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Abstract

Background—A recent association study identified a common variant (rs9790517) at 4q24 to be 

associated with breast cancer risk. Independent association signals and potential functional 

variants in this locus have not been explored.

Methods—We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 

controls from the Breast Cancer Association Consortium.

Results—Conditional analyses identified two independent association signals among women of 

European ancestry, represented by rs9790517 (conditional p = 2.51 × 10−4; OR = 1.04; 95% CI 

1.02–1.07) and rs77928427 (p = 1.86 × 10−4; OR = 1.04; 95% CI 1.02–1.07). Functional 

annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two 

putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with 

rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest 

gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor binding 

sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of 

Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was 

associated with level of expression of TET2 in breast normal and tumor tissue.

Conclusion—Our study identified two independent association signals at 4q24 in relation to 

breast cancer risk and suggested that observed association in this locus may be mediated through 

the regulation of TET2.

Impact—Fine-mapping study with large sample size warranted for identification of independent 

loci for breast cancer risk.
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Introduction

A common genetic variant at 4q24, rs9790517, was recently identified to be associated with 

breast cancer risk, through a combined analysis of genome-wide association studies 

(GWAS) together with data from a large association study using a custom array, iCOGS (1, 
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2). This risk variant, termed subsequently as the index SNP in this paper, is located in intron 

11 of TET2, a chromatin-remodeling gene that functions as a tumor suppressor. TET2 has 

been found to be frequently somatically mutated in multiple cancers, including breast cancer 

(3–9). However, the index SNP is located in a region with no evidence of functional 

significance. The initial GWAS reported only the most strongly statistically associated SNP 

in this region, although many other SNPs at the same locus also may be associated with 

breast cancer risk, one or more of which are causally related to breast cancer risk. 

Comprehensive fine-scale mapping may help to identify the variants most likely to be 

functionally related to risk, and may enable the identification of additional independent 

signals.

Dense fine-scale mapping of GWAS-identified loci has successfully identified novel 

putative causative variants for several common diseases, including breast cancer (10–17). 

For example, previous fine-mapping studies of 5p15, 20q16, 2q35, 5q11 and 11q13 have 

identified multiple independent risk signals as well as potential causative variants in each 

region, using data from the Breast Cancer Association Consortium (BCAC) (12, 13,16, 18–

20). The index SNP (rs9790517) at 4q24 is close to another SNP, rs7679673 (r2 = 0.42, 23 

kb apart), which has been associated with prostate cancer (21). In this fine-mapping project, 

a dense set of SNPs in this 4q24 region was genotyped in genomic DNA samples obtained 

from 106,708 participants included in the BCAC. We then analyzed data from 3,912 

genotyped and imputed SNPs in this region in an attempt identify potential functional 

variants that may explain the observed association of genetic variants in this locus with 

breast cancer risk.

Materials and Methods

Study populations

The study included 55,540 breast cancer cases and 51,168 controls from 50 studies 

participating in the BCAC. Details of the studies, sample selection, and genotypes are 

described elsewhere (1). The dataset included 39 studies from European-ancestry 

populations (48, 155 cases and 43,612 controls), nine from Asian populations (6,269 cases 

and 6,624 controls) and two from populations of African ancestry (1,116 cases and 932 

controls).

Genotyping of 4q24

A dense set of SNPs at 4q24 were selected for genotyping on iCOGS based on evidence of a 

prostate cancer associated SNP, rs7679673 (17), since at the time of the assay design this 

region had not yet been linked to breast cancer risk. An interval of 596kb (positions in chr4, 

105932103 – 106528262 from hg19) was identified based on all SNPs with r2 > 0.1 with the 

SNP rs7679673 based on HapMap 2 CEU (22). All SNPs in the interval were then identified 

from the 1000 Genomes Project CEU (April 2010)(23), together with HapMap 3, and we 

selected SNPs for genotyping which had an MAF > 2% in Europeans and an Illumina 

Design score > 0.8. From this set, all SNPs with r2 > 0.1 with SNP rs7679673 were selected, 

together with an additional set of SNPs to tag the remaining SNPs at r2 > 0.9. In total, 490 

SNPs were successfully genotyped and passed quality control. We imputed genotypes for 
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the remaining SNPs using the program IMPUTE2 (24) and the March 2012 release of the 

1000 Genomes Project as a reference. Those imputed SNPs with common SNPs (MAF > 

0.02) and imputation r2 > 0.3 were included in the current analysis.

Statistical analyses

For each genotyped and imputed SNP, we evaluated its association with breast cancer risk 

using a logistic regression model with adjustment for age, study site and principal 

components to correct for potential population stratification (the first six principal 

components, plus one additional principal component for the LMBC in analyses of the 

European ancestry data, or the first two principal components in the analyses of the Asian 

and African ancestry data), as previously described (1). Odds ratios (ORs) and 95% 

confidence intervals (CIs) were estimated under a log-additive model. We conducted 

separate analyses within European, Asian and African American populations.

To identify independent association signals, we performed stepwise forward logistic 

regression analyses for the associated SNPs with an MAF > 0.02 showing association at p < 

1 × 10−4 in the single marker SNP analysis. We used the Step function implemented in the R 

package (25) with the penalty K = 10 for inclusion of additional SNPs in the model. Since 

no SNPs showed p < 1 × 10−4 in the Asian or African populations, this analysis was 

performed only in the European population. The model was adjusted for the same factors as 

in the single SNP analysis. To define potentially causative variants, we computed a 

likelihood ratio for each SNP relative to the best associated SNP in each signal and excluded 

SNPs with a likelihood ratio < 1/100. Haplotype-specific ORs were estimated using 

haplo.stats in R, including age, study site, and the first six principal components, plus one 

additional principal component for the LMBC study.

Functional annotation

We annotated 29 candidate causative variants for potential functional significance using 

chromHMM annotation across nine ENCODE(26) cell lines: HMEC, GM12878, H1-hESC, 

K562, HepG2, HSMM, HUVEC, NHEK, and NHLF (27). For each variant, we investigated 

whether it is mapped to functional regions (i.e. promoter and enhancer) through chromatin 

states annotation from the UCSC Genome Browser (28). The epigenetic landscape of 

histone markers H3K4Me1, H3K4Me3, and H3K27Ac was also examined through layered 

histone tracks on seven ENCODE cell lines including GM12878, H1-hESC, K562, HSMM, 

HUVEC, NHEK, and NHLF from the UCSC Genome Browser. DNase I hypersensitive and 

TF ChIP-Seq datasets were investigated in all available ENCODE cell lines, including breast 

normal cell line, HMEC, and breast cancer cell lines, T-47D and MCF-7. Two publicly 

available tools, RegulomeDB (29) and HaploReg v2(30), were also used to evaluate those 

likely functional variants (9, 31). In addition, we also investigated whether each variant is 

overlapped with regulatory elements of enhancers and TSS from two previous studies 

including Hnisz et al (32) and Andersson et al (FANTOM5 project) (33). Chromatin 

Interaction Analysis by Paired End Tag (ChIA-PET) (mediated by RNA polymerase 2) data 

from MCF7 cell were downloaded from GEO (GSE39495) and the ggbio R package was 

used to represent the interactions between cell enhancers (containing a strongly associated 

variant) and a predicted gene promoter.
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TCGA data resource and eQTL analysis

We downloaded RNA-Seq V2 data (level 3) of 1,006 breast cancer tumor tissues from the 

TCGA data portal (34). DNA methylation data measured by the Illumina 

HumanMethylation450 BeadChip were also retrieved from TCGA level 3 data. We also 

downloaded level 3 SNP data genotyped using the Affymetrix SNP 6.0 array. Copy Number 

Alteration (CNA) data for genes PPA2, ARHGEF38, INTS12, GSTCD and TET2 at 4q24 for 

TCGA samples were collected from the CbioPortal (35). We analyzed a total of 645 breast 

tumor tissues in Caucasian population including matched CNV, genotype and expression 

data.

We performed eQTL analysis in TCGA tumor tissues described above. We applied several 

steps to reduce the batch or other technical effects on gene expressions following the 

approach described by Pickrell et al (36). First, the RNA-Seq by Expectation-Maximization 

value of each gene was log2 transformed and those genes with a median expression level of 

0 across tissues were removed. We then performed the principal component correction on 

gene expression to remove potential batch effects. A linear regression of expression values 

on the first five principal components was constructed and the residuals were used to replace 

the expression values of each gene among tissues. To make the data better conform to the 

linear model for the eQTL analysis, we further transformed the gene expression levels to fit 

quantiles of N(0, 1) distribution based on the ranks of the expression values to their 

respective quantiles. Residual linear regression models were constructed to detect eQTLs, 

while adjusting for methylation and CNA, according to the approach used by Li et al (37).

We also extracted matched genotypes and gene expression levels as described above in a 

total of 135 tumor-adjacent normal breast tissues in European ancestry individuals from the 

METABRIC project (38). Gene expression profiling was generated on the Illumina HT12 v3 

microarray platform and probe-level measurements were used. Genotyping was performed 

on the Affymetrix SNP 6.0 with genotypes being imputed using the 1000 Genomes March 

2012 CEU reference panel. Matrix eQTL was performed for evaluating the association 

between genotypes and gene expression levels (39).

Results

Association Analyses

We evaluated associations for 490 genotyped and 3,422 well-imputed SNPs at 4q24 

spanning 596 kb (positions in chr4: 105932103 – 106528262 from hg19) in 48,155 cases 

and 43,612 controls of European descent. A total of 29 variants were significantly associated 

with breast-cancer risk at p < 1 × 10−4 (Figure 1, Supplementary Table 1). Of these, 15 

variants were directly genotyped and 14 were imputed with r2 > 0.9. All risk-associated 

variants had minor allele frequencies (MAF) > 0.05. The index SNP, rs9790517, showed 

strong evidence of a significant association with breast cancer risk (OR = 1.05; 95% CI 

1.03–1.08; p = 5.44 × 10−6), which was consistent with the report from the original study 

(1). The strongest association was, however, found for an imputed SNP rs73838678 (OR 

=1.12, 95% CI 1.07–1.17; p = 1.29 × 10−6).
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To identify potential independent association signals, we carried out forward stepwise 

logistic regression analysis on SNPs associated with breast cancer at p < 1 × 10−4. Two 

independent association signals were revealed: index SNP rs9790517 (conditional p = 2.51 

× 10−4, after adjustment for the SNP in the second signal) and SNP rs77928427 (conditional 

p = 1.86 × 10−4 after adjusting for the index SNP) (Table 1). The index SNP rs9790517 in 

signal 1 was in weak LD with the SNP rs77928427 in the second risk signal (r2 = 0.04). 

These two SNPs are more than 300kb from each other.

We performed similar analyses, restricting to cases with estrogen receptor positive (ER+) 

cancer and identified 17 variants associated with ER+ breast cancer risk at p < 1 × 10−4 in 

women of European ancestry. No SNP was found to be associated with ER-negative (ER−) 

disease at p < 1 × 10−4. However, the per-allele ORs for the two SNPs independently 

associated with overall breast cancer risk were similar for ER− and ER+ disease (Table 1; 

all tests of heterogeneity by ER-status p > 0.10). Conditional analysis yielded similar 

associations for ER+ breast cancer to those for overall breast cancer for the two 

independently associated SNPs.

We performed haplotype analysis based on the top SNPs from the two signals: rs9790517 

and rs77928427 in European descendants. Three major haplotypes were observed. 

Compared with the most common haplotype carrying the common allele at both SNPs, 

haplotype TA carrying two risk alleles showed the strongest association with breast cancer 

risk (OR = 1.11; 95% CI 1.07–1.15; p = 2.31 × 10−8) (Table 2). The frequency of this 

haplotype was 9.4%. Haplotypes CA and TC, carrying the risk allele in either signal 1 or 2, 

also were associated with elevated risk of breast cancer, although the association was only 

marginally significant. Thus, the haplotype analyses were consistent with the hypothesis that 

there are two independently associated variants in the region.

We compared the average age among those cases carrying risk and non-risk alleles of 

rs9790517. Interestingly, we observed that the cases carrying risk alleles were slightly 

younger than those carrying non-risk alleles (average age: 57.54, 57.62 and 57.64 

respectively for patients carrying alleles TT, TC and CC of rs9790517; p < 2 × 10−16). No 

such pattern was observed for rs77928427.

We carried out association analysis for all SNPs with breast cancer in subjects of Asian and 

African descent. None of the SNPs identified in women of European ancestry as associated 

at p < 10−4 showed a significant association in either Asians or African women at p < 0.05 

(Table 3). However, the 95%CI for the OR estimates in Asians and Africans included the 

point estimate in Europeans for both of the two top independent SNPs. We found one SNP 

associated with breast cancer risk in Asians and three in Africans, at p < 0.01 (strongest 

signal rs1116764: OR 1.10; 95% CI 1.04–1.16; p = 4.21 × 10−4), none of these SNPs were 

in LD with the two independent association signals identified in European women (Table 3).

Functional Annotation

We used a likelihood ratio > 1:100 relative to the best associated SNP in each signal to 

select candidate variants for functional annotation in order to identify potentially causative 

variants in this region (Supplementary Table 1). In total, 29 SNPs were identified including 
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24 for signal 1 and 5 for signal 2. Of these, 17 SNPs in signal 1 were strongly correlated 

with the original index SNP rs9790517, and the remainder were more weakly correlated. All 

SNPs were evaluated using DNase-Seq and ChIP-Seq data from the ENCODE project. The 

most promising evidence for functionality was found for SNPs rs62331150 and rs73838678, 

both in LD with rs9790517 (r2 = 0.98 and r2 = 0.09, respectively) in signal 1.The annotation 

from chromatin states (27) revealed that rs62331150 resides an active promoter region, and 

rs73838678 in a strong enhancer region, on several ENCODE cell lines including HMEC 

(Human Mammary Epithelial Cell) but not for other SNPs in either signal 1 or 2 (Figure 

2A). The active promoter associated histone marks (H3K4Me3 and H3K27Ac) and enhancer 

associated histone marker H3K27Ac were enriched in the intervals containing rs62331150 

and rs73838678, respectively, in several ENCODE cells, and both SNPs were also found to 

be located in or near a DNase I hypersensitive site (DHS) (Figure 2A, B). In addition, both 

variants were found to overlap with predicted enhancer regions of TET2 in multiple cells 

including HMEC as reported in a recent study (32). None of the other SNPs in signal 1, and 

none of the 5 SNPs in signal 2 fell into a strong annotated promoter or enhancer region in 

those cells.

To identify putative gene targets, we examined the annotation of TSS and TSS-associated 

enhancers using Cap Analysis of Gene Expression (CAGE) from the FANTOM5 project 

(23). We found that rs62331150 and rs73838678 reside in regulatory elements of enhancers 

associated with transcription start sites (TSS) and TSS of TET2 in multiple cells (Figure 

2A). We also examined potential functional chromatin interactions between distal and 

proximal regulatory transcription-factor binding sites and the promoters at the risk regions 

using ChIA-PET data. ChIA-PET data for Pol2 in MCF-7 breast tumor derived cells showed 

multiple chromosomal interactions across the entire region, but these interactions were 

particularly dense in the vicinity of the TET2 promoter region, encompassing the strongest 

candidate causal variant rs62331150 and rs73838678 (Figure 2A).

A search of RegulomeDB indicated that rs62331150 and rs73838678 were annotated to lie 

in the breast cancer related transcription factor (TF) SP1 (Specificity Protein 1) and PR 

(progesterone receptor) (40, 41) predicted binding motifs, respectively (Figure 2B). We 

observed that the G nucleotide was more frequently found in the SP1 motif than the T 

nucleotide, indicating that the SP1 may preferentially bind to the reference G allele (Figure 

2B). For variant rs73838678, no significant allelic frequency difference in the PR motif was 

observed. Using ChIP-Seq data from a total of 161 TFs from the ENCODE project (ChIP-

Seq V3), we found that both variants are located in multiple TF binding sites (Figure 2B). 

As an example, ChIP-Seq binding peaks of breast cancer-related TFs, EGR1 and NIFC, 

harbor the variant rs62331150 and rs73838678, respectively (42, 43). In particular, we 

observed that P300, marking the active enhancer, was found to bind close to both variants in 

multiple ENCODE cell lines, suggesting that the variant in the region may lead to TET2 

transcriptional activation.

Gene expression analyses

We used both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast 

Cancer International Consortium (METABRIC) data to examine the association of the 
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putative functional SNP rs62331150 and rs73838678 with expression of TET2 and several 

other neighboring genes, including PPA2, ARHGEF38, INTS12, and GSTCD, in breast 

cancer tissues. No significant correlations with any genes were observed for variant 

rs73838678. Variant rs62331150 was weakly correlated with TET2 expression in both 

datasets (p = 0.039 and p=0.025 respectively for TCGA and METABRIC), the reference 

allele G being associated with increased expression relative to the risk allele T (Figure 3). 

The result was consistent with the observation from our functional annotation that SP1 may 

preferentially bind to the reference G allele, leading to a significant increase in TET2 

transcription activation. No correlation between rs62331150 and the expression of any other 

gene in the region was found in either dataset. Overall, our findings supported a hypothesis 

that TET2 is the target gene for the signal 1 association, and that the association with breast 

cancer risk may be mediated through regulation of TET2 gene expression. The result is also 

in line with previous findings that TET2 functions as a tumor suppressor and its high 

expression level may reduce breast cancer risk (44, 45).

Discussion

In this study, we identified two independent association signals at 4q24 in women of 

European ancestry. Statistical analyses reduced the set of likely causative variants to 29. 

Using functional genomic data, we provided strong evidence for two variants as functional 

variants. Our study suggests that the breast cancer risk may be mediated through their 

regulation of TET2 gene expression.

In our initial single marker analysis, we observed that the majority of variants, including the 

index SNP, were located in or near the TET2 gene region. Through eQTL analysis based on 

TCGA data, we found that multiple SNPs in signal 1 were correlated with TET2 expression, 

which was expected given their strong LD with each others. Of those SNPs, rs62331150 

resides in the promoter of TET2. Although eQTL analysis is helpful to identify potential 

target genes, it is difficult to use eQTL results to pinpoint the causal variant particularly 

when multiple SNPs are in strong LD. In addition to residing in the promoter region of the 

TERT2, the variant rs62331150 was also found to be located in the binding sites of multiple 

TFs including the breast cancer related TF EGR1, potentially affecting the binding affinities 

of specific TFs. Interestingly, the putative functional SNP rs62331150 is close to SNP 

rs7679673 that has been associated with prostate cancer risk (21), indicating that TET2 gene 

may also be involved in prostate cancer risk. In comparison to rs62331150, rs73838678 in 

signal 1 was not found to have a significant association with TET2 and any other nearby 

genes. One possible reason is that the statistical power is low for rs73838678 due to its 

relative low allele frequency (MAF = 0.049). We also could not exclude the other possible 

target genes for rs73838678. Future studies using in vitro and in vivo assays are warranted to 

verify this conclusion.

Cumulative evidence shows that TET2 has an important function in tumor suppression. This 

gene can alter the epigenetic status of DNA base methylcytosine to 5-

hydroxymethylcytosine and therefore, have a genome-wide scale of influence on gene 

expression (46–48). Accordingly, TET2 gene dysregulation could cause aberrant DNA 

methylations and consequently contribute to cancer development (3–6, 45, 49). Here, we 
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reported TET2 as a candidate susceptibility gene for both ER+ and ER− breast cancer types. 

Although the associations for the top SNPs, rs9790517 and rs77928427, with breast cancer 

risk in Asian and African-ancestry populations were not statistically significant, likely due to 

a small sample size, the direction of the associations was mostly consistent in all population, 

suggesting that the TET2 gene play a similar role in the etiology of breast cancer in all three 

populations.

Although our fine-mapping analysis represents the most comprehensive analysis of variants 

at 4q24 thus far, many SNPs, particularly rare variants, cannot be imputed. Deep sequencing 

of this region may reveal additional risk variants for breast cancer. For example, 

rs76682196, located 884 bp upstream of rs62331150, was found to be potentially functional 

using the ENCODE data. The variant is present in DHS and TFs sites. In particular, it lies in 

the ERα (Estrogen Receptor-α) predicted binding motif and ChIP-Seq peak in breast cancer 

cell line T-47D. However, this variant was not included in the study due to its low frequency 

(MAF < 0.01) in populations from all three ethnic groups.

In conclusion, this dense fine-mapping study identified two independent association signals 

with breast cancer risk at 4q24, increasing the estimated familial relative risk of breast 

cancer explained by this locus from the original 0.07% to 0.15% among women of European 

descent. Functional analyses revealed one potentially functional variant, rs62331150. The 

risk allele is associated with lower expression of TET2, consistent with previous findings 

that this gene acts as a tumor suppressor.
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Figure 1. Regional plot of genetic variants associated with breast cancer risk at 4q24
A) The index SNP rs9790517 is plotted in diamond purple. The LD (r2) for the index SNP 

with each SNP was computed based on European ancestry subjects included in the 1000 

Genome Mar 2012 EUR. P values were from the single-marker analysis based on logistic 

regression models after adjusted for age, study sites and the first six principal components 

plus one additional principal component for the LMBC in analyses of data from European 

descendants. The plot was generated using LocusZoom (50).
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Figure 2. Functional annotation of SNPs association with breast cancer risk at 4q24
A) Epigenetic landscape at 4q24 risk locus for breast cancer. From top to bottom, RefSeq 

genes (TET2 and PPA2), layered H3K4Me1, H3K4Me3 and H3K27Ac histone 

modifications, DNase clusters, annotation using chromatin states on the ENCODE cell lines, 

and H3K27Ac histone modification in MCF-7, predicted enhancers reported in the Hnisz et 

al. study, regulatory elements of enhancers associated with TSS and TSSs from the 

FANTOM5 project and ChIA-PET interactions in MCF-7 cell (mediated by RNA 

polymerase 2) between enhancers and TET2 promoter are shown. The signals of different 
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layered histone modifications from the same ENCODE cell line are shown in the same color 

(The detailed color scheme for each ENCODE cell line described in the UCSC genome 

browser). The red and orange colors in chromatin states refer to active promoter and strong 

enhancer regions, respectively (The detailed color scheme of the chromatin states described 

in the previous study (27)). For ChIA-PET track, black lines represented interactions with 

the promoter region (−1500/+500) of TET2, and gray lines represent chromatin interactions 

that do not involve the TET2 promoter region. Purple and green lines represent interactions 

within +/− 500pb of rs73838678 and rs62331150 variants, respectively. B) Epigenetic 

signals of two potential functional variants rs73838678 and rs62331150. From top to 

bottom, lanes showing that the variant mapped to TF predicted binding motifs, TF ChIP-Seq 

binding peaks and DNase I hypersensitivity sites. The corresponding location of the variant 

is indicated by dashed line. C) LD plot for breast cancer risk associated SNPs at 4q24. In the 

top lane, two SNPs representing independent association signals are indicated by the black 

arrows. The index SNP is indicated by the red arrow. In the bottom lane, two LD SNP 

blocks were shown based on r2 values, which were computed based on the genotype data 

from the BCAC.
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Figure 3. The association between SNP rs62331150 and TET2 expression in breast cancer tissues 
from TCGA
The reference allele G of rs62331150 is significantly associated with the increased gene 

expression relative to the risk allele T.
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