (EPOR) to increase the production of EPO as required (126, 144, 157, 

158). Independently, HIF-1 is an agent that can promote cellular protection against injury 

(159–161). Once HIF-1 is activated, gene transcription of EPO and EPOR occurs and is 

controlled through the transcription enhancer region in the 3’-flanking region of the EPO 

gene that binds to HIF-1 (126, 129).

EPO also is regulated through pathways that may not rely upon exposure to hypoxia (132). 

EPO in the amniotic fluid of patients with diabetes can be elevated (162). It is unclear if this 

suggests an attempt to repair tissue at risk for injury by EPO, but EPO blood levels are 

elevated and associated with greater disability during brain maturation exposed to a toxic 

environment (163). Insulin can stimulate EPO production in specific cells that include 

astrocytes (164). During chronic hyperglycemia in adults, EPO levels can become depressed 

(165). Agents that decrease inflammation in cerebral microglia have been demonstrated to 

lead to the release of EPO (166). Malaria can result in significant serum levels of EPO (167) 

and EPO serum concentrations are raised during xenon anesthesia in cardiac surgery (168). 

Depletion of selenium, an anti-oxidant, can lead to increased EPO expression (169). 

Cadmium exposure, raised intracellular calcium, and neuronal depolarizations can affect the 

expression of EPO (145, 149, 170). In addition, cytokines, including insulin-like growth 

factor (IGF), tumor necrosis factor-α (TNF-α) (171), interleukin-1β (IL-1β), and 

interleukin-6 (IL-6) can increase EPO and the EPOR expression (126, 147, 172).
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4. SIGNALING PATHWAYS OF ERYTHROPOIETIN

4.1. Erythropoietin and protein kinase B (Akt)

EPO relies upon multiple signaling pathways that can lead to tissue repair and cellular 

protection. Phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) are principal 

pathways that offer cellular protection through EPO (Table 1). PI 3-K phosphorylates 

membrane lipids and regulates the transition of Akt from the cytosol to the plasma 

membrane (173). Akt is phosphorylated on the serine473 and threonine308 residues by 

phosphoinositide dependent kinase (PDK) PDK1 and PDK2 (103, 174, 175). Independently, 

Akt can lead to the protection of of cells in the nervous system during estrogen signaling 

(176), activation of pro-apoptotic proteins (27, 47, 62, 84, 86, 177–179), spinal muscular 

atrophy (180), protein phosphatase activity (181), β-amyloid (Aβ) toxicity (99, 182–193), 

oxygen-glucose deprivation (194–198), hypoxia (109, 199–202), and in models of diabetes 

mellitus (203–208).

EPO can phosphorylate Akt at serine473 to activate Akt (141, 209–213). Through Akt, EPO 

can affect both the function and survival of cells. In endothelial cells, EPO improves the 

vasculogenic potential of peripheral blood mononuclear cells and promotes adhesiveness of 

the cells through Akt activation (214). In regards to increased survival, EPO activates Akt to 

prevent oxidative stress and injury from free radicals (194, 199, 203, 209–211, 215, 216), 

prevent Aβ toxicity in microglia and neurons (186, 217–219), block vascular demise and 

reduce inflammation (194, 199, 203, 204, 216, 220–226), and foster neuronal and non-

neuronal cell survival (196, 210, 215, 227–229).

4.2. Erythropoietin, forkhead transcription factors, sirtuins, and Wnt signaling

In addition to Akt, EPO controls the signaling pathways of mammalian forkhead 

transcription factors of the O class (FOXO), the silent mating type information regulation 2 

homolog 1 (S. cerevisiae) (SIRT1), and Wnt proteins, derived from the Drosophila Wingless 

(Wg) and the mouse Int-1 genes. Mammalian FOXO proteins include FOXO1, FOXO3, 

FOXO4, and FOXO6 (230). For the nomenclature of these proteins, all letters are 

capitalized for human Fox proteins. However, in the mouse, only the initial letter is listed as 

uppercase. In addition, for all other chordates the initial and subclass letters are in uppercase 

(93). Since they are transcription factors, FoxO proteins bind to DNA (231, 232) to affect 

the transcription of proteins that usually are “pro-apoptotic” (233). Multiple processes 

control the activity of FoxO proteins (234). These can include the regulation of the 

translocation of FoxO proteins to the nucleus. For example, Akt activation leads to 

phosphorylation of FoxO proteins that will bind FoxO proteins to 14-3-3 proteins, prevent 

nuclear translocation, and block the transcription of target genes that promote apoptosis (47, 

169, 194, 235). In addition, other post-translation protein changes in FoxO proteins include 

acetylation (47, 95, 236), ubiquitylation (54, 97, 206, 232), and phosphorylation (47, 86, 99, 

178, 194, 204, 207, 236–240). Acetylation of FoxO proteins can increase the Akt mediated 

phosphorylation of these proteins (241) and inhibit ubiquitination (93). In neurons, FoxO3a 

activation and p27 (kip1) transcription can result in apoptosis (242). In microglial cells and 

neurons, knockdown of FoxO3a and blockade of FoxO3a translocation to the nucleus leads 

to the increased survival during oxidative stress (47, 243). Phosphorylation of FoxO3a and 
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the nuclear export of FoxO3a protects neurons (244) and endothelial cells in models of 

experimental diabetes mellitus (204, 206, 207, 221). During stroke in animal models, 

FoxO3a interaction with cell cycle induction proteins may play a role in neuronal apoptotic 

cell death (95).

The sirtuin SIRT1 has a significant role in the control of FoxO proteins (4). As a histone 

deacetylase, SIRT1 reversibly deacetylates FoxO proteins (41) and can maintain cellular and 

tissue function during periods of starvation through pathways involving autophagy (245). 

Through the deacetylation of FoxOs, SIRT1 leads to increased cortical bone formation with 

osteoblast progenitors by blocking FoxO protein binding to β-catenin that would inhibit Wnt 

signaling (246). SIRT1 and FoxO proteins may work synergistically to protect cells. 

Increased FoxO3a and SIRT1 activity with a reduction in autophagy limits oxidative stress 

in human bronchial epithelial cells exposed to cigarette smoke condensates (247). Loss of 

the forkhead transcription factors FoxO1 and FoxO3 in combination with decreased SIRT1 

activity during oxidative stress leads to a reduction in autophagy and subsequent 

chondrocyte cell death, suggesting that SIRT1 with FoxO proteins may be required for 

cellular protection during oxidative stress (248).

Several studies also suggest that inhibition of FoxO protein activity that requires SIRT1 

activity can increase cell survival. SIRT1 can increase lifespan in higher organisms and offer 

protection against oxidative stress in neuronal cells (249). SIRT1 activity can foster cell 

survival in the nervous system through the blockade of FoxO protein activity (41, 250–253). 

During this protective process, promotion of SIRT1 nuclear translocation increases neuronal 

survival (47). If SIRT1 activity is lost, FoxO1 expression during high glucose exposure can 

lead to endothelial cell dysfunction (254). Of note, the amount of SIRT1 activity can be a 

critical modulator of cell survival. SIRT1, and in general sirtuins, play a significant role 

during vascular repair (207, 255–257) and cardiovascular disease (4, 258). Exercise training 

in rodents can limit age-related impairments though the increase in anti-oxidant pathways 

and the up-regulation of SIRT1 activity and FoxO3a expression (259). Yet, it appears that 

anti-oxidant activity such as through catalase expression and FoxO protein dependent 

pathways requires SIRT1 activity that increases less than 7.5.-fold (260). Levels of SIRT1 

activity that exceed 12.5.-fold can result in apoptosis and cardiac dysfunction (260).

SIRT1 activity can be regulated by several pathways. FoxO proteins can control SIRT1 

transcription and increase SIRT1 expression (261). Furthermore, apoptotic pathways 

associated with p38 (262) and c-Jun N-terminal kinase −1 (JNK1) (263) can reduce SIRT1 

activity and increase caspase activity that can lead to the degradation of SIRT1 (264). 

Pathways that involve Wnt signaling can block the degradation of SIRT1, maintain its 

activity, and prevent caspase activation (27, 47, 265, 266). Wnt proteins are cysteine-rich 

glycosylated proteins that are proliferative in nature and oversee vascular cell development 

(267–269), stem cell development (122, 246, 270–273), cellular turnover (274), immune 

function (251, 275–277), tumor cell growth (236, 271, 278–281), and neuronal survival 

(156, 275, 282–284). In the brain, loss of Wnt signaling may be tied to cognitive decline 

(282), spinal cord injury (285, 286), oxidative stress injury (47, 197), long-term memory 

impairment (287), immune cell loss (243, 277, 288–290), neurodegenerative disorders (284, 

291, 292), depression (293), and cerebral ischemia (294–296). Wnt signaling protects 
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against programmed cell death (183, 297, 298) and uses β-catenin for the phosphorylation 

and inhibition of FoxO proteins such as FoxO3a during oxidative stress (239). In neurons, 

Wnt signaling activates Akt (183, 197, 299, 300), limits the deacytelation of FoxO3a (47), 

and maintains FoxO3a in the cytoplasm to prevent the loss of mitochondrial membrane 

permeability, cytochrome c release, Bad phosphorylation, and activation of caspases (243). 

Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) is a target of Wnt1 signaling 

that regulates programmed cell death, extracellular matrix production, tumorigenesis, 

cellular migration, fibrosis, and mitosis (268, 274, 278, 301–303). Similar to Wnt1 

signaling, WISP1 protects neurons through the phosphorylation of FoxO3a, by sequestering 

FoxO3a in the cytoplasm with protein 14-3-3, and by limiting deacytelation of FoxO3a (47). 

WISP1 also promotes SIRT1 activity and trafficking to the cell nucleus (47). Conversely, 

FoxO proteins can block Wnt signaling. FoxO3a can bind to β-catenin and reduce the 

expression of β-catenin target genes (304). FoxO proteins also may antagonize Wnt 

signaling pathways during oxidative stress and aging to block the proliferation of osteoblast 

precursors (305).

For FoxO proteins, EPO controls the nuclear translocation and the post-translational 

processing of FoxOs to promote cellular survival (29) (Table 1). Through the activation of 

Akt, EPO can phosphorylate and inactivate FoxO proteins (306) such as FoxO3a (194, 307–

309). EPO can promote the binding of FoxO3a to 14-3-3 protein to sequester FoxO proteins 

in the cytoplasm of cells and prevent nuclear translocation and transcription of “pro-

apoptotic” proteins (169, 194, 310). EPO promotes eythroid progenitor cell development 

that requires the modulation of FoxO3a activity (147, 169, 311). In addition to FoxO3a 

phosphorylation, EPO subsequently down-regulates the protein p27 (kip1) involved in 

inhibition of cell cycle regulation (237). EPO can protect brain endothelial cells during 

periods of oxygen-glucose deprivation by phosphorylating FoxO3a, inhibiting the activity of 

the protein, and blocking translocation to the nucleus (221, 312). In models of cerebral 

ischemia, EPO limits activities of FoxO1 in addition to other pathways to reduce ischemic 

stroke size (313).

Closely linked with the neuroprotective capacity of EPO is SIRT1 and Wnt signaling (Table 

1). In adipocytes, EPO increases metabolic activity and maintains adipose energy 

homeostasis to protect against the complications of metabolic disorders through the 

combined activation of peroxisome proliferator-activated receptor-alpha (PPARα) and 

SIRT1 (314). In regards to cellular differentiation, EPO employs SIRT1 to modulate skeletal 

myogenic differentiation (315). In endothelial cells of the brain during oxygen-glucose 

exposure, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is 

necessary for EPO to foster vascular protection and to prevent mitochondrial depolarization, 

cytochrome c release, Bad, and caspase activation (221).

EPO also relies upon Wnt signaling that can control FoxO proteins to provide cellular 

protection. EPO protects against elevated glucose exposure in vascular endothelial cells by 

maintaining the expression of Wnt1 signaling (316). EPO enhances Wnt signaling to 

maintain the survival of mesenchymal stem cells (317), block Aβ toxicity in cerebral 

microglia (186), and maintain microglial cell integrity during oxidative stress (227). In other 

vascular systems that involve renal tissue, EPO prevents renal tubular cell apoptosis through 
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Wnt7b and β-catenin and by down-regulating specific micro-RNAs (miRNA) (318, 319). 

EPO employs Wnt signaling to reduce the activity of FoxO proteins and increase cell 

survival (93, 204). EPO uses Wnt1 to inhibit FoxO3a activity and maintain endothelial cell 

survival during elevated glucose (204).

4.3. Erythropoietin and mTOR

The pathways of of Akt and Wnt signaling employed by EPO also intersect with the 

mechanistic target of rapamycin (mTOR). mTOR also is known as the mammalian target of 

rapamycin and FK506-binding protein 12-rapamycin complex-associated protein 1 (116, 

320). It is a 289-kDa serine/threonine protein kinase and is encoded by a single gene FRAP1 

(7, 321, 322). mTOR functions as a vital component in the protein complexes of mTOR 

Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) (116, 323). mTORC1 contains 

Raptor (Regulatory-Associated Protein of mTOR), the proline rich Akt substrate 40 kDa 

(PRAS40), Deptor (DEP domain-containing mTOR interacting protein), and mammalian 

lethal with Sec13 protein 8 (mLST8). mTORC2 has some of the same components of 

mTORC1 that include Deptor and mLST8, but also contains Rictor (Rapamycin-Insensitive 

Companion of mTOR), the mammalian stress-activated protein kinase interacting protein 

(mSIN1), and the protein observed with Rictor-1 (Protor-1) (11, 13).

The hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex is 

an inhibitor of mTORC1 (6, 323). Although multiple regulatory phosphorylation sites are 

known to exist for TSC1, control of the TSC1/TSC2 complex can be regulated though 

pathways that include Akt and AMP activated protein kinase (AMPK) that phosphorylate 

TSC2 (13, 324, 325). Akt phosphorylates TSC2 on multiple sites that destabilizes TSC2 and 

disrupts its interaction with TSC1. Importantly, a limited reduction in TSC2 activity has 

been demonstrated to be necessary for cellular protection against Aβ to allow for mTOR 

activation, since complete knockdown of TSC2 can limit cellular protection (187). AMPK 

also phosphorylates TSC2 to inhibit mTORC1 activity (19, 326). In the nervous system, 

AMPK activation can limit Aβ production and secretion (327, 328), reduce oxidative stress 

parameters in diabetic animals with cognitive dysfunction (329), limit infarct size in models 

of stroke (330), be responsible for lifespan extension (331), may modulate 

neuroinflammation (332), and prevent memory impairment (193). Yet, AMPK activation is 

not consistently beneficial. The degree of AMPK activity is an important consideration, 

since in some experimental models involving cellular metabolism, AMPK activation 

promotes apoptotic cell death such as in pancreatic islet cells (333). In addition, excessive 

AMPK activation may lead to aberrant Aβ production (187, 327) and neuronal injury (334, 

335). Pathways such as Wnt signaling can counteract the negative effects of AMPK. For 

example, WISP1 provides a minimal level of TSC2 and AMPK activity to control both cell 

survival and cell metabolism (187). WISP1 controls AMPK activation by differentially 

decreasing phosphorylation of TSC2 at Serine1387, a target of AMPK, and increasing 

phosphorylation of TSC2 at Threonine1462, a target of Akt (187). The ability of WISP1 to 

modulate AMPK activity also is important for the control of cellular metabolism (326).

EPO relies upon mTOR for neuronal cell development, differentiation, and survival (16, 76) 

(Table 1). EPO requires mTOR for the differentiation of neural precursor cells to achieve a 
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neuronal phenotype (336) and for the protection of retinal progenitor cells from oxidative 

stress (337). In models of sepsis-induced encephalopathy, protection against cognitive loss 

by EPO is lost during inhibition of mTOR pathways (229). EPO controls mTOR and its 

down-stream signaling pathways that involve PRAS40 to increase neuronal survival during 

oxygen-glucose deprivation (310). EPO, through mTOR and Wnt signaling, maintains 

microglial survival during oxidative stress (227). EPO can block Aβ toxicity through Wnt 

signaling and mTOR pathways as well to prevent caspase activation and apoptosis (186). 

During hypoxia-reoxygenation stress, EPO increases mTOR activity to protect 

hippocampus-derived neuronal cells (338). In the mTOR pathway, AMPK also may impact 

the biological function of EPO. The ability of EPO to oversee neuroinflammation may be 

linked to AMPK activity (166). EPO also may require a specific level of activation of 

AMPK to alleviate detrimental effects of oxidative stress (339). Yet, the concentration and 

activity of EPO may influence the protective actions of mTOR and signaling pathways 

associated with AMPK. High concentrations of EPO may increase cellular damage and 

lessen the activity of mTOR (340).

5. ERYTHROPOIETIN AND PROGRAMMED CELL DEATH

5.1. Apoptosis

EPO can block apoptotic cell death through multiple pathways that involve Akt activation, 

promotion of Wnt signaling, SIRT1 activity, modulation of the mTOR pathway, and 

inhibition of FoxO protein nuclear translocation and transcription. Apoptosis has an early 

phase that involves the loss of plasma membrane lipid phosphatidylserine (PS) asymmetry 

(175, 341, 342) that is followed by a later phase with DNA degradation (20, 343–346). 

Usually DNA destruction is considered a committed step, but reversal of membrane PS 

exposure can prevent microglial and macrophage engulfment of cells tagged with PS 

externalization (72, 204, 347–349).

Coupled to the onset of the apoptotic cascade can be the induction of oxidative stress and the 

generation of reactive oxygen species (ROS) (20, 258, 350, 351). ROS can lead to DNA 

destruction, senescence, organelle injury, protein misfolding, and neuronal synaptic 

dysfunction (41, 43, 52, 95, 149, 351, 352). For the most part, endogenous systems that 

include vitamins B, C, D, and K (54, 353–356) and glutathione peroxidase (356, 357) can 

prevent cellular injury during oxidative stress. Yet, pathology ensues when these systems are 

overwhelmed.

EPO can block apoptotic cell death under multiple conditions (Table 1). During ischemic 

reperfusion injury, EPO prevents tubular cell apoptosis through Wnt signaling pathways 

(318). In familial amyloidotic polyneuropathy, depressed levels of EPO may be associated 

with increased oxidative stress and apoptotic cell injury (358). EPO can prevent apoptotic 

injury against advanced glycation end-product (AGE) exposure in Schwann cells (359), 

sepsis (229, 360), cerebral ischemia (313, 345, 361), Aβ toxicity (186, 218, 358, 362–364), 

neuronal kainate-induced oxidative stress (26), vascular oxygen-glucose deprivation (194, 

221, 310), hypoxia and anoxia (199, 365, 366), retinal disease (367, 368), experimental 

models of diabetes mellitus (194, 204, 314, 316, 369, 370), and toxins that destroy 

microglial cells (146, 166, 186, 227, 368).
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In relation to blocking the detrimental effects of oxidative stress and ROS, EPO protects 

endothelial cells (144, 194, 199, 203, 204, 214, 220, 221, 316, 368, 371–376), neurons (26, 

210, 237, 345, 362, 377–382), astrocytes (377, 383–385), and microglia (166, 186, 196, 227, 

368, 381). During oxidative stress, EPO also preserves neurogenesis (336, 386), stem cell 

development (126, 220, 237, 312, 372, 387), and promotes erythroid progenitor cell 

development with the modulation of FoxO3a activity (29, 169, 237, 307). EPO can prevent 

free radical cell injury (210, 215, 371, 388–390) through the blockade of ROS generation 

(212, 339, 370, 381, 391).

5.2. Autophagy

In addition to apoptosis, autophagy is another pathway of programmed cell death that is 

controlled by EPO. Autophagy recycles components in the cell cytoplasm to remove non-

functional organelles for disposal and tissue remodeling (14, 342, 392, 393). Autophagy is 

classified as microautophagy, chaperone-mediated autophagy, and macroautophagy (122). 

Macroautophagy is the principal category of autophagy and consists of the sequestration of 

cytoplasmic proteins and organelles into autophagosomes. Autophagosomes combine with 

lysosomes for degradation and recycling (122, 393–396). Microautophagy leads to the 

invagination of lysosomal membranes for the sequestration and digestion of cytoplasmic 

components. Chaperone-mediated autophagy uses cytosolic chaperones for the transport of 

cytoplasmic components across lysosomal membranes (6).

EPO can block autophagy through the activation of mTOR (16, 397, 398) (Table 1). 

Activation of mTOR blocks autophagy by phosphorylating autophagic related genes (Atg) 

and proteins that include Atg13 and ULKs to inhibit the UNC like kinase complex ULK-

Atg13-FIP200 (7). EPO, Akt, and mTOR activation protect against increased activity of 

autophagy in epithelial cells (213) and promote protection against hypoxia and oxidative 

stress in retinal progenitor cells (337). EPO controls excessive autophagy that precedes 

apoptosis during experimental neonatal necrotizing enterocolitis (213). EPO also can modify 

the activity of autophagy and limit neonatal brain damage in the developing rodent during 

hyperoxia exposure and oxygen toxicity (399). Under some experimental conditions in 

neuronal cell line models, EPO can suppress apoptotic cell injury through the increased 

activity of AMPK and limited autophagy activity (400).

6. ERYTHROPOIETIN AND CLINICAL EFFICACY

The remarkable progress in understanding the protective signaling pathways of EPO has 

provided fertile ground for the launch of several clinical studies evaluating the protective 

role of EPO in the nervous system. At present, more than 60 ongoing or completed clinical 

trials are listed on the National Institutes of Health website ClinicalTrials.gov for EPO and 

disorders of the nervous system. In recent trials, new information has been gained to 

translate the findings of basic research for EPO in the nervous system into potential clinical 

utility.

EPO may provide neuroprotection against developmental impairment in preterm infants 

(Table 1). EPO has been reported to offer developmental cognitive support in humans with 

the observation that elevated EPO concentrations during infant maturation have been 

Maiese Page 10

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov


correlated with increased Mental Development Index scores (401). In a randomized, double-

blind placebo-controlled study involving preterm infants, recombinant EPO (3000 IU) was 

administered before 3 hours of age, at 12–18 hours of age, and 36–42 hours of age. EPO was 

demonstrated to improve white matter development assessed by diffusion tensor imaging 

and tract-based spatial statistics (400). Other work has supported that EPO (3000 IU) 

administered within 42 hours of age in preterm infants reduced the risk of brain injury 

assessed by magnetic resonance imaging (402).

However, the neuroprotective ability of EPO may have greater utility in the immature brain 

than compared to the adult brain with severe dysfunction. In a randomized trial of 200 

patients with closed head injury and the inability to follow commands, EPO (500 IU/kg) was 

administered for 3 days then weekly for 2 weeks in the setting of maintaining hemoglobin 

concentration of greater than 10 g/dL. Following the completion of the study, EPO or 

maintaining hemoglobin concentration of greater than 10 g/dL did not result in improved 

neurological outcome at 6 months (403). Studies with patients suffering from ischemic 

stroke and receiving human choriogonadotropin alfa followed by EPO also did not show 

improvement in neurological recovery (404).

Yet, in a study with long-term administration of the biosimilar epoetin α (Binocrit) in 

elderly patients with myelodysplastic syndromes, cognitive function appeared to improve 

that may be related to resolution of anemia (405). In a limited study with 26 PD patients, 

recombinant EPO administration improved cardiovascular autonomic dysfunction and 

cognition, but did not affect motor function of the patients (406). In relation to the 

cardiovascular benefits potentially gained from EPO, several studies suggest that at least 

high concentrations of EPO may not be warranted to protect cardiac function (142, 168, 

407–409). Yet, some work indicates that low concentrations of EPO may be beneficial to the 

cardiovascular system (212, 360, 410) which could subsequently benefit neurological 

function.

7. FUTURE CONSIDERATIONS FOR ERYTHROPOIETIN

With the increased life expectancy of the global population, the incidence of acute and 

chronic neurodegenerative disorders is expected to increase. Presently, more than 30 million 

individuals suffer from disorders of the nervous system throughout the world (4, 5). EPO 

and its signaling pathways offer exciting prospects for the treatment of neurodegenerative 

disorders. EPO governs a number of critical pathways that support cells of the nervous 

system to include Akt, sirtuins, Wnt signaling, and mTOR. In addition, EPO has been shown 

to impact programmed cell death pathways that involve apoptosis and autophagy and target 

specific “pro-apoptotic” proteins such as forkhead transcription factors. Translational of the 

critical cellular pathways involving EPO into effective clinical treatments for the nervous 

system has been promising for fetal brain injury. Additional work is necessary to determine 

the role of EPO for treatment of the adult brain that involves trauma, cognition, ischemic 

brain disease, related cardiovascular disease, and degenerative disorders of the nervous 

system. Outcomes from these studies can be heavily influenced by multiple factors that 

include EPO concentration, timing of administration, onset and severity of the underlying 

disorder, and the targeting of specific down-stream pathways for EPO.
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Yet, use of EPO as a clinical neuroprotective entity brings with it a number of 

considerations. EPO is a growth factor and controls cellular proliferative pathways that can 

lead to tumorigenesis. EPO (411–413) and pathways that involve Akt (414–416), mTOR 

(417–419), and Wnt signaling (268, 271, 279, 288, 420) can promote unchecked tumor 

growth. EPO also may be involved with the self-renewal of tumor-initiating cells (421).

EPO may have detrimental vascular effects and be contraindicated under specific 

circumstances, such as in patients with poorly controlled hypertension, individuals with 

known blood viscosity concerns, and in those with diabetic complications of the nervous 

system. EPO can limit FoxO activity in addition to other pathways to reduce ischemic stroke 

size (313). Yet, EPO may increase the risk of vascular complications in the brain. EPO 

administration results in a two-fold increase in stroke that is not attributed to any baseline 

characteristic or to blood pressure, hemoglobin, platelet count, or treatment dose of EPO in 

patients with diabetes mellitus and renal disease (422). Blood viscosity has been reported to 

be increased with a reduction in cerebral blood flow in mice that overexpress EPO (423). 

EPO also can increase vascular responsiveness (424) and may lead to hypertension (29, 142, 

425). For the retina, elevated EPO concentrations may be associated with proliferative 

diabetic retinopathy (426) that is tied to excessive microvascular angiogenesis. Sustained 

erythrocytosis with EPO also may activate inflammatory pathways and result in blood-brain 

barrier dysfunction (427).

Focusing upon the cellular signaling pathways of EPO could potentially enhance clinical 

efficacy for the treatment of neurodegenerative disorders and limit unwanted side effects for 

EPO. For example, targeting pathways of EPO, such as mTOR, that can finely control the 

activity of apoptosis and autophagy may foster significant benefit for the treatment of 

cognitive neurodegenerative disorders. In microglial cells of the nervous system, Aβ can 

inhibit mTOR signaling through PRAS40 (186, 428) that leads to apoptosis and may foster 

disease progression during Aβ toxicity. EPO, through the activation of mTOR can limit 

PRAS40 activity and block apoptotic cell injury (310). Increased mTOR signaling also may 

necessary to regulate the β-site amyloid precursor protein (APP)-cleaving enzyme 1 (β-

secretase, BACE1) that promotes Aβ accumulation in AD, since elevated mTORC1 activity 

reduces BACE1 and is able to limit Aβ generation (429). In animal models of AD, loss of 

mTOR signaling has been shown to impair long-term potentiation and synaptic plasticity 

that can be reversed with the up-regulation of mTOR signaling (430). Conversely, other 

work suggests that some degree of inhibition of mTOR may be necessary to enhance Aβ 

clearance and improve spatial learning through the activation of autophagy (431). Future 

work that recognizes the fine interplay of the signaling pathways of EPO could yield the 

greatest benefits for the successful treatment of multiple disorders in the nervous system.
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Table 1

Regenerative and Protective Properties of EPO in the Nervous System

Property Function

EPO Structure The integrity of EPO, a 30.4 kDa protein, is dependent upon the structure and the maintenance of the 
oligosaccharide side chains

The oligosaccharides and the glycosylated chains protect EPO from free radical oxygen degradation

EPO Production EPO expression is regulated by changes in oxygen tension

HIF-1 modulates the expression of EPO and EPOR

EPO production can be affected by other entities such as trophic factors, metabolic changes, infection, 
cytokines, selenium, and neuronal depolarizations

EPO Signal Transduction 
Pathways

EPO phosphorylates and activates Akt to lead to cytoprotection, reduce inflammation, and prevent 
oxidative stress mediated injury injury

EPO controls the nuclear translocation and the post-translational processing of FoxOs to prevent the 
induction of “pro-apoptotic proteins

EPO employs SIRT1 to maintain cellular energy homeostasis and control cellular differentiation

EPO relies upon Wnt/WISP1 signaling to foster stem cell survival, block FoxO protein activity, prevent 
cellular injury during toxin exposure, and maintain the integrity of non-neuronal cells in the nervous 
system

EPO relies upon mTOR for neuronal cell development, differentiation, and survival

EPO controls mTOR and its down-stream signaling pathways that involve PRAS40 and AMPK to 
promote stem cell development, cell differentiation, and cell survival

EPO, Apoptosis, and Autophagy EPO can prevent apoptotic injury during oxidative stress against multiple injuries such as advanced 
glycation end-product exposure, Aβ toxicity, and hypoxia

EPO can block autophagy through the activation of mTOR. Under some conditions, EPO can suppress 
apoptotic cell injury through increased AMPK and autophagy activity

EPO Clinical Efficacy EPO may provide neuroprotection against developmental impairment in preterm infants and offer 
cognitive improvement in elderly patients with myelodysplastic syndromes

EPO may assist with protection against neurological impairment through improved cardiovascular 
function

Akt: protein kinase B; Aβ: beta-amyloid; AMPK: AMP activated protein kinase; EPO: erythropoietin; EPOR: erythropoietin receptor; FoxO: 
mammalian forkhead transcription factors of the O class; HIF-1: Hypoxia-inducible factor 1; mTOR: mechanistic target of rapamycin; PI 3-K: 
Phosphoinositide 3-kinase; PRAS40: the proline rich Akt substrate 40 kDa; SIRT1: silent mating type information regulation 2 homolog 1 (S. 
cerevisiae); WISP1: wnt1 inducible signaling pathway protein 1; Wnt: proteins derived from the Drosophila Wingless (Wg) and the mouse Int-1 
genes
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