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Classic socio-ecological theory holds that the occurrence of aggressive range

defence is primarily driven by ecological incentives, most notably by the

economic defendability of an area or the resources it contains. While this

ecological cost–benefit framework has great explanatory power in solitary

or pair-living species, comparative work on group-living primates has

always found economic defendability to be a necessary, but not sufficient

condition to account for the distribution of effective range defence across

the taxon. This mismatch between theory and observation has recently

been ascribed to a collective action problem among group members in,

what is more informatively viewed as, a public goods dilemma: mounting

effective defence of a communal range against intrusions by outgroup con-

specifics. We here further develop this framework, and report on analyses at

three levels of biological organization: across species, across populations

within a single lineage and across groups and individuals within a single

population. We find that communal range defence in primates very rarely

involves collective action sensu stricto and that it is best interpreted as the

outcome of opportunistic and strategic individual-level decisions. Whether

the public good of a defended communal range is produced by solitary,

joint or collective action is thus the outcome of the interplay between the

unique characteristics of each individual, local and current socio-ecological

conditions, and fundamental life-history traits of the species.
1. Introduction
Although cooperation has long been recognized as a key puzzle in animal

behaviour [1–3], by now awareness of its evolutionary significance has perme-

ated the study of social interactions at all levels of biological organization.

Widely seen as both a creative and organizing principle in the evolution of new

levels of complexity throughout the history of life [4], cooperation has been

implicated in many of the major evolutionary transitions [5] in which novel,

composite units of selection (e.g. chromosomes, eukaryotic cells and multicellu-

lar organisms) evolved from the cooperative collectives of lower-level agents

(e.g. nucleic acid molecules, prokaryotes and protists). Cooperation has also

been a defining hallmark of hominin evolution, and our own species in particular

is remarkably cooperative [6–9], with groups often acting collectively. Under-

standing why cooperation arises and how it is maintained is thus central to

explaining many core features of the biological world, including human sociality.

In many animal groups, we see individuals working together in sometimes

highly coordinated ways, for instance, in joint attacks on prey, defence against

predators, rearing of offspring or defence of the group’s territory. Arguably,

some of the most dramatic examples of such joint action are found in the context

of between-group conflict, in which multiple individuals cooperate to defend a

communal range against intrusions by outgroup conspecifics, sometimes even

with lethal consequences for those involved (e.g. ants [10], banded mongooses

[11], wolves [12], monkeys [13] and chimpanzees [14]). This raises the question

whether we can view the group rather than the individual as the primary unit

of selection, as has often been suggested for eusocial insects [15,16] and

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2015.0003&domain=pdf&date_stamp=2015-10-26
mailto:e.willems@aim.uzh.ch
http://dx.doi.org/10.1098/rstb.2015.0003
http://dx.doi.org/10.1098/rstb.2015.0003
http://rstb.royalsocietypublishing.org
http://rstb.royalsocietypublishing.org


Table 1. Public good production does not necessarily require polyadic cooperation, and if it does, rarely encompasses all capable group members participating to the
best of their abilities. Consequently, a collective action problem (CAP) can emerge amongst a subset (k), or all capable (N ) individuals within a group. To distinguish
between these two scenarios, throughout the text we speak of public good production by means of ‘joint’ versus ‘collective action sensu stricto’. Only if the latter
occurs can a group be viewed as the primary unit of selection, or an emerging Darwinian individual [19]. N ¼ all capable group members and 1 , k , N.

public good production

action nindividuals social dilemma potential mechanisms

solitary 1 no — kin selection

— by-product mutualism

joint k possible — kin selection

— by-product mutualism

— ( pseudo-) reciprocity

collective (sensu stricto) N effectively overcome — kin selection

— by-product mutualism

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20150003

2

humans [17,18]. For other taxa, we can ask to what extent

groups of animals really ever act as true collectives (or

‘Darwinian individuals’ [19]) in the context of between-group

conflict. The answer for non-human primates, moreover, may

also affect how we think about human groups.

An excellent way to tackle such questions is to examine

cooperative range defence from the perspective of the collec-

tive action problem (CAP [20,21]). To the extent that a

communal range effectively represents a public good (i.e. a

resource that is more or less equally shared among all

group members), cooperation in defence is vulnerable to

exploitation by free-riders, individuals who reap the benefits

of access to the good without incurring the costs of producing

it. This inherent instability of group-level cooperation is

known as the CAP, and may prevent the production or

defence of the public good, even in situations where it

would be in the interest of all involved.

To explain how public goods are still procured in the pres-

ence of potential CAPs, a distinction can be made between

altruistic and mutually beneficial cooperation in the production

of the good. In the former, the actor incurs a direct fitness cost,

whereas in the latter both actor and recipients increase their

direct fitness component. Inclusive fitness theory [1] readily

explains the evolutionary stability of altruistic behaviours

through kin selection (the direct fitness cost to the actor is

more than offset by indirect fitness gains from investing in rela-

tives), whereas evolutionary game theory [22] has helped

recognize three broad mechanisms to account for mutually ben-

eficial cooperation [23]: (i) by-product mutualism [24], in which

benefits to social partners arise as a by-product of an otherwise

selfish behaviour of the actor; (ii) pseudo-reciprocity [25], which

states that a costly behaviour evokes a selfish response from

social partners that benefits the initial actor as a by-product;

and (iii) reciprocity [2], in which a costly behaviour evokes a

costly response that benefits the initial actor (but see [26]).

These are by no means mutually exclusive mechanisms, but

instead may often work in consort to stabilize cooperation.

From the above, it follows that although polyadic

cooperation often results in the production of a public good,

public good production does not necessarily require polyadic

cooperation: it can, for example, also come about as a by-

product of the self-serving actions of a single individual, as

may be the case in species with a resource-defence polygyny
mating system [27]. In the social units of other species,

moreover, there will typically be a subset of ‘privileged individ-

uals’ (e.g. dominants, with priority of access to resources [28]),

whose selfish interests, based on a purely ecological cost–

benefit analysis, should make them willing to contribute to

the production of the good, regardless of any benefits this

may generate for group members. In many situations then,

social dilemmas do not involve all group members and public

good production does not require collective action sensu stricto.

We should, therefore, expect to see the whole spectrum of

public good production by means of solitary, joint and truly

collective action (table 1). Here we examine the individual

participation in public good production among group mem-

bers in the context of between-group conflict in non-human

primates. Primates are an interesting group, especially

because there is a tendency in much of the anthropological

literature to treat human groups as collective units of selec-

tion, to the point of positing that group selection in the

context of warfare (i.e. escalated between-group conflict)

has produced groups acting as corporate units [8,18,29,30].

A better understanding of the variation in the nature of

between-group interactions among primates as a whole

may thus help to delineate the conditions in which groups

may act as Darwinian individuals.

In some species, groups may indeed operate as a collective

unit, producing predictable monolithic, group-level decisions,

which would allow us to consider the group, rather than the

individual, as the primary unit of selection. At the other extreme,

there is no group-level action at all, and between-group conflicts

are mostly avoided, leaving the public good unproduced. In the

majority of species, however, joint action involving onlya subset

of group members will be most common. We will argue that

all modes of public good production can be observed in pri-

mates, but that the case of joint, yet non-collective, action is

both widespread and perhaps most interesting. In such species,

between-group encounters reflect the sum total of multiple

opportunistic, individual-level decisions about participation,

decisions that are subsequently affected by (and affect) the

decisions of others in the group, as well as those of individuals

in the opposing group. Disentangling the drivers of these indi-

vidual decisions will reveal the benefits and costs for each

individual in the groups, as well as the feedback effects of

others’ decisions to cooperate or to defect.
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We will examine the problem of collective action in the

context of communal range defence at three different levels

of biological organization. First, we conduct broad-scale com-

parative analyses across the primate taxon to identify the

macro-evolutionary correlates of communal range defence,

and to quantify the proportion of species in which it may

be affected by CAPs. Second, we investigate phenotypic flexi-

bility among species and populations within a single taxon,

the genus Chlorocebus, in which communal range defence

typically requires joint action by multiple (but not all)

group members. By focusing on a single lineage, the role of

genetic canalization as a potential cause for the observed

variation is strongly reduced, pointing more strongly at a

role for behavioural flexibility (i.e. decisions based on assess-

ment of the situation by potential participants). And third,

we present results from a detailed study on group- and indi-

vidual-level variability in participation in the production of

the public good, as well as the complexity of the cooperative

behaviours involved. Analyses at this level allow us to gain

insights into individual-level decisions on whether and how

to participate in each single between-group encounter.
3

2. Material and methods
(a) Species-level variation in communal range defence
A suite of socio-ecological variables was available from two pre-

vious studies on primate territoriality and between-group

competition for a total of 138 group-living primates (for details

see [31,32]). We censored this dataset to include only those

taxa for which complete information was available on: (i) the

rate of aggressive between-group encounters (n/daily activity

period); (ii) the presence of territorial advertisement (yes/no);

(iii) mobility, or economic defendability [the D-index, i.e. the

ratio of average day journey length and the diameter of a circle

with a surface area equal to the home range [33]); (iv) total

home range overlap (expressed as a proportion of the home

range area); and (v) group size (number of individuals).

The first two variables encapsulate key components of terri-

torial behaviour [34,35], whereas the latter three are correlates of

the probability of chance encounters under an ‘ideal gas’ model

of animal movement. This model postulates that groups are more

likely to collide with increasing range use intensity, shared areas of

use and group size [36,37], and thus represents the approximate

need for effective range defence [31].

To extract the latent variables that best capture the variation

in these traits across the primate taxon, we conducted a phyloge-

netic principal component analysis (PCA). Following Kaiser’s

criterion for samples with fewer than 30 variables [38], factors

with eigenvalues greater than 1.0 were retained and used to

define ‘axes of territoriality’. We next used Bonferroni-corrected

phylogenetic generalized least squares analyses (PGLS) to test

for associations between the extracted principal components

and socio-ecological traits not used in their calculation. This

helped identify the evolutionary correlates of communal range

defence, and to estimate the proportion of species in which

communal range defence may be affected by the CAP.

Analyses were conducted in R v. 3.2.0 [39] using the ‘phy-

tools’ [40] and ‘caper’ packages [41], with statistical significance

set at a2-tailed , 0.05, corrected where needed for multiple testing.

(b) Population-level variation in communal range
defence

Data were collected from the literature on free-ranging Chlorocebus
populations to examine the naturally occurring variation in
communal range defence within this species-complex. Chlorocebus
makes an excellent taxon to investigate this for several reasons.

First, animals typically live in large, multi-male multi-female

groups, and both sexes are actively involved in between-group

conflicts, providing ample opportunity for CAPs to emerge.

Second, Chlorocebus is well studied throughout its range of occur-

rence, and highly opportunistic with broad socio-ecological

reaction norms [42,43].

Because of the small sample size, no statistical inferences

were attempted but descriptive statistics to illustrate the extent

of variation in the efficacy of communal range defence within

this species-complex could be calculated.

(c) Encounter-, group- and individual-level variation in
communal range defence

Lastly, we used detailed behavioural observations on a long-term

study population of vervet monkeys (Chlorocebus pygerythrus) at

the Mawana Game Reserve (288 000 S, 318 120 E), KwaZulu-Natal,

South Africa. Data were collected on three habituated groups ran-

ging in size from 30 to 56 individuals, which were followed for a

total of more than 11 000 observation hours between January

2012 and February 2014. All animals in the study groups were indi-

vidually recognized, as were most adults in four frequently

encountered neighbouring groups. We restricted our dataset to

include only observations on communal range defence when the

composition of the opposing group was fully known, and no exper-

imental manipulations were undertaken on the day of the

encounter on either of the groups involved. Individual partici-

pation and maximum complexity of cooperative behaviour

(table 2) were scored for as many adults as feasible during each

aggressive encounter, using all-occurrence sampling [46,47]. Defi-

nitions and the order of the levels of complexity of communal

range defence behaviours were derived from a similar classification

scheme devised by Boesch & Boesch [44] to characterize chimpan-

zee cooperative hunting (see also [45]). For more details on the data

collection protocol, see [48].

To establish which characteristics influence an individual’s

likelihood to participate in communal range defence, we con-

structed a binomial Generalized Linear Mixed Model (GLMM),

incorporating sex and dominance as fixed effects, and between-

group encounter along with individual nested within group as

random effects. Consistency in participation was subsequently

assessed by a series of repeatability analyses [49,50], which allowed

us to assess the fraction of behavioural variation owing to differ-

ences between encounters, groups and individuals within groups.

Next, we looked at whether the maximum level of complexity

of a participant’s cooperative behaviour during an encounter could

be related to individual characteristics. Because cooperative com-

plexity was measured on an ordinal scale, a Cumulative Link

Mixed Model (CLMM) was fitted to the data and we investigated

the effects of sex and dominance, while defining random effects to

account for repeated observations on individuals within groups

over multiple between-group encounters. Unfortunately, repeat-

ability analyses are currently not yet implemented for ordinal

response variables and could, therefore, not be performed.

All analyses were conducted in R v. 3.2.0 using the ‘lme4’ [51],

‘rptR’ [52] and ‘ordinal’ [53] packages, with statistical significance

set at a2-tailed , 0.05.
3. Results
(a) Species-level variation in communal range defence
Our censored comparative dataset contained information on

a total of 82 taxa encompassing all major radiations of social

primate, including five representatives of the Lemuriformes,



Table 2. Operational definitions of the increasing levels of complexity in cooperative range defence as observed in our study population. Definitions are based
on those developed for cooperative hunting in chimpanzees [44] and carnivores [45], and number of observations stem from a targeted study on individual
participation in communal range defence over the January 2012 – February 2014 period.

definition description
nobservations

(male/female)

defect

no participation the individual does not direct any aggressive behaviour at any member/subgroup of the opposing group

throughout the entire encounter

988

(301/687)

cooperate

similarity the individual directs aggressive behaviour(s) at any member/subgroup of the opposing group during the

encounter. There is, however, no spatio-temporal relation between the actor’s actions and those of its

group members

40

(29/11)

dyadic synchrony two group members direct aggressive behaviours at any member/subgroup of the opposing group, and

relate in time to each other’s actions

56

(25/31)

polyadic

synchrony

more than two group members direct aggressive behaviours at any member/subgroup of the opposing

group, and relate in time to each other’s actions

110

(28/82)

dyadic

coordination

two group members concentrate aggressive behaviours at the same member/subgroup of the opposing

group, and relate in space and time to each other’s actions

8

(2/6)

polyadic

coordination

more than two group members concentrate aggressive behaviours at the same member/subgroup of the

opposing group, and relate in space and time to each other’s actions

69

(18/51)
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24 Platyrrhini, 42 Cercopithecoidea and 11 Hominoidea (not

including humans).

A phylogenetic PCA that controlled for the strong phyloge-

netic signal in the five range defence variables considered

(lML¼ 0.849) extracted two significant, non-orthogonal ‘axes

of territoriality’, which together accounted for 56.8% of the

total observed variation (table 3). We focused on factor loadings

greater than 0.5 (i.e. that explained more than 25% of the var-

iance within a factor) to interpret these axes: species with high

scores on PC 1 were advertisers in home ranges with low overlap

that generally lived in small groups, while high scores on PC 2

were associated with high rates of aggressive between-group

encounters and economically defendable ranges.

We next related these two extracted axes to socio-ecological

species traits not included in their calculation (electronic

supplementary material), using Bonferroni-corrected PGLS

analyses (Pcritical ¼ 0.0036). This revealed that PC 1 was posi-

tively associated with a species’ social system (lML ¼ 0.942,

R2
Adj ¼ 0:129, F3,78¼ 5.00, p , 0.0036), with species living in

single-male, single-female units having the highest scores,

and species in multi-male, multi-female units the lowest.

PC 1, furthermore, showed a negative association with the

number of individuals of the larger sex within the modal

group (lML ¼ 0.930, R2
Adj ¼ 0:104, F1,80 ¼ 10.43, p , 0.0036).

PC 2 was also associated with a species’ social system

(lML ¼ 0.898, R2
Adj ¼ 0:176, F3,78 ¼ 6.76, p , 0.0036), such

that species in single-male, single-female units lived in the

most defendable ranges and experienced the highest rates of

aggressive between-group encounters.

Figure 1 illustrates the overall pattern across the taxon.

The combination of advertising and above average rates of

aggressive between-group encounters (upper-right quadrant

on the dashed-line axes) is found especially in species that

live in pair-bonded or small polyandrous groups, and/or

show cooperative breeding. These species engage in true
collective action in that all adults of the social unit tend to

engage in territorial defence [54], and often also advertising

(when duetting, for instance [55]). Advertisers with below

average rates of between-group conflicts (lower-right quad-

rant) tend to be species with single-male, multi-female

groups and were often folivorous. Their diet limits their mobi-

lity, and the public good is often produced by the single male

without any female participation [56].

Among those that do not advertise, some species use their

range with such low intensity that they can afford not to

engage their neighbours in escalated encounters (lower-left

quadrant). Other non-advertisers live in multi-male, multi-

female groups but have a higher mobility that would in prin-

ciple allow them to effectively defend their ranges, yet this is

not observed (upper-left quadrant). Thus, a significant pro-

portion of species expected to show territoriality (upper-left

quadrant: approximately 30%, see also [32]) do not seem to do

so in that they do not advertise and have high home range over-

lap. Groups in these species, therefore, do not act as collective

units and may be subject to CAPs in the context of communal

range defence. Obviously, many of these species do engage in

between-group conflicts, which raises the question of how

they organize range defence when they do so. One prominent,

and well-studied taxon within this group is the cercopithecoid

genus Chlorocebus, on which we focused our next analyses.

(b) Population-level variation in communal range
defence

Within the Chlorocebus lineage, there are no records of territorial

advertisement. We therefore assessed variation in communal

range defence across populations on the basis of the remaining

variables used in the species-level analyses (i.e. the rate of

aggressive between-group encounters, mobility, home range

overlap and group size). Data were collected on a total of
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Figure 1. Principal component plot depicting the ‘axes of territoriality’ extracted by a phylogenetic PCA on 82 social species of primate. Species are colour-coded
according to the social system of their modal social unit, and (scaled) factor loadings of the five range defence variables considered in the analysis are represented by
red arrows. Dotted grey lines indicate the mean scores on PC 1 and PC 2 after omitting two extreme species (Callithrix jacchus and Lepilemur ruficaudatus), and were
used to partition the plot into four quadrants. The three Chlorocebus species included in this analysis are encircled (note the very similar scores on PC 1, but
divergence on PC 2). (Online version in colour.)
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12 populations, representing four different species across

sub-Saharan Africa: the green monkey (Ch. sabaeus) from west

Africa, the tantalus monkey (Ch. tantalus) from western and cen-

tral Africa, the Bale Mountains monkey (Ch. djamdjamensis)
from the Ethiopian highlands and the vervet monkey from east-

ern and southern Africa. For one vervet monkey population

(Amboseli, Kenya), data were included from two different

time periods set apart by approximately 20 years, while one

population of green monkey (St Kitts) was actually from outside

of the species’ natural geographical range (see the electronic

supplementary material).

We found extensive variation in the investigated variables

(figure 2). For instance, the rate of aggressive between-group

encounters across populations varied from around once a day

(Ch. pygerythrus; Samara, South Africa) to around once a

month (Ch. pygerythrus; Loskop, South Africa). Even within

the same population (Ch. pygerythrus; Amboseli, Kenya),

the two time periods compared showed marked differences,
with for instance average group size in 1985 being almost

half of that in 1964 (electronic supplementary material).

Inspections of the variance–covariance matrix revealed no

pattern of association among these variables or any of the

other socio-ecological variables measured. We interpret this

as implying that the nature of between-group conflict

depends on a variety of factors only partially captured in

the ecological and demographical variables considered here.

Range defence thus appears to be highly flexibly expressed

within the Chlorocebus lineage. The most parsimonious expla-

nation for this observation is that individuals show a large

degree of behavioural plasticity, as would be expected

given the highly flexible socio-ecology of the taxon. This,

however, can only be confirmed by detailed behavioural

observations on a focal population, and we next turned to

our study on individual participation decisions in between-

group conflict within a single population of vervet monkey

at Mawana, South Africa.
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(c) Encounter-, group- and individual-level variation in
communal range defence

Information on participation in communal range defence and

maximum complexity of individual cooperative behaviours

was collected on 22 adult males and 36 adult females in

three study groups in our study population. A total of 120

aggressive between-group encounters were used for analyses,

comprising 1271 observations on individual participation

(yes/no), and 283 observations on a participant’s maximum

cooperative involvement (table 2).

A binomial GLMM (x2
ML ¼ 10:69, p , 0.05; table 4)

revealed no difference in the probability of participation

in communal range defence between males and females.

In contrast, subordinate individuals were significantly less

likely to participate than their top-dominant group members

(B+ s.e. ¼ 22.031+0.68, z ¼ 22.99, p , 0.005). The inter-

action between sex and rank just failed to reach statistical

significance, but did marginally improve model fit

(x2 ¼ 2:83, p ¼ 0.092), and was therefore retained. Results

from subsequent repeatability analyses (figure 3), moreover,
indicated that the probability of individual participation

varied significantly across encounters (RBGE+ s.e.¼ 0.638+
0.05, p , 0.001) and between group members (RInd+ s.e. ¼

0.115+0.03, p , 0.001), but not between study groups

(RGroup+ s.e. ¼ 0.002+0.003, p ¼ 0.104). This implied that,

although groups on average mobilised similar numbers of vol-

unteers to participate in aggressive between-group encounters,

the number of participants was highly variable across encoun-

ters, with some individuals within each group consistently

more likely to participate than others.

To illustrate this individual variability, consider male

participation. The average probability with which males par-

ticipated (mean+ s.e. ¼ 0.253+0.022) was highly variable

between individuals, with four males never participating in

any encounter in which they were present, while the most

active male participated in 60.0% of encounters in which

he was present. Probability of participation for females

(mean+ s.e. ¼ 0.209+0.014) showed a similar degree of

between-individual variability: six females never participated

when present, while the most active female was involved in

46.9% of encounters in which she was present. Note that no

individual’s participation approaches 100%, suggesting that

decisions are made opportunistically, presumably based on

instantaneous assessment of the situation.

Lastly, we looked at individual differences in the maximum

complexity of cooperative behaviours exhibited during partici-

pation in communal range defence. Results from a CLMM

(x2
ML ¼ 8:29, p , 0.05; table 5) revealed that females on aver-

age engaged in more complex cooperative behaviours during

aggressive between-group encounters than males (B+ s.e. ¼

0.907+0.31, z ¼ 2.91, p , 0.005), while no differences between

top-dominants and subordinates were detected.
4. Discussion
Our review of communal range defence across non-human pri-

mates has shown that primate groups hardly ever operate as

true collectives, and that public good production in this context

rarely involves collective action sensu stricto (table 1). The



Table 4. Individual characteristics accounting for differences in participation
during aggressive between-group encounters in our study population of
vervet monkeys. Parameter estimates (B) and significance values were
obtained from a binomial GLMM. Italics denote p-values , 0.05. nobs. ¼

1271, on 58 individuals in three groups over 120 BGEs; x2
ML ¼ 10:69,

p , 0.05.

variable B s.e. z-value p-value

intercept 22.816 0.52

sex

male — — — —

female 20.382 0.39 0.98 0.329

rank

dominant — — — —

subordinate 22.031 0.68 22.99 0.003

interaction

sex � rank 1.371 0.82 1.67 0.095

0

0

max

pu
bl

ic
 g

oo
d 

pr
od

uc
tio

n

V
ol

un
te

er
’s

 D
ile

m
m

a

n-play
er 

Priso
ner’

s D
ilem

ma

N
ncooperators

‹ k fi

Figure 4. Schematic of the difference between the production functions of
the n-player Prisoner’s Dilemma (dotted line) and the Volunteer’s Dilemma
(dashed-dotted line). In the former, there is a linear relationship between
the number of group members that cooperate and the likelihood (or
amount) of the public good that is produced, whereas in the latter public
good production is modelled by a step-function: the public good is only pro-
duced if the number of cooperators exceeds a critical threshold, k. The solid
grey curve depicts a biologically more realistic, and intermediate scenario
(such as communal range defence) between these two extreme scenarios.
Theoretical work suggests that these intermediate production curves are
often mathematically more accurately approximated by the Volunteer’s
Dilemma than by the n-player Prisoner’s Dilemma [63], and our analyses
on individual-level participation in aggressive between-group encounters in
a focal population of vervet monkeys add empirical support to this.
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species coming closest to this, and whose groups therefore can

possibly be viewed as (marginal) Darwinian individuals [19],

are cooperative breeders or those that live in pairs (upper-

right quadrant, figure 1). These small groups are able to operate

as a collective unit because of a strong alignment of individual

interests, through shared genes (e.g. callitrichids) and/or

shared benefits (e.g. gibbons), arising from a special socio-

ecology in which the requirements of food- and mate-defence

coincide, and necessitate joint defence. In other species, the

public good of the defended and advertised territory is pro-

duced by a single individual, typically a male (lower-right

quadrant, figure 1), and is thus the product of solitary (and

not collective) action.

Groups in most other species (left two quadrants, figure 1)

operate as associations that, to varying degrees and in varying

contexts, consist of more or less independent and interdepen-

dent individuals. Many primate species show between-group

conflicts with multiple participants, yet do not advertise

range ownership, which was associated with high home

range overlap. They also tend to live in large groups with mul-

tiple members of either sex. These species live in ranges that are

economically as defendable as those of species that actually do

advertise range ownership, and individuals should therefore,

in principle, stand to gain from such defence. Indeed, the

more mobile species in this cluster do show joint action

during conflicts between groups, but even then social units

do not act as true collectives as some group members never

participate and many participate only some of the time (e.g.

[57–59]). These species thus suffer from some kind of CAP,

as within-group competition inhibits group-level cooperation

(see also [31,32]).

Focusing on a single taxon of this kind (the genus Chlorocebus),
we subsequently could show that there is great variability in com-

munal range defence between species in this genus, between

populations of one species (Ch. pygerythrus) and, in a detailed

study on a focal population, between encounters and individuals,

though not between groups (figure 3). We take this pattern as

observed in our focal population to be in line with predictions

from the Volunteer’s Dilemma [60–62].

The Volunteer’s Dilemma is an n-player cooperation

game in which a certain number of individuals is required
to produce a public good, and cooperation is costly, but not

as costly as a failure to produce the good [60]. Rather than

being a linear function of the number of cooperators (as in

an n-player Prisoner’s Dilemma), however, the production

curve is modelled by a step-function in which the public

good is only secured if a minimum number of individuals,

k, cooperate (figure 4). This nonlinearity allows cooperative

and non-cooperative strategies to coexist within a social

unit (as famously observed in lions [64]), even in the absence

of any genetic or spatio-temporal assortment among individ-

uals [65]. In the context of participation in communal range

defence, the critical threshold, k, is intuitively understood

as the number of individuals required to successfully repel

an opposing group. A group’s realized resource holding

potential (i.e. the number of volunteers) thus reflects the

context-specific and strategic decisions of individuals, which

can differ markedly from one encounter to the next, depending

on the particulars of the current and local socio-ecological

circumstances. For groups to be able to coexist, however, the

number of volunteers mobilized should on average not be

too dissimilar, otherwise individuals in one of the groups

would consistently lose all between-group conflicts and even-

tually no longer be able to secure sufficient resources to

survive. This exactly matches the pattern observed in our

study population (figure 3), and is also in line with many pre-

vious studies on the spatio-temporal contingency of individual

participation in between-group conflicts (e.g. [48,66,67]).

We further found that the individuals most likely to

volunteer were top-dominants of either sex (table 4), whose

selfish cost–benefit analysis will be such that they have

most to gain from securing the good. Public good production

in our study population thus primarily comes about through

joint action by ‘privileged individuals’ [28]: dominants with



Table 5. Individual characteristics accounting for differences in the
maximum level of complexity of cooperative behaviours observed during
aggressive between-group encounters in a study population of vervet
monkeys. Parameter estimates (B) and significance values were obtained
from a CLMM analysis. Italics denote p-values , 0.05. nobs ¼ 283, on 48
individuals in three groups over 72 BGEs; x2

ML ¼ 8:29, p , 0.05.

variable B s.e. z-value p-value

sex

male — — — —

female 0.907 0.31 2.91 0.004

rank

dominant — — — —

subordinate 0.017 0.31 0.06 0.956
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priority of access to the contested resources and whose be-

haviour is unaffected by that of group members, thereby

effectively allowing subordinates to free-ride on their efforts

(i.e. ‘the exploitation of the great by the small’ [20,68]). In

as far as our study population can indeed be taken to be

representative for a large proportion of primate species,

inter-individual differences thus appear pivotal in stabilizing

polyadic cooperation in the context of joint (i.e. not collective

sensu stricto) communal range defence [68].

Interestingly, a difference between the sexes in how they

mitigate the costs of participation was also apparent from our

analyses, with males relying on less complex forms of

cooperation than females (table 5). This almost certainly

reflects the fact that in vervet monkeys, males run lower risks

by participating in the production of a good as they are the

larger sex, while females, being the philopatric sex, have

more opportunities to cooperate with relatives. Moreover, the

skew in resource distribution among individuals of the ecologi-

cal sex tends to be less pronounced [69], while the stakes of

losing territory are higher for the philopatric sex (e.g. in

vervet monkeys [70]), further facilitating more complex forms

of cooperation to evolve among females.

Lastly, turning to our closest living relatives, the chimpan-

zees, we observe that they do not clearly advertise territorial

ownership. They are, nevertheless, resource defenders that

obviously engage in between-group aggression, which some-

times may even turn lethal [14,71]. This action is joint and not
collective, sensu stricto, and individual participation (almost

exclusively by males) varies extensively for reasons that are

only partly understood (e.g. [72]). Given some major simi-

larities between the socio-ecology of human foragers and

chimpanzees, it therefore seems most parsimonious to con-

sider human groups, at least those in small-scale foraging

or horticultural societies, as engaging in between-group con-

flicts based on individual-level assessments and decision-

making [73–75] (much as in the vervet monkeys examined

in more detail here), rather than as collective units of selec-

tion. Be that as it may, hominin social evolution may have

seen two major transitions in cooperation [9]: first from a

chimpanzee-like social organization to the societies of Pleisto-

cene cooperative breeders/foragers, and second the

Pleistocene–Holocene transition from cooperative breeders/

foragers to the increasingly complex hierarchical societies of

our species today. The hypothesis that group-level selection

driven by escalated between-group conflict (i.e. warfare)

has, uniquely among primates, shaped human cooperation

(e.g. [8]), can therefore not yet fully be discarded.
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