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Abstract

Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding 

vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of 

signaling behavior in males and sexual proceptivity in females. What is less understood is how 

hormones promote the expression of the often complex and highly selective set of stimulus-

response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is 

a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the 

breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the 

breeding season, but the administration of hormones can induce sexual proceptivity. Here we test 

the hypothesis that manipulation of a minimal set of reproductive hormones—progesterone and 

prostaglandin F2α—are capable of evoking not only proceptive behavior in non-breeding females, 

but also the patterns of intraspecific selectivity for male sexual displays observed in gravid 

females tested during the breeding season. Specifically, we investigated whether preferences for 

faster call rates, longer call durations, and higher call efforts were similar between breeding and 

hormone-treated females of Cope’s gray treefrog (Hyla chrysoscelis). Hormone injections induced 

patterns of selective phonotaxis in non-breeding females that were remarkably similar to those 

observed in breeding females. These results suggest that there may be an important contribution of 

hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings 

also support the idea that hormonal induction could be used to evaluate hypotheses about selective 

mate choice, and its underlying mechanisms, using non-breeding females.
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1. Introduction

Hormones coordinate the expression of sexual behavior at the onset of favorable 

environmental conditions in seasonal breeders [1]. The endocrine systems involved in 

modulating sexual behavior are highly conserved among vertebrate taxa and have been 

studied in detail in a number of organisms, including teleost fish [2, 3], birds [4, 5] and 

amphibians [6]. Previous research has principally focused on the role of endocrine systems 

in promoting the production of sexual displays (typically in males), and to a lesser extent 

their role in inducing proceptive behavior (typically in females). Recent work, however, 

suggests that endocrine systems can also have acute effects on mate choice selectivity [7, 8]. 

Because the choice of a mate is one of the most consequential decisions organisms make in 

terms of evolutionary fitness [9, 10], and because the act of choosing a mate typically 

involves the integration of a complex set of sensory (e.g., detection and localization), 

cognitive (decision-making and integration) and motor (e.g., orientation and movement 

towards mate) processes, it is conceivable that such behavior involves an equally complex 

set of physiological regulatory systems. Many hormones, however, are known to 

simultaneously influence multiple phenotypic traits (i.e., hormonal pleiotropy) [11, 12], due 

in part to the coordinated expression of a given receptor across multiple target tissues [13, 

14]. One goal of evolutionary endocrinology is to experimentally identify the hormonal 

basis of complex suites of natural behaviors with known fitness implications, such as mate 

choice. Achieving this goal requires a careful examination of the integrated set of stimulus-

response relationships necessary to evoke species-typical mate choice selectivity in wild 

animals.

In anuran amphibians (frogs and toads), sexual behavior is conspicuously tied to vocal 

production of advertisement signals (typically in males) and acoustically guided mate choice 

(typically in females). Female frogs often exhibit robust selectivity for the specific spectral 

and temporal acoustic properties of conspecific advertisement calls [15-17]. This selectivity 

functions as a pre-mating species isolation mechanism that ensures females choose 

conspecific males as mates. Female frogs often also exhibit strong intraspecific selectivity in 

favor of calls with particular spectral or temporal properties [16-18]. This selectivity extends 

to preferences for faster calling rates [19] and for calls with lower frequencies [20], longer 

durations [21], higher amplitudes [22], and greater acoustic complexity [23]. In turn, 

intraspecific selectivity can benefit females both directly, for example, by reducing time 

spent searching for a mate [24, 25], and indirectly, for instance, in terms of producing 

offspring with higher fitness [9].

The most widely used experimental method to investigate mate choice in frogs involves 

eliciting positive phonotaxis (approach toward sound) in response to broadcasts of real or 

synthetic models of acoustic signals [26]. Positive phonotaxis by female anurans is a 

proceptive behavior that reflects sexual motivation because it promotes sexual interaction 

for the purpose of mating [27-29]. Typically, females are collected in amplexus during their 
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natural breeding seasons, separated from their mates, and placed near a variable number of 

speakers from which different alternative signals are broadcast. Proceptive females approach 

sound sources broadcasting calls regarded as those of an acceptable mate. In tests with two 

or more acoustic alternatives simulating different males, selectivity for preferred sexual 

partners is revealed when a proportion of females higher than expected by chance approach 

one of the alternatives. A primary reason for testing females collected in amplexus is that 

they exhibit patterns of behavioral selectivity similar to those observed when females are 

tested just prior to choosing an actual mate and entering amplexus in nature [30]. Hence, 

selective phonotaxis in experimental settings reflect the expression of the same 

discriminative behavior that females exercise in choosing a mate. Almost immediately after 

gravid females mate or release their eggs, they become much less responsive, and in some 

cases, completely unresponsive, to acoustic signals. This dramatic post-mating decline in 

proceptive behavior in response to acoustic signals almost certainly involves neuroendocrine 

products, which play important roles in sexual arousal and reproduction in frogs [31]. At a 

practical level, this remarkable change in sexual motivation imposes a severe limitation on 

using phonotaxis as a behavioral assay to study mate choice in frogs by limiting 

experimental studies to occur during a species’ natural breeding season.

In this study of Cope’s gray treefrog (Hyla chrysoscelis), we tested the hypothesis that the 

combination of progesterone and prostaglandin F2α induces proceptive behavior in females 

(phonotaxis) that exhibits species-typical patterns of selectivity for male sexual displays. 

According to this hypothesis, our prediction was that hormonally-induced females would 

respond similarly to naturally-breeding females in a battery of two-alternative choice tests 

designed to assess selective preferences for acoustic signals differing in their rate of 

production, duration, or both. Few previous studies have investigated whether hormonal 

manipulations can induce the species-typical selective preferences for specific call variants 

exhibited by gravid females tested during the breeding season [13, 32, 33]. Circulating 

levels of progesterone increase in female frogs at times when reproduction occurs [34-37], 

and in combination with estradiol—but not alone—can induce receptive behaviors, such as 

the adduction of thigh muscles in response to clasping in Xenopus laevis [38]. 

Prostaglandins play an important role in parturition, ovarian function, and egg laying in 

vertebrates [39-41], but are relatively unstudied in the context of mate choice behavior [but 

see 7]. There is some evidence, however, that they may be involved—in concert with other 

hormones—in regulating phonotaxis and other behaviors related to sexual proceptivity in 

female frogs [42-45]. Injections of steroid (e.g., estrogen, progesterone), peptide (e.g., 

human chorionic gonadotropin), and lipid-based hormones (e.g., prostaglandins) can induce 

phonotaxis in female frogs outside the natural breeding season [6, 31, 46, 47]. However, 

neither progesterone [38, 48] nor prostaglandin [43, 44, 49] alone is sufficient to induce 

sexual proceptivity or ovulation in female frogs.

We conducted two experiments. The first experiment evaluated whether injections of 

progesterone and prostaglandin F2α together elicited higher rates of proceptive behavior 

(phonotaxis) in non-gravid females compared with negative controls. In a second 

experiment, we examined whether patterns of selectivity for stimuli varying in call rate, call 

duration, or call effort (the product of call rate and duration) were similar in gravid females 
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tested during the breeding season and non-gravid, hormone-treated females. Previous work 

with Cope’s gray treefrogs has established that females prefer displays having faster call 

rates, longer call durations, and higher call efforts [50-54]. Our direct comparisons of gravid, 

breeding females and non-gravid, hormone-treated females permitted us to interpret 

behavioral selectivity with respect to known species-typical patterns.

2. Materials and methods

2.1. Subjects

All subjects were collected as gravid females found in amplexus in wetlands in east-central 

Minnesota (Carver, Hennepin, Ramsey, and Wright Counties) between 15 May and 30 June 

in 2008, 2009, 2010, and 2015. Collections were made at night between 2200-0100 hours. 

All subjects were transported to the lab and maintained at approximately 2°C to prevent egg 

deposition prior to being used as subjects in phonotaxis tests. We distinguish between four 

separate groups of subjects in the present study. We use the term “breeding” to refer to the 

group of females tested during the natural breeding season within 1-3 days of collection and 

before egg laying. In our laboratory, greater than 98% of females collected and tested during 

the breeding season exhibit positive phonotaxis in playback experiments (M. A. Bee, 

unpublished data). All other females were captive frogs housed in the laboratory and tested 

between June and March after they had oviposited the eggs they carried when collected in 

amplexus (see the Supplementary Material for details of when specific tests were 

conducted). Females in the “hormone-treated” group received injections of progesterone and 

prostaglandin. Females in the “saline-treated” group were treated similarly to females in the 

hormone-treated group, but received injections of the hormone vehicle only. An “untreated” 

group of females received no injections. Frogs were housed on a 12L:12D light cycle at 

approximately 20°C in a rack of custom-modified terraria with sphagnum moss, perches and 

refugia made of PVC pipes, and flow-through, filtered water. In total, 317 females were 

collected and used as subjects for this study.

2.2. General testing protocols

We conducted two-alternative choice tests using equipment and procedures described in 

detail elsewhere [52, 55, 56]. Briefly, tests were conducted under infrared illumination in a 

2-m diameter test arena with a carpeted floor and 60-cm high walls that were visually 

opaque but acoustically transparent. The arena was located inside a custom-built, 

temperature-controlled (20 ± 1°C), semi-anechoic sound chamber (Industrial Acoustics, 

Bronx, NY). Two speakers (A/D/S L210, Vista, CA) were positioned on the floor on 

opposite sides of the arena (180° apart) just outside the arena wall and aimed toward the 

center of the arena, where an individual subject was remotely released at the start of a choice 

test. We varied the positions of the speakers each day of testing to eliminate any 

confounding effects of directional bias. At least 30 min prior to testing, we placed subjects 

in a temperature-controlled incubator to allow their body temperatures to equilibrate to 20 ± 

1°C. Subjects were given up to 8 min to travel the 1-m distance to a speaker and to touch the 

arena wall within a 15° arc centered in front of a speaker. Frogs that failed to meet this 

response criterion were scored as “no response.” Subjects tested in multiple tests were 

returned to the incubator for 10-20 min “timeouts” between consecutive tests. There is little 
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evidence to suggest female frogs experience carry-over effects across separate phonotaxis 

tests [21, 57, 58]. Tests were typically conducted between 0900 hrs and 0400 hrs the next 

day.

2.3. Acoustic stimuli

We used custom-written software (courtesy J. J. Schwartz) to generate synthetic stimulus 

calls (20 kHz, 16 bit) that differed in call rate (calls/min), call duration (pulses/call), or both, 

but were otherwise identical in all other spectral and temporal properties. Each stimulus was 

composed of a sequence of identical pulses with values of temporal and spectral properties 

similar to the average values recorded in our study population (corrected to 20°C) [53] and 

used in previous studies [52, 55, 56]. Single pulses were created by adding two phase-locked 

sinusoids with frequencies (and relative amplitudes) of 1.3 kHz (-6 dB) and 2.6 kHz (0 dB). 

We created calls by concatenating pulses and inter-pulse intervals (50% pulse duty cycle) to 

achieve the desired number of pulses (Table 1). Sequences of calls were created by inserting 

appropriate durations of silence between consecutive calls to achieve the desired call rate 

(Table 1). We shaped the amplitude envelope of each call using a linear rise over the first 60 

ms of the call.

The two alternative stimuli in each test were presented from opposite sides of the arena. 

Whenever call rate was the same in both alternatives, the two stimuli alternated in time with 

equal periods of silence preceding and following each call. If call rate differed between the 

two alternatives, the temporal arrangement of strict alternation between the two alternatives 

only applied to the first three calls broadcast, and subsequent calls drifted in and out of 

phase according to their designated call rates. Acoustic stimuli were calibrated using a Brüel 

& Kjær Type 2250 sound level meter to a playback level of 85 dB SPL (sound pressure 

level, re 20 μPa, fast RMS, C-weighted) at the central release point in the test arena, 1 m 

from each speaker. This SPL simulates a naturally calling male at approximately 1 m [59].

2.4. Hormone treatments and controls

Our protocols for hormone injections closely followed those outlined by Gordon and 

Gerhardt [33] in their study of hormonally-induced phonotaxis in eastern gray treefrogs, 

Hyla versicolor, which were based on a modification of procedures initially detailed by 

Schmidt [44] in his study of American toads, Anaxyrus (formerly Bufo) americanus. Though 

we did not measure circulating levels of hormones in the present study, the dosages and 

timelines of hormone administration adopted here were previously shown in H. versicolor to 

yield physiologically relevant circulating concentrations of both progesterone and estradiol 

that did not differ from wild-caught breeding females [33]. Subjects randomly assigned to 

the hormone-treated group received an intraperitoneal injection of progesterone 18-24 hours 

prior to testing and an intramuscular (thigh) injection of prostaglandin F2α 30-60 min prior 

to testing. Doses depended on body mass according to the following equation:

(1)
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where W = body mass in grams, and K = 2 mg for progesterone and K = 1200 μg for 

prostaglandin F2α [33]. The progesterone solution was prepared by dissolving 0.4 g 

progesterone and 0.04 g tragacanth (both from Sigma-Aldrich Corp., St. Louis, MO) in 100 

mL of amphibian Ringer’s solution (Fisher Scientific, Pittsburgh, PA). Tragacanth was used 

to improve the solubility of progesterone in saline. Prostaglandin F2α was used in the form 

of Lutalyse® (5 mg/ml dinoprost; Zoetis, Florham Park, NJ). Females assigned to the saline-

treated group were treated similarly, but received two mass-specific injections of amphibian 

Ringer’s solution equivalent in volume to the two mass-specific injections of hormone 

solutions received by females in the hormone-treated group. For half of the females in the 

saline-treated group, the Ringer’s solution also included tragacanth in the first injection; for 

the other half it did not.

2.5. Experiment 1

In the first experiment, we investigated whether hormone injections were necessary to 

induce phonotaxis in females tested outside the breeding season. Subjects (N = 120 total) in 

the untreated (N = 30), saline-treated (N = 60), and hormone-treated (N = 30) groups were 

given a choice between two identical 32-pulse calls with equal call rates of 8 calls/min. The 

dependent variable was whether or not the subject met our response criterion in response to 

either stimulus. The untreated and saline-treated groups were considered negative controls 

for the hormone-treated group. We used pairwise Fisher’s Exact Tests to compare the 

numbers of subjects meeting our response criterion in the three groups after correcting for 

multiple comparisons (α = 0.017).

2.6. Experiment 2

In the second experiment, we conducted four series of two-alternative choice tests (Table 1) 

to evaluate the hypothesis that females in the breeding and hormone-treated groups exhibit 

similar patterns of preferences for calls differing in call rate (calls/min) and call duration 

(pulses/call). The product of these two features of calls (call rate × call duration) is termed 

call effort (pulses/min) and describes the number of pulses produced over time. Females of 

H. chrysoscelis prefer higher call rates, longer calls, and greater call effort [53]. All of the 

values of call rate, call duration, and call effort used in the stimulus alternatives of this 

experiment fell in the range of natural variation for this species (corrected to 20°C) [53].

Test series 1 and 2 examined preferences for call rate (Table 1). In these tests, we gave 

females a choice between all pairwise tests of call rates of 5.3, 8.0, and 10.7 calls/min. In 

test series 1, the duration of calls in both alternatives was fixed at 32 pulses/call, which is 

near the population mean (± standard deviation, SD) of 30 ± 4 pulses/call reported in Ward 

et al. [53]. Thus, in test series 1, call effort varied directly with call rate (Table 1). In test 

series 2, we fixed call effort at 256 pulses/min by adjusting call duration accordingly. 

Consequently, there was a negative relationship between call rate and call duration in this 

test series (Table 1). Test series 3 and 4 examined preferences for call duration (Table 1). In 

these tests, we gave females choices between calls having 24, 28, 32, 36, or 40 pulses. In 

four tests, we paired an approximately average-length call (32 pulses) against alternatives 

with relative pulse numbers that were -2SD (24 pulses), -1SD (28 pulses), +1SD (36 pulses), 

or +2SD (40 pulses) relative to the 32-pulse call; a fifth test paired the -1SD and +1SD 
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alternatives against each other; and a sixth test paired the -2SD and +2SD alternatives 

against each other. In test series 3, call rate was fixed at 8 calls/min; therefore, call effort 

varied directly with call duration. In test series 4, call effort was fixed at 256 pulses/min by 

adjusting call rate accordingly, thus creating a negative relationship between call duration 

and call rate (Table 1). In all choice tests, the presentation order (i.e., which alternative 

began the sequences of stimulus broadcasts) was counter-balanced across subjects.

Each individual female was used as a subject in one to six two-alternative choice tests, and 

each test had a sample size between 28 and 30 subjects. Independent groups of subjects were 

compared in the breeding and hormone-treated groups. As is customary in analyses of two-

alternative choice tests with frogs, we used two-tailed binomial tests to evaluate the null 

hypothesis that equal proportions (0.50) of females chose each alternative (α = 0.05). We 

also used Generalized Estimating Equations (GEE) [60] to directly compare the proportions 

of females in the breeding and hormone-treated groups that chose alternatives with faster 

call rates or longer calls across all choice tests in a particular test series. These analysis 

included “condition” (i.e., breeding versus hormone-treated) as a fixed main effect. In 

addition, we included “alternatives” (i.e., which two stimulus alternatives were presented), 

and “order” (i.e., which alternative began the test) as fixed main effects, though these 

variables were not of primary interest. Individual subjects were never tested more than once 

at a given combination of condition, alternative, and order. We selected the most appropriate 

correlation structure for each model using the Quasi Likelihood Under Independence Model 

Criterion (QIC) [60, 61]. In preliminary analyses, we included all main effects and 

interaction terms in the models. We removed non-significant interaction terms prior to final 

analyses. Fisher’s exact tests were used to compare directly the numbers of breeding and 

hormone-treated females that chose each of the two alternatives in each choice test. We used 

pairwise Least Significant Difference (LSD) tests based on marginal means to compare 

levels of significant factors with more than two levels. A sequential Bonferroni correction 

was used to control for multiple comparisons [62].

3. Results

3.1. Experiment 1

Hormone injections were necessary to induce phonotaxis. One of 30 subjects (3.3%) in the 

untreated group, four of 30 subjects (13.3%) in the saline-treated group that also received 

tragacanth, and five of 30 subjects (16.7%) in the saline-treated group that excluded 

tragacanth, exhibited positive phonotaxis in response to hearing calls. The numbers of 

subjects responding in these three control groups did not differ significantly (two-tailed 

Fisher’s exact test: Ps > 0.200). In contrast, 22 of 30 subjects (73.3%) in the hormone-

treated group met our response criterion after exhibiting positive phonotaxis, and this 

response rate was significantly higher than that of both the untreated group (two-tailed 

Fisher’s exact test: P < 0.001) and the two saline-treated groups (two-tailed Fisher’s exact 

test: Ps < 0.009).
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3.2. Experiment 2

Overall, breeding and hormone-treated females exhibited similar patterns of selectivity for 

calls differing in call rate or call duration (Fig. 1; Table 2), although response latencies were 

slower in hormone-treated females (see Supplementary Material). Across the six tests of 

differences in call rate, breeding females exhibited significant preferences for higher call 

rates in all six tests, and hormone-treated females did so in four of six tests (Figs. 1A & 1B; 

two-tailed binomial tests: Ps < 0.05). In test series 1, when call effort was allowed to vary, 

97% to 100% of breeding females, and 82% to 100% of hormone-treated females, chose the 

faster call rate (Fig. 1A). There was no overall statistical difference between the proportions 

of breeding and hormone-treated females choosing the alternative with a faster call rate 

when call effort was allowed to vary (P = 0.155; Table 2, test series 1). There were also no 

differences between these two groups in direct comparisons made separately for each choice 

test (two-tailed Fisher’s exact tests: 0.097 < Ps ≤ 1.0). Compared with the variable call effort 

tests in test series 1, fewer females – 77% to 90% of breeding females and 62% to 76% of 

hormone-treated females – chose the faster call rate in test series 2, in which call effort was 

held constant (Fig. 1B). Across all tests in series 2 combined, significantly fewer hormone-

treated females chose the alternative with a faster call rate compared with breeding females 

(P = 0.039; Table 2, test series 2). However, direct comparisons between the breeding and 

hormone-treated groups in each test failed to reveal significant differences (two-tailed 

Fisher’s exact tests: 0.057 < Ps < 1.0).

Across tests comparing call duration, female preferences depended on whether call effort 

was allowed to vary or held constant (cf Figs. 1C & 1D). In test series 3, in which call effort 

was variable, significantly more than 50% of females – between 70% and 97% of breeding 

females and 69% and 100% of hormone-treated females – chose longer calls (Fig. 1C; two-

tailed binomial tests: Ps < 0.05). There was no overall difference in the proportions of 

breeding and hormone-treated subjects choosing the longer call alternative (P = 0.453; Table 

2, test series 3). When call effort was held constant in test series 4, however, only 17% to 

37% of breeding females, and 24% to 47% of hormone treated females, chose the longer call 

(Fig. 1D). In fact, significantly fewer than half of females chose the longer call in five of six 

tests with breeding females and three of six tests with hormone-treated females (two-tailed 

binomial tests: Ps < 0.05). The remaining tests of breeding and hormone-treated females 

revealed no significant preferences (two-tailed binomial tests: 0.200 < Ps < 0.856). Overall, 

hormone-treated females were somewhat less likely to choose longer calls (P = 0.049; Table 

2, test series 4), but direct comparisons of the numbers of breeding and hormone-treated 

females choosing each alternative differed significantly in only one test (two-tailed Fisher’s 

exact test: P = 0.025) out of six tests (two-tailed Fisher’s exact tests: 0.360 < Ps ≤ 1.0). 

Recall that when call effort was held constant (test series 4), shorter calls were delivered at 

relatively faster rates than longer calls. Hence, the preferences of both breeding and 

hormone-treated females shifted from preferring longer over shorter calls when call rates 

were equal (test series 3; Fig. 1C) to preferring shorter calls delivered at relatively faster 

rates when call efforts were equal (test series 4; Fig. 1D). This shift in preference is seen 

most clearly by comparing the proportions of subjects that chose the longer call in Figure 1C 

(which are uniformly above 0.50) to those in Figure 1D (which are uniformly below 0.50).
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The choices that females made were not dependent upon which alternative began the 

sequence of alternating calls (Table 2). There was a significant overall effect of alternative 

only in test series 3 (Table 2). Subjects in test series 3 were more likely to choose the longer 

call in tests of 28 versus 36 pulses than in tests of 24 versus 32 pulses (LSD test: P = 0.001), 

32 versus 36 pulses (LSD test: P < 0.001), and 32 versus 40 pulses (LSD test: P < 0.001) 

(Fig. 1C).

4. Discussion

Our results are broadly consistent with the hypothesis that the combination of progesterone 

and prostaglandin F2α induces proceptive behavior in females of Cope’s gray treefrog that 

is species-typical in its patterns of selectivity for male sexual displays. Breeding and 

hormone-treated females did not differ in their selectivity for call rate or call duration when 

call effort varied, and the difference in selectivity for call duration when call effort was 

constant was just significant (P = 0.049; Table 2). There was considerable overlap in the 

95% exact binomial confidence intervals between breeding and hormone-treated groups 

(Fig. 1), and direct comparisons of outcomes with breeding versus hormone-treated females 

were non-significant in 15 of 16 comparisons. We interpret this overall pattern of results as 

demonstrating similar selectivity between breeding and hormone-treated females. This 

finding is important in light of earlier work on the roles of hormones in the mate choice 

behaviors of female frogs [6, 31, 46, 47]. Several previous studies have shown that hormone 

administration can induce sexual proceptivity in female frogs [13, 32, 33, 42-44, 50, 63, 64]. 

Only three previous studies of only two species (H. versicolor and Physalaemus pustulosus) 

have shown that hormone administration can induce species-typical patterns of sexual 

selectivity in the context of intraspecific mate choice [13, 32, 33]. Our findings thus extend a 

small body of research by empirically demonstrating that behavioral selectivity for male 

sexual displays is similar in breeding and hormone-treated females. In so doing, these results 

confirm that hormonal mechanisms that influence proceptive sexual behaviors can also 

shape selective sexual behaviors in a species-typical fashion.

Cope’s gray treefrog is the diploid member of a cryptic diploid-tetraploid species complex 

with a remarkable evolutionary history among vertebrates [65, 66]. The tetraploid, H. 

versicolor, appears to have arisen no fewer than three times independently through pairwise 

hybridization events between H. chrysoscelis and two other, now-extinct, diploid lineages, 

making it an allotetraploid. The separate lineages of the tetraploid form a single, 

interbreeding polyploid species [67]. Previous behavioral studies of the two species confirm 

that, when call effort is allowed to vary, female prefer faster call rates and longer calls, and 

these preferences are conserved within the species complex [21, 51-53]. The extent to which 

the hormonal mechanisms underlying this selectivity may also be conserved is an open 

question. In the present study, and in earlier work with the tetraploid [33], both breeding 

females and non-breeding females injected with progesterone and prostaglandin F2α 

exhibited directional preferences for higher call rates and longer call durations. Our results 

extend these earlier findings with the tetraploid to a larger number of choice tests pairing a 

broader range of trait values.
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Together, our study and that of Gordon and Gerhardt [33] reveal interesting findings in light 

of potential differences associated with polyploid speciation. Based on pilot work to 

determine effective hormone dosages (data not shown), both studies found that injections of 

the same progesterone quantities worked well for both species. This similarity was 

somewhat surprising given that difference in ploidy can directly impact endocrine 

mechanisms [69, 70]. The present study was not intended to investigate these potential 

species differences. The observation that similar hormone dosages induced broadly similar 

patterns of proceptive and selective sexual behaviors despite ploidy differences suggests 

further work on the gray treefrog species complex could help elucidate how hormonal 

mechanisms evolve following polyploid speciation.

Our results are also broadly consistent with earlier work on a much more distantly related 

anuran species. Females of the túngara frog (P. pustulosus, Leptodactylidae) injected with 

human chorionic gonadotropin [32] or estradiol [13] exhibit patterns of mate choice 

preferences broadly similar to those of females tested shortly after removal from amplexus. 

Similar selectivity in breeding and hormone-treated females in both túngara frogs and 

Cope’s gray treefrogs suggests that, in anurans, the response properties of auditory and 

audio-motor circuits dedicated to processing and responding to conspecific vocalizations are 

similar between induced and naturally breeding females. Our results indicate that these 

circuits may be modulated by progesterone and prostaglandin. Comparisons of midbrain 

audiograms based on multiunit recordings from the auditory midbrain (torus semicircularis, 

TS) have shown that neural response thresholds increase outside of the natural breeding 

period [74]. While these changes were examined over seasonal timeframes, it is also 

possible that more abrupt changes in reproductive behavior, similar to those observed in our 

study, are the result of these hormones acting on the auditory system. Gonadal steroid 

hormones are known to influence auditory processing in birds [75, 76], mammals [77, 78], 

fish [79, 80], and frogs [6]. These effects can arise because of the direct action of hormones 

on steroid receptors located in the vertebrate inner ear [81]. In anurans, a reduction in the 

response thresholds of auditory midbrain neurons accompanies a gravid state in female H. 

cinerea [82], and behavioral receptivity is higher in female P. pustulosus with naturally 

elevated estradiol levels [32] and a more advanced gravid condition [24].

Although our results demonstrate that progesterone and prostaglandin F2α are sufficient to 

induce sex- and species-typical phonotaxis in gonadally intact females, they do not 

demonstrate that they are necessary, nor do they demonstrate an absence of a role for other 

hormones or interactions among them. As in many studies of wild amphibian behavior, 

gonadectomies were not performed in the present study, and thus females in the hormone-

treated condition likely had low endogenous levels of multiple reproductive hormones, 

which may interact with exogenous hormones. For instance, treatment with progesterone 

and prostaglandin F2α elevated endogenous levels of estradiol in intact females of H. 

versicolor [33]. Likewise, estradiol implants can induce the expression of progesterone 

receptors in several behaviorally relevant nuclei in the brains of female X. laevis [83]. 

Similarly, P. pustulosus females injected with human chorionic gonadotropin [32], or 

estradiol alone [13] exhibit patterns of mate choice preferences broadly similar to breeding 

females tested shortly after removal from amplexus. Because we did not gonadectomize our 
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frogs, it is possible that our progesterone injections led to increased secretion of estradiol or 

other gonadal hormones and that these changes facilitated proceptivity and selective 

phonotaxis. Future studies using gonadectomies and hormone blockade (e.g., fadrazole) [13] 

will allow for inferences to be drawn regarding the specific set of hormones that are 

necessary and sufficient for the expression of complex mate choice behavior. Such 

experimental manipulations will make it possible to further examine how a small set of 

endocrine products may coordinate and integrate extensive and relatively abrupt changes in 

sexual behavior. Lesion experiments in H. versicolor have shown that the TS plays a critical 

role in enabling the audio-motor integration underlying selective phonotaxis [84]. Further, 

the laminar sub-nucleus of the TS in X. laevis is known to contain both estrogen and 

progesterone receptors [83], and in females of P. pustulosus, this area exhibits a rapid 

genomic response following the reception of conspecific advertisement signals, which is 

then modulated by elevated concentrations of circulating gonadal steroid hormones [85]. 

Selectively blocking specific receptors across nuclei in the TS, combined with behavioral or 

neurophysiological testing, could inform our understanding of pleiotropic effects and their 

timelines of action.

Our data indicate that using hormone induction methods could permit researchers to 

overcome a major experimental limitation—the ability to evaluate sexual behavior and 

auditory processing in captive, non-breeding female frogs. For many anuran species, 

collecting large numbers of amplectant females during what are typically brief breeding 

seasons can severely limit data collection. Having the ability to pharmacologically induce, at 

any time of year, the acoustically mediated sexual behaviors observed in wild frogs using a 

captive population would greatly expand the data collection time window. Further, the 

option of using captive animals could permit researchers to explore questions previously 

challenging in this field; for example, performing repeated measures tests across the lifetime 

of an individual is uncommon in amphibian behavioral studies [but see 86] and almost 

absent in studies of anuran communication [but see 87], yet this would be feasible with an 

inducible captive population. Among other things, such work would permit researchers to 

evaluate which phenotypic traits form constellations by partitioning within- and among-

individual variance and co-variance in endocrine levels and endocrine-mediated behavioral 

traits.

5. Conclusion

Acoustic communication is vital to the social and sexual lives of diverse vertebrate taxa. 

Anuran amphibians provide excellent systems for examining the hormonal mechanisms that 

facilitate communication between signalers and receivers. Pursuing this research using 

anuran amphibians provides some advantages, most importantly that the phonotaxis 

bioassay provides a sensitive and robust measure of behavioral mate choice, and that 

hormone manipulation like the kind used in the present study reliably induces species-

typical behavior. Understanding the endocrine bases for proceptive behaviors and selectivity 

in receivers provides an opportunity to reveal the potential role of hormonal pleiotropy as a 

mechanism for coordinated suites of sexual behavior and thus the underlying structural 

nature of physiological traits that are under sexual selection. We suggest that future work 

combine pharmacological manipulations along with behavioral and neurophysiological 
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testing to further elucidate the potential for the pleiotropic effects of a small set of hormones 

to coordinate the expression of this complex set of sexual behaviors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Female treefrogs prefer male sexual displays that are longer and faster.

• Hormone injections elicited proceptive behavior in non-breeding female 

treefrogs.

• Hormone-treated and breeding treefrogs exhibited similar patterns of selectivity.

• Hormone administration induces species-typical patterns of sexual selectivity.
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Fig. 1. 
Responses of breeding and hormone-treated females in two-alternative choice tests. Points 

depict the proportions (±95% exact binomial confidence intervals), expressed as 

percentages, of breeding females (solid circles) and hormone-treated females (open circles) 

that chose alternatives with faster call rates or longer call durations. In (A) and (B), call rate 

was manipulated and call effort was either allowed to vary (A) or was held constant (B). In 

(C) and (D) call duration was varied and call effort was either allowed to vary (C) or was 

held constant (D). Values of call properties used in each choice test are depicted along the x-

axis (see also Table 1). The horizontal dashed line depicts the null expectation of 0.50; in 

tests for which the error bars do not overlap the horizontal dashed line, there was a 

signficant preference in a two-tailed binomial test (P < 0.05). The number of subjects in 

each two-alternative choice test ranged between N = 28 and N = 30.
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Table 1

Values of call rate, call duration, and call effort in the alternative stimuli used in four test series designed to 

compare female preferences in breeding and hormone-treated females.

Test series Acoustic manipulation Call rate (calls/min) Call duration (pulses/call) Call effort (pulses/min)

1 Call rate (call effort variable) 5.3 32 170

8.0 32 256

10.7 32 342

2 Call rate (call effort constant) 5.3 48 256

8.0 32 256

10.7 24 256

3 Call duration (call effort variable) 8.0 24 192

8.0 28 224

8.0 32 256

8.0 36 288

8.0 40 320

4 Call duration (call effort constant) 10.7 24 256

9.1 28 256

8.0 32 256

7.1 36 256

6.4 40 256
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