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Abstract

The recently developed R package INLA (Integrated Nested Laplace Approximation) is becoming 

a more widely used package for Bayesian inference. The INLA software has been promoted as a 

fast alternative to MCMC for disease mapping applications. Here, we compare the INLA package 

to the MCMC approach by way of the BRugs package in R, which calls OpenBUGS. We focus on 

the Poisson data model commonly used for disease mapping. Ultimately, INLA is a 

computationally efficient way of implementing Bayesian methods and returns nearly identical 

estimates for fixed parameters in comparison to OpenBUGS, but falls short in recovering the true 

estimates for the random effects, their precisions, and model goodness of fit measures under the 

default settings. We assumed default settings for ground truth parameters, and through altering 

these default settings in our simulation study, we were able to recover estimates comparable to 

those produced in OpenBUGS under the same assumptions.
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1. Introduction

In Bayesian modeling there are many challenges in conventional use of posterior sampling 

via MCMC for inference (1). One challenge is the need to evaluate convergence of posterior 

samples, which often requires extensive simulation and can be very time consuming. 

Software for implementing MCMC is now widely used and the packages WinBUGS, 
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OpenBUGS, as well as certain SAS procedures and selected R packages such as 

MCMCpack (2), can provide access to these methods.

An Integrated Nested Laplace Approximation (3–7) has been implemented as an R package 

(INLA) targeted at performing Bayesian analyses without having to use posterior sampling 

methods. Unlike MCMC algorithms, which rely on Monte Carlo integration, the INLA 

package performs Bayesian analyses via numerical integration, and so does not require 

extensive iterative computation. In most cases, Bayesian estimation using the INLA 

methodology takes much less time as compared to estimation using MCMC. However, there 

have been few, if any, attempts at comparison of these packages’ performance capabilities 

with respect to spatial models in a disease mapping context. In this study, we compare how 

INLA performs in different modeling situations to OpenBUGS (8) via the BRugs package in 

R (9).

Here, we are particularly interested in comparing these packages for conventional Poisson 

data models when spatial structures are present in the covariates as well as through 

uncorrelated and correlated spatial random effects. We have designed models that express 

these attributes in different ways and apply them to mimic their use for disease mapping. 

These models are all commonly implemented for Bayesian analysis. We are also interested 

in exploring the different options available in INLA to optimize estimation as well as 

goodness of fit for these particular models to determine if INLA can perform in an 

equivalent fashion to OpenBUGS. For the analyses, we used the following versions of 

software and packages: R version 3.0.3, OpenBUGS version 3.2.3 rev 1012 (using default 

sampler settings), INLA version 0.0.1403203700, and BRugs version 0.8.3. We are aware 

that there are now more recent versions of these programs, but, as of August 2014, we were 

able to reproduce these results in the latest versions as well.

This paper is developed as follows. First, we discuss the development of our simulated 

dataset and the different models used for comparison. Next, we describe the methods used 

for comparing the performance of R-INLA and OpenBUGS. Following that, we display 

results, and finally, we discuss the benefits of one package versus the other under different 

scenarios.

2. Methods

2.1. Simulated Data and Models

In this paper, focus is on the use of INLA versus MCMC in a disease mapping context. 

Performance of the two methods is compared for the commonly used convolution model 

with spatially-varying and non-spatially-varying predictor variables. To evaluate the 

performance of these alternative approaches, we simulate data to establish realistic ground 

truth for disease risk variation. A common model for small area counts of disease is the 

Poisson data model. Specifically, define a count outcome as y in the ith small area. We 

assume a map of m small areas. In addition, we assume an expected count (ei) is available in 

each small area. Thus, our outcome has the distribution
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In our simulations, we fix the expected rate for the area, and hence focus on the estimation 

of relative risk. To complete the parameterization, we assume a relative risk (θi) which is 

parameterized with a range of different risk models.

To satisfy this we chose the county map of the state of Georgia USA, which has 159 areas 

(counties). Hence, i = (1,…159) for this county set. We fix ei at one for all models; while 

this is a simplifying assumption, it allows us to reduce the amount of variability present in 

the simulations. Furthermore, the assumption represents data associated with a fairly sparse 

disease presence.

We examined six basic models for risk (M1 up to M6) which have different combinations of 

covariates and random effects as might be found in common applications. First, we 

generated four spatially varying predictors with different spatial patterns. The four chosen 

were median age (x1 ), median education (x2), median income (x3), and a binary predictor 

representing presence/absence of a major medical center in a county ( x4). These variables 

are county-level measures for the 159 counties in the state of Georgia. We chose these 

variables because it is important to represent a range of different spatial structures and types 

of predictors. Furthermore, observed predictors/covariates could have spatial correlation and 

so we included this in the definition of two of the predictors (median age and major medical 

center). Table 1 displays the predictors generated via simulation and their parameterization 

where the Gaussian parameters are the mean and variance. Also, note that the spatial 

predictors have a covariance structure applied, and this is explained in detail later.

These distributions lead to measures that reflect typical values for these variables. For 

example, the median age for a county in the U.S. is roughly 40, and the values do not vary 

much from one county to the next. Similar explanations can be applied to both the median 

education and median income variables. For the major medical center variable, this 

indicated marginal distribution leads to roughly half of the counties answering ‘yes’ to 

having a major medical center. These variables have been selected as placeholders, and 

should be thought of as representing any of the typical variables one might utilize in 

building disease mapping models.

The spatially-structured covariates were generated using the RandomFields package in R 

(10). The simulation uses the county centroid as a location to create a Gaussian Random 

Field (GRF), which is defined via a covariance structure. We assume a Gaussian covariance 

structure, and this assumption leads to a stationary and isotropic process (11). We specify 

this structure by using the RMgauss() command. We assume a power exponential 

covariance model of the form:
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where r is the Euclidean distance between two centroids and the covariance parameter (α) is 

set as α = 1. Following the selection of the covariance structure, we must also set the mean 

of the GRF to create the same marginal distributions as described in Table 1 using the 

RMtrend() command. Finally, to simulate the GRF, we use the RFsimulate() command to 

create a GRF and assign a value to the spatial covariate. There is only a slight extension that 

must be applied when the spatial covariate is binary such as x4. To create this variable, we 

use a GRF to simulate π mentioned in Table 1, rather than the covariate itself. From there, 

we simulate from a Bernoulli distribution to give the binary indicators for each county using 

expit (π) for the probabilities. The heat maps for these random fields can be seen in 

Supplemental Figure 1 Appendix A.2; while there is truly only one value simulated for each 

county, we interpolated these maps to better illustrate the distribution.

The distribution of all covariates, x1,…, x4, on the Georgia county base map is illustrated in 

Figure 1. Notice that the median age and major medical center reflect the heat maps shown 

in Supplemental Figure 1 Appendix A.2 and appear to have spatially dependent 

distributions. Though we have defined the mean and covariance structure of these GRF’s, 

the distribution can still take on many forms, and these variables reflect only one realization 

of the distribution.

Furthermore, picking these two variables (x1 and x4) to have the spatial structure also leads 

to at least one variable with spatial structure included in all of the first 5 models that we 

simulated which are shown in Table 2. Note that vi follows an intrinsic CAR model with 

precision τv. M6 is simply a convolution model that allows us to explore how the spatial 

covariates may be affecting the spatial random effects, u and v. For these simulations, we fix 

the covariates as one realization from the distributions described in Table 1 and generate the 

outcomes using a fixed set of parameters ( ei = 1, α0 = 0.1, α1 = 0.1, α2 = −0.05, α3 = −0.05, 

α4 = 0.5, τu = 1 and τv = 1). While the magnitude of the α’s are quite small, this guarantees 

that the outcome variable has sparse disease patterning. We also use only one realization of 

the uncorrelated and correlated random effects described in Table 2. Then, log (θi) is 

calculated based on the fixed parameters and realizations. Finally, we generate the outcome 

as a Poisson variate with mean θi since ei is fixed at one. The simulated datasets consist of 

sets of counts:  where j denotes the jth simulated dataset.

For the uncorrelated and correlated spatial effects, u and v, mentioned in Table 2, we fix 

both precisions, τu and τv , to be one during the simulation process. Their equality 

guarantees that one of the spatial effects will not dominate the model and lead to 

identifiability issues (12). The uncorrelated spatial effect is distributed N (0,1); this is 

specified as such for simplicity as well as easy identification in the model fitting process. 

The correlated spatial random effect in these models is generated using the R package 

BRugs (9) such that they have an Improper conditional autoregressive (ICAR) (13) structure 

as follows:
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where i ≠ l, ni is the number of neighbors for county i, and i ~ l indicates that the two 

counties i and l are neighbors (13). This set of neighbors simply includes the immediate 

neighborhood. Including these types of effects in spatial disease mapping models is very 

common as there is typically an uncorrelated random noise that varies from county to county 

as well as a correlated random structure that induces correlation based on neighborhoods.

Additional Simulation Variants—In the analysis described above, we mean centered the 

predictors to help in model goodness of fit. Another standardization technique for these 

types of analysis involves mean centering then dividing by the standard deviation per 

predictor. We created such a dataset using the M5 model (full predictor set with convolution 

random effects) to assess the effect of this standardization.

In addition, we also examined the effect of varying the precision of random effects to assess 

performance of model fit. Now, the true correlated spatial effect has a precision of 0.5. The 

uncorrelated spatial effect still has a precision of one, but we simulate a new realization of 

the variable. Because the precisions are no longer equal, this could lead to the masking, or 

domination effect eluded to earlier (12). Following the simulations of the new spatial effects, 

we created new Poisson outcomes with the same six models, aside from the spatial random 

effects, indicated in Table 2. These datasets are considered the validation datasets.

2.2. Fitted Models

The fitted models F1–F6 are described in Table 3. Note that vi is an intrinsic CAR model 

with precision τv These models are based on the default prior distributions for INLA and 

vary by the number of covariates considered as well as the spatial random effects included to 

give a wide range of models as reflected in the simulation data section above. As part of 

examining the ability of INLA and OpenBUGS to recover true risk, we considered a variety 

of prior specifications. We changed the Gamma prior distributions on the precisions, τu and 

τv, to the following: Gam(2,1), Gam(1,1), and Gam(1,0.5). Of these options, Gam(1,0.5) 

offers the best alternative to the default prior distribution, Gam(1,5e– 05), as it is the most 

non-informative of the prior distributions explored. Since Gam (1,5e – 05) is the default 

non-informative prior distribution for precisions in INLA, we assumed this as default for our 

comparable OpenBUGS models. We would also like to note that when the outcome is 

Gaussian distributed, the default settings for INLA is a reasonable choice, and this is likely 

why it is set as such.

To attempt recovering the ground truth indicated in the simulation data section, we build 

these models in both INLA and WinBUGS to assess the two packages’ recovery abilities. 

These abilities are assessed as described in the comparison techniques section below. Also, 

note that we mean center the fitted continuous predictors to aid in model fit.
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In this paper, we do not consider model misspecification; we simply use the appropriate 

fitted model applied to the corresponding simulated data. From here on, we will refer to 

these results with respect to the fitted model and simulated data that are being used. For 

example, M1 simulated data with F1 fitted model will be referred to as M1F1.

Fitting Models to Simulation Variants—We also fit the models to these variants using 

the Gam(1,0.5) prior distribution in a similar fashion to that described previously in this 

section to determine how this dataset characteristic affect the model fits. These models will 

be referred to as, for example, M5F5S and M5F5V respectfully. S denotes standardization 

and V denotes spatial precision variant.

2.3. Comparison Techniques

For this study, we build equivalent models in INLA and OpenBUGS based on the prior 

distributions indicated in Table 2 and fit them to the 200 datasets all simulated in the same 

manner. For the OpenBUGS model, this is accomplished using the BRugs package in R.

Comparisons of the models on the two different packages is accomplished by calculating the 

mean squared error (MSE) of the parameter estimates, fitted y values, and the relative risk 

(θ) as well as mean squared predictive error (MSPE), the number of effective parameters 

(pD), mean deviance  and deviance information criterion (DIC) for each model.(14)

We compute MSE for the parameter estimates, outcome measures, and relative risk as well 

as MSPE as follows:

where αj, , and  are the true fixed and simulated values respectively such that the * 

indicates simulated values. Furthermore, J is the number of covariates considered in each 

specific model, and n is the number of counties. MSE(α) uses the posterior values of the 

parameter estimates since sampling is not available in INLA. These measurements are all 

Carroll et al. Page 6

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2016 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



averaged over the 200 simulated datasets. To access ŷ in OpenBUGS, we must collect the 

posterior values of µi from the samples; we use this same value for θi since they are 

equivalent because the expected rate, ei, is set at one. To access yi, pred we simply set up 

code such that it is distributed Poisson with mean µi. Note that ypred is initialized rather than 

data-read to generate predictive values. An example of our OpenBUGS model code is 

located in the Appendix section A.1. To calculate the MSPE in INLA, we must create copies 

of all of the model components, append these copies to the original vectors, add in an 

additional “iid” random effect, and create an empty vector, rather than a copy, to append to 

the outcome variable. Now, the vector that typically only contains ŷi will have length 2n 

where the second half is the predicted y values to use as yi, pred in the MSPE calculation. An 

example using M3F3 can be found in Appendix section A.1.

Computations for the D(θ), pD, and DIC are built into and easily attainable in both 

packages. They are calculated as follows:

respectively. The first two formulas show the definitions of deviance in OpenBUGS and 

INLA respectively. To calculate  from D(θ) produced in OpenBUGS, we simply 

average this value over a sample from the converged Markov chain (15). Using D(θ) from 

INLA to calculate  requires a two-step process that initially computes the conditional 

mean using univariate numerical integration for each i = (1,…159) (5). Next, θ is integrated 

out of the expression with respect to p(θ |y). Furthermore, the deviance for INLA is 

calculated at the posterior mean (or mode in the case of hyperparmeters) of the latent field 

rather than the posterior mean of all parameters as seen in OpenBUGS. pDOpenBUGS is the 

classical definition of pD, and D(θ) is calculated as the deviance computed at the posterior 

mean estimates. For pDINLA, n is the number of observations, Q(θ) is the prior precision 

matrix, and Q*(θ) is posterior covariance matrix of the Gaussian approximation (5). We 

average these estimates over the 200 simulated datasets to gain an overall assessment of 

performance

For all of these measures of goodness of fit, lower values indicate a superior model. 

However, valid comparisons can only be made within models as the likelihoods change 

when the outcome being modeled changes. Furthermore, a lower value in one software 
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package does not necessarily mean that it fits better than the other package as the DIC 

calculations do differ from one to the other. In this situation, MSE and MSPE are the best 

outlets for comparing across platforms.

3. Results

In order to have comparable results, we must run the OpenBUGS models to convergence. 

While we are not able to confirm convergence for all 200 datasets easily, we do check a 

representative percentage of the datasets by way of the Brooks-Gelman-Rubin (BGR) 

diagnostic plots available in OpenBUGS. All plots indicate that we achieve convergence for 

these 6 models, and we always extend the model runs for 2500 iterations per chain beyond 

the convergence point in these test datasets.

Table 4 shows the parameter estimates and their significances associated with each model as 

well as the truth. Compared to the truth, most models do well with recovery for the fixed 

effects, with default precision prior distribution. The estimates associated with the spatial 

variables, x1 and x4, are well estimated much of the time while this is not true for the non-

spatial ones. This could be due to the fact that the true values of these parameters have larger 

magnitudes. These issues are common across both OpenBUGS and R-INLA. As far as τu 

and τv are concerned, the estimates show that INLA is far overestimating the true values of 

the precision parameters; OpenBUGS is also overestimating τv but not nearly as much as 

INLA. The INLA Laplace models (INLA(FL)) indicate that we specified for INLA to use 

the full Laplace strategy rather than the default simplified Laplace strategy (INLA(SL)) (16). 

With this specification, we see that there are not many differences with respect to the fixed 

effect estimates. It is interesting that the standard deviations associated with INLA(SL) and 

INLA(FL) are the same in nearly all situations when rounded to the hundredth decimal 

place. We also note that the estimates for α1 change by a fair margin when comparing M1F1 

to M3F3 or M4F4 to M5F5. Similarly, the estimates for α4 change when comparing M4F4 

to M5F5. As both α1 and α4 are spatial covariates, this may indicate influence from the 

spatial random effect estimates.

Supplemental Table 1 in Appendix section A.2 shows the goodness of fit measures 

associated with each model and software package. Some of these estimates appear to be 

exactly the same after rounding, but in actuality they are different numbers. Here, we see 

some differences among the models both within and across platforms. For the models 

without random effects (M1F1 and M4F4), the pD values are very close, and INLA (FL) 

produces significantly lower values than INLA(SL). This relationship carries over for the 

DIC in most cases as that measure is directly related to the pD. The MSPE and MSE(M) 

estimates produced by both packages are nearly identical, but when the Laplace strategy is 

applied in INLA, it produces higher estimates for the spatial models (M2F2, M3F3, M5F5, 

and M6F6). This table also includes results for the models using the alternative precision 

prior distributions. When we adjust the precision prior distributions for OpenBUGS, we 

begin to see significant differences in the pD and thus the DIC produced for the convolution 

models (M3F3, M5F5, and M6F6). Note that when running OpenBUGS for the altered prior 

distributions, there are a few (no more than 3 per model) datasets that lead to negative pD 

values in M3F3, M5F5, and M6F6. We remove these results from the mean calculations.
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Table 5 illustrates how the precision parameters change after alterations to the default 

settings. In addition to changing the default prior distributions, the inla.hyperpar() command 

is also explored to try and attain better estimates of the hyperparameters involved with 

estimating the random components of the models. While this function only affects the 

hyperparameter estimates, all others remain the same. It is obvious that these estimates are 

different from the original estimates located in the first row, but they still do not reflect the 

true values. In fact, they are further away from the truth by making the effects more precise 

(17).

The next set of precision estimates relate to the models where we specified Gam(1,0.5) as 

the prior distribution. Results for the Gam(2,1)and Gam(1,1) priors are located in 

Supplemental Table 2 Appendix section A.2. Changing these prior distributions greatly 

alters the results with respect to the precision estimates while the fixed and goodness of fit 

estimates for these models remain nearly identical. In fact, the standard deviations of the 

estimates remain very close to the originals. It is obvious that R-INLA improves drastically 

with respect to the precision estimates related to both effects, correlated and uncorrelated. 

While OpenBUGS produces more precise estimates under the default settings, changing the 

prior distributions continues to improve the accuracy of those estimates in this package as 

well. We see now that the estimates produced in INLA reflect those produced in OpenBUGS 

very closely. This is true for all of the alternative prior options explored. Again, the 

Gam(1,1) prior seems to perform the best as it produces estimates that are the closest to the 

truth in all cases and for both packages. Unlike the goodness of fit measures, though, the 

differences seen here are not significant within the alternative prior distributions.

The last alteration we attempt involves scaling the models based on the Scaling IMGRF 

models tutorial on the INLA website, and these results can also be found in Supplemental 

Table 2 Appendix section A.2 (18). We make this alteration using the Gam(1,5e – 05) and 

Gam(1,0.5) prior distributions only. This tutorial suggests implementing the following 

global command: inla. setOption (scale.model.default = TRUE) to scale the global variance 

of the model such that , then the reference variance, , is used to scale the 

hyperprior as follows:  Based on the results below, we can see that this modification 

does not always ensure that the precisions are closer to the truth (19).

Figure 2 shows how the models in OpenBUGS and INLA recover the uncorrelated and 

correlated spatial effects respectively using M5F5. The other model estimate maps can be 

found in Supplemental Figures 2–5 Appendix A.2. The values dislpayed are averaged over 

the 200 datasets; furthermore, the ‘truth’ is only one realization of the random effect, but this 

is what we used to simulate the outcomes. Note that all of these maps have been scaled in 

the same way as the plot displaying the true effect to gain a better comparison and 

understanding of the relationship being displayed, and this is why the INLA plots appear to 

have no variation. OpenBUGS seems to be recovering both effects better than INLA under 

the default settings, but neither set of models are performing as well as we would like with 

respect to the correlated random effect, v. The INLA estimates seem to be much closer to 

zero than they should be, and this is supported by the larger precision estimates shown in 
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Tables 3 and 5 above. Also, the discrepancies among the correlated effects may be reflecting 

the spatial nature of some of the covariates. Furthermore, others have noted correlated 

spatial effects behaving too smoothly in certain cases.

The maps notated as M5F5p display the uncorrelated and correlated effects produced in 

INLA and OpenBUGS when the prior distributions for τu and τv are changed from 

Gam(1,5e – 05), the default, to Gam(1,0.5). This prior alteration results in a much better 

reproduction of the spatial random effects, as reflected in the precision estimates displayed 

in Table 5. The uncorrelated effects are very similar for both INLA and OpenBUGS, and 

they also reflect the truth much better than before with the default prior distributions. As far 

as the correlated effects are concerned, we see that the estimations for these effects are 

almost identical when looking at the results produced in OpenBUGS and INLA, but they 

still do not reflect the truth as well as we may like. As mentioned before, though, these 

effects do reflect the smoothness expected among correlated effects as well as the spatial 

structures present in some of the covariates. These figures also reflect the results produced 

for the other alternative precision prior distributions, as they are alike. Finally, Supplemental 

Figure 6 Appendix A.2 is the sum of the correlated and uncorrelated random effects seen in 

Supplemental Figures 4 and 5. This figure looks much alike Supplemental Figure 4 as the 

magnitude of the uncorrelated effect is larger than that of the correlated one. This may be 

one of the factors inhibiting our ability to appropriately recover the correlated random effect.

Simulation Variants

The results in Supplemental Table 3 Appendix A.2 show the fit of M5F5S when the 

covariates are standardized rather than only mean centered for the simulation process. These 

results show that standardization leads to a well estimated α4, but also some larger standard 

deviations with respect to OpenBUGS for α2 and α3. Note that α1 for INLA(FL) is very 

close to being well estimated. The precision estimates for OpenBUGS continue to be 

slightly closer to the truth though this is not statistically significant.

Supplemental Table 4 Appendix A.2 shows the goodness of fit measures for the 

standardized models, and these results show similar patterns. We cannot truly compare the 

deviance and DIC measures presented here to the previous results since the outcomes are 

different, but we can look at the patterns among the other measures. We continue to see a 

separation with respect to the MSPE while the different MSE estimates are nearly identical. 

Supplemental Figure 7 Appendix A.2 illustrates the maps of the uncorrelated and correlated 

effects produced for the standardized model, M5F5S. These maps look comparable to what 

we saw previously for M5F5, and we still see much likeness when comparing the INLA 

results to the OpenBUGS results.

The results in Supplemental Table 5 Appendix A.2 show the re-fit of the models with a 

Gam(1,0.5) prior on the precisions of the spatial random effects with the validation dataset, 

which offers a different distribution for the correlated random effect, and a different 

realization of the uncorrelated random effect. For the INLA models, we continued to use the 

Laplace strategy for a better fit. Based on these results, we are still seeing changes in the 

estimates for α1 when comparing models M1F1V and M3F3V; this time we actually see this 

estimate fail to be well estimated in M3F3V while it is well estimated in M1F1V. We also 
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see this occur for α1 when comparing M4F4V to M5F5V. For α4 in M4F4V and M5F5V, 

the estimates are different, but they are not well estimated in either model. Also, the 

standard deviations are larger. With respect to the precision estimates, we still see an 

overestimation of the correlated effect, τv , while the uncorrelated effect, τu, is recovered 

fairly well. Even though the truth for τv is smaller in this validation study compared to the 

first simulated dataset, some of the estimates seen in the table are actually higher in this 

situation.

Supplemental Table 6 Appendix A.2 shows the goodness of fit estimates for the models 

using the validation dataset. We see OpenBUGS producing at least slightly lower MSE(M) 

and MSPE values than INLA(FL). For MSE(0), the relationship is alike the models with the 

original data in that OpenBUGS consistently produces slightly lower estimates when spatial 

random effect are considered. The mean deviance is very similar for all models and 

packages. Note that there were also some negative pD values for M5F5V and M6F6V in 

OpenBUGS; these were removed in the same way as before.

Supplemental Figures 8 and 9 Appendix A.2 demonstrate how well the models recover the 

true uncorrelated and correlated spatial random effects when applied to the validation 

dataset. Here we see an analogous situation to the first set of simulated data in that the 

uncorrelated effect is recovered very well while the correlated is not recovered quite as well 

as we would like it to be. We also notice, again, that the correlated effect is smoother than 

the true correlated effect. Furthermore, the INLA(FL) results are very similar to the 

OpenBUGS results just as we noted. One difference is that there is not as much of a change 

in the estimation when it comes to comparing M6F6V with the others that include 

covariates. This may be because the true correlated spatial effect is distributed more 

similarly to the spatial covariates. Following that, Supplemental Figure 10 Appendix A.2 

shows the sum of the correlated and uncorrelated random effects, and as seen before, this 

looks well estimated because the correlated effect is of a much smaller magnitude compared 

to the uncorrelated effect. Because of this, it also looks analogous to Supplemental Figure 8.

4. Discussion

The results above show some substantial differences in the performances of INLA and 

OpenBUGS. For the default settings, we see that many of the fixed effect parameter 

estimates are alike for the two software packages, but the differences become more evident 

when looking at the goodness of fit measures and spatial random effect estimates. 

OpenBUGS seems to outperform INLA when spatial random effects are included in the 

model. This is shown in the MSE(M) and MSPE when spatial random effects are added to 

the models as well as the individual plots of the produced estimated spatial effects which is 

to be expected based on the precision estimates. Furthermore, we note improvements to the 

INLA(SL) models when we specify the full Laplace strategy and even more still after 

altering the default precision prior settings.

INLA does have an advantage over OpenBUGS in computation time. The computing time 

for these 200 simulations is no more than a couple of hours for INLA while it takes 

OpenBUGS several days. Obviously, these times fluctuate depending on the computer 
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specifications, what other processes are actively running on the system in use, and, in the 

case of OpenBUGS, the number of parameters that are being collected. If we did not need to 

recover u, v, ypred or µ, the computation time could be much shorter, but even taking that 

into account, OpenBUGS will never be as fast as INLA. Note that we run all simulations on 

the same server, so these arguments are appropriate. This indicates that, especially for 

simpler models, if computation time is an issue, then INLA may be the better option. 

Additionally, R-INLA is noted for being able to apply non-discrete spatial effects (20).

A shortcoming for INLA involves the ability to use hyperparameters as flexibly as in 

OpenBUGS. For example, we were unable to implement prior distributions for the standard 

deviations in INLA, while this can be done easily in OpenBUGS. Placing prior distributions 

on the standard deviations rather than fixing them or placing them on the precisions can lead 

to better model fits in some situations. Furthermore, there is not an easy way to place 

hyperprior distributions on the precisions of the fixed effects.

There are many options in INLA for improving the models. Initially, we explore specifying 

the use of a full Laplace approximation strategy in INLA, but this does not lead to different 

parameter estimates and takes a longer time to complete for the 200 datasets and 6 models. 

Specifying the full Laplace strategy did, however, lead to different goodness of fit measures 

that were closer to those produced with OpenBUGS. Furthermore, the simplified Laplace 

strategy is not sufficient for computing predictive measures (17). There is one other strategy 

that can be implemented, the Gaussian, and it is the most efficient but least accurate (16). 

Following that, we explore using the inla.hyperpar() option with no avail. This option is 

supposed to improve the hyperparameter estimates, but, as displayed in Table 5, these 

results actually brought the estimates further from the truth. This function is defined as a 

way to retrieve more precise estimates of the hyperparameters (17), and this is how it 

behaves in this simulation study. We also consider changing the default prior distributions 

with respect to the precision parameters for both the INLA(FL) and OpenBUGS models, and 

the results are much improved. Both the uncorrelated and correlated random effect estimates 

are much closer to the truth. There also appears to be less separation between the estimates 

produced in OpenBUGS versus those produced in INLA(FL). Of the options attempted for 

these altered prior distributions, the Gam(1,1) prior preformed the best, but it is also the 

most informative. The Gam(1,0.5) option is a good choice as it is still fairly non-

informative. Furthermore, it still shows substantial improvements over the default settings. 

Finally, implementing the model scaling feature did not aid in the models gaining estimates 

closer to the truth, which is what we are aiming for. It seems as though this feature is mostly 

for assisting in model interpretability and comparability.

When we apply the models to the validation datasets we see very similar patterns to those 

present in the first simulation datasets, but there were also some differences.

Fewer of the covariates were well estimated in the validation dataset. Also, the correlated 

random effect estimates did not vary as much from model to model as in the first datasets, 

but they were still not as close to the truth as we would like for them to be. This could be 

due to the fact that the true correlated spatial effect is slightly closer in its distribution to the 

spatially structured covariates. Furthermore, the uncorrelated effect estimates do not seem to 
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be recovered quite as well. These differences may be due to the masking effects from either 

the spatially structured covariates or the unequal true precision values. We see similarities 

with the patterns present in the goodness of fit measures though these values cannot be 

compared directly because the model ingredients are not the same.

During this study, we uncovered many interesting properties associated with both packages 

for these types of spatial disease mapping models. One relates to having a mixture of 

spatially structured covariates as well as spatial random effects. There appears to be a type 

of masking that occurs when both are present in the model. This is seen in two ways. First, 

by looking at the parameter estimates presented in Table 3; here, we notice that the estimates 

for α1 change from M1F1 to M3F3. A comparable change occurs for α4 when considering 

M4F4 verses M5F5. In the second case, α4 changes from being well estimated to no longer 

being well estimated. Second, the masking effect is seen by comparing the correlated spatial 

effect estimates associated with M6F6 to all other models. Since M6F6 does not have any 

covariates, spatial or otherwise, we can see that the covariates may be playing a role in 

changing the estimates produced. Note that this was not as evident in the validation study, 

especially with respect to the plots of the correlated spatial random effect estimates.

Another interesting property of these models is that, in general, the correlated spatial effect 

tends to be overestimated and well as overly smooth which is evident in the figures 

produced above. We also do not see the non-spatial covariates being well estimated in any 

of the models. This could be due to the fact that the magnitudes of the true estimates are 

smaller than the others. Furthermore, when considering the validation dataset, we see that 

the models have a more difficult time recovering the true effects, and this may be due to the 

occurrence of a masking effect from the unequal true precisions (12).

5. Conclusion

Ultimately, INLA, in its default state, does not perform as well as OpenBUGS with respect 

to the precision parameter estimates for the spatial random effects, but it is much more 

computationally efficient. Through this simulation study, we learned that by specifying the 

full Laplace strategy, we result in better fitting models that are equivalent to OpenBUGS. 

Furthermore, altering the precision prior distributions for correlated and uncorrelated 

random effects brings these estimates much closer to the truth as well as to the values 

produced by OpenBUGS when the same prior distributions are used. Thus, for Poisson 

modeling in disease mapping, it is of utmost importance to adjust the default settings when 

using INLA as an alternative for Bayesian Analysis, especially when spatial random effects 

are included in the models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• The default priors in INLA are not suitable in the disease mapping framework.

• We explore many options for improving INLA results.

• INLA’s main advantage over OpenBUGS is computation time.

• INLA is unable to use hyperparameters as flexibly as in OpenBUGS.

• INLA and OpenBUGS can produce comparable results with appropriate 

alterations.

Carroll et al. Page 15

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2016 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Display of the spatial distribution of simulated covariates per county.
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Figure 2. 
The true and average estimated spatial effects as calculated in INLA and OpenBUGS under 

default and alternative priors using M5F5.
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Table 1

Description of predictor variables and their simulation.

Variable Spatial Distribution (marginal)

Median Age (years) Yes x1 ~ Norm(40,4)

Median Education (years) No x2 ~ Norm(13,4)

Median Income (thousands) No x3 ~ Norm(45,1)

Major Medical Center
(Yes/No) Yes

π ~ Norm(0,25)
logit (p) = π
x4 ~ Bern (p)
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Table 2

Description of simulated model contents.

Model Log relative risk

M1 log (θi) = 1 + 0. 1 x1i − 0.05x2i

M2 log (θi) = 1 + 0.1 x1i − 0.05x2i + ui

ui ~ Norm(0,1)

M3 log (θi) = 1 + 0.1 x1i − 0.05x2i + ui + vi

ui ~ Norm(0,1), vi ~ CAR (τv), τv = 1

M4 log (θi) = 1 + 0.1 x1i − 0.05x2i − 0.05x3i + 0.5x4i

M5 log (θi) = 1 + 0.1x1i − 0.05x2i − 0.05x3i + 0.5x4i + ui + vi

ui ~ Norm(0,1), vi ~ CAR (τv), τv = 1

M6 log (θi) = 1 + ui + vi

ui ~ Norm(0,1), vi ~ CAR (τv), τv = 1
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Table 3

Fitted model description.

Model Description

F1 log (θi) = a0 + a1x1i + a2x2i

aj ~ Norm(0, τα) where τα is fixed

F2 log (θi) = a0 + a1x1i + a2x2i + ui

aj ~ Norm(0, τα), where τα is fixed
ui ~ Norm(0, τu), τu ~ Gam(1,5e – 05)

F3 log (θi) = a0 + a1x1i + a2x2i + ui + vi

aj ~ Norm(0, τα), where τα is fixed
ui ~ Norm(0, τu), τu ~ Gam(1,5e – 05)

vi ~ CAR (τv), τv ~ Gam(1,5e – 05)

F4 log (θi) = a0 + a1x1i + a2x2i + a3x3i + a4x41

aj ~ Norm(0, τα), where τα is fixed

F5 log (θi) = a0 + a1x1i + a2x2i + a3x3i + a4x41 + ui + vi

aj ~ Norm(0,τα), where τα is fixed
ui ~ Norm(0,τu), τu ~ Gam(1,5e – 05)

vi ~ CAR(τv), τv ~ Gam(1,5e – 05)

F6 log (θi) = a0 + ui + vi

aj ~ Norm(0,τα), where τα is fixed
ui ~ Norm(0,τu), τu ~ Gam(1,5e – 05)

vi ~ CAR (τv), τv ~ Gam (1,5e –05)
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