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The prevalence of neutral mutations implies that biological systems typically

have many more genotypes than phenotypes. But, can the way that geno-

types are distributed over phenotypes determine evolutionary outcomes?

Answering such questions is difficult, in part because the number of genotypes

can be hyper-astronomically large. By solving the genotype–phenotype (GP)

map for RNA secondary structure (SS) for systems up to length L ¼ 126

nucleotides (where the set of all possible RNA strands would weigh more

than the mass of the visible universe), we show that the GP map strongly

constrains the evolution of non-coding RNA (ncRNA). Simple random

sampling over genotypes predicts the distribution of properties such as the

mutational robustness or the number of stems per SS found in naturally occur-

ring ncRNAwith surprising accuracy. Because we ignore natural selection, this

strikingly close correspondence with the mapping suggests that structures

allowing for functionality are easily discovered, despite the enormous size

of the genetic spaces. The mapping is extremely biased: the majority of geno-

types map to an exponentially small portion of the morphospace of all

biophysically possible structures. Such strong constraints provide a non-

adaptive explanation for the convergent evolution of structures such as the

hammerhead ribozyme. These results present a particularly clear example of

bias in the arrival of variation strongly shaping evolutionary outcomes and

may be relevant to Mayr’s distinction between proximate and ultimate

causes in evolutionary biology.
1. Introduction
Many questions about the limits of evolution hinge not only on what has hap-

pened in natural history, but also on counterfactuals: what did not happen, but

perhaps could have. Re-run the tape of life [1,2] and what parts of phenotype

space—the set of all possible phenotypes [3]—would be occupied? Typically,

only a miniscule fraction of the phenotype space has been explored throughout

natural history. The reasons given for this phenomenon usually combine adap-

tive arguments: some parts of phenotype space yield higher fitness than others,

with arguments based on contingency: nature has not had time to explore all of

phenotype space. However, an evolutionary search does not occur by uniform

sampling over phenotypes, but rather by random mutations in the space of gen-

otypes. Does this basic fact alter the way that phenotype space is explored and

occupied? To answer such whole genotype–phenotype (GP) map questions is

difficult, in part because the number of possible genotypes typically grows

exponentially with length, and so rapidly becomes unimaginably vast [4–6],

and in part because biological systems with sufficiently tractable GP maps

are rare.

One system where progress can be made is the mapping from sequences to the

structure of RNA. Although simpler than many biological phenotypes, RNA is

interesting and important, because it can fulfil multiple roles both as an information

carrier (e.g. messenger RNA and viral RNA) and as functional non-coding RNA
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Figure 1. Schematic of the mapping from an RNA sequence to an SS. Here,
for an L ¼ 55 type III hammerhead ribozyme with three stems. Any
sequence that folds to the same SS topology is considered to map to the
same SS phenotype. (Online version in colour.)
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Figure 2. Comparison of P-sampled and G-sampled distributions to natural
data for L ¼ 20 RNA. The P-sampled PP(V) (red diamonds) measures the
probability distribution for a phenotype to have a given NS size V. It differs
markedly from G-sampled PG(V) (blue circles), generated by random
sampling over genotypes. Error bars arise from binning data. The black
and cyan lines are theoretical approximations to PP(V) and PG(V), respect-
ively (see Methods). The probability distribution of V for the SSs all 7327
(non-trivial) L ¼ 20 sequences for Drosophila melanogaster from the
fRNAdb database [21] (green squares) is much closer to the G-sampled
PG(V) than to the P-sampled PP(V). Inset: all 11 218 SS phenotypes
(purple triangles) ranked by NS size V. There is strong bias, just 5% of
phenotypes take up 58% of all genotypes. The 7327 natural data points
(green squares) are clustered at lower rank (larger V). (Online version in colour.)
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(ncRNA) [7], including chemically active catalysts (e.g. ribo-

zymes) and key structural components of larger self-assembled

structures (e.g. ribosomal RNA). One reason RNA is so versatile

is that it can fold into complex three-dimensional structures.

The bonding pattern of these structures is called the secon-

dary structure (SS), which is an important determinant of the

three-dimensional structure and biological activity of ncRNA

molecules, and so can be treated as a (simplified) phenotype in

its own right [8,9] (figure 1).

Fast algorithms exist to predict the free energy minimum

SS for a given sequence, and these are thought to be fairly accu-

rate, especially for shorter strands [10,11]. Moreover, extensive

databases exist for functional ncRNA [7]. For these reasons, this

computationally tractable yet biologically relevant sequence to

structure mapping is uniquely suited for investigating ‘whole

genotype–phenotype map’ properties that may point towards

general principles relevant for a wider class of systems, and has

been extensively studied over the past few decades [6,12–20].

Nevertheless, the RNA sequence to SS GP map also

suffers from the exponential growth of the size of genetic

space, which has limited prior comprehensive GP studies to

fairly small lengths, making direct comparison with evolution-

ary outcomes difficult. Here, we show that many detailed

properties of this GP map can, in fact, be calculated, even for

lengths as long as L ¼ 126, where the set of all possible strands

would weigh more than the mass of the visible universe (see

Methods). One reason this is possible is because the map is

highly biased towards a small fraction of phenotypes that

take up the majority of genotypes. This bias means that

sampling over genotypes (which we will call G-sampling) gen-

erates significantly different outcomes from sampling over the

morphospace [3] of all shapes (phenotypes; which we will call

P-sampling). The existence of such highly peaked distributions

in the mapping from genotypes to phenotypes also explains,

in a way that is reminiscent of statistical mechanics, why

sampling a relatively small number of genotypes is enough

to determine certain key properties of RNA SS.

Perhaps most strikingly, we find that the distributions of

several properties of natural ncRNA taken from the function

RNA database (fRNAdb) [21], including the number of

stems, the mutational robustness and the number of geno-

types per SS phenotype, are very similar to what we obtain

from random sampling over genotypes, and significantly

different from uniform sampling over phenotypes. This
result does not mean that natural selection can be ignored,

but rather, as we will argue below, that the mapping strongly

prescribes which parts of morphospace are presented to natu-

ral selection as potential variation. Variation can be selected

only if it arrives [22,23].
2. Results
2.1. P-sampling over phenotypes differs significantly

from G-sampling over genotypes
We first analyse an exhaustive enumeration of all sequences

for L ¼ 20 RNA, the largest system for which this has so far

been accomplished. The 420 � 1012 sequences were folded

with the Vienna Package [10], and map to NP ¼ 11 218

unique bonded SSs and one trivial structure with no bonds,

as their free-energy minima [20]. The set of all sequences

that map onto a given SS is called the neutral set (NS), and

we use V to denote the NS size (the number of sequences

in the NS). This mapping exhibits strong phenotype bias

[6,12,13,17–20]. For example, V varies by over 10 orders of

magnitude for L ¼ 20 (figure 2).

Next, we introduce the concept of P-sampling, that is, uni-

formly sampling over the set of possible phenotypes (the

morphospace), and define PP(V) as the probability distri-

bution that a randomly chosen phenotype has NS size V.

We calculate distributions for fixed L and bin data uniformly

in S ¼ log10ðVÞ, but write PP(V) and PG(V) for simplicity.

PP(V) has a maximum when V is about half of the maximum

value of the exponent logðVÞ ; U � 10 (figure 2). We ignore

the trivial structure with no bonds for which V ; 10T : For

L ¼ 20, T � 11:56; for larger L, T=U ! 1 and the probability

of finding the trivial structure tends to zero (see Methods).

Instead of P-sampling, one could also sample uniformly

over sequences (genotypes), which we refer to as G-sampling,
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giving PGðVÞ/VPPðVÞ, which highlights structures from the

large V tail of PP(V), as can be seen in figure 2.

Novel variation does not arise by uniform random

sampling in the morphospace of all physically permissible

phenotypes (P-sampling), but instead by processes such as

mutation that change genotypes. While evolutionary dynamics

do not proceed by simple uniform G-sampling either, recent

detailed population genetics calculations for RNA [20] have

shown that the rate at which novel variation (a particular SS)

arises in an evolving population is, to first order, directly pro-

portional to the NS size of the SS phenotype, and so also to

PG(V). This proportionality holds for a wide range of mutation

rates and population sizes. It was also demonstrated explicitly

that strong phenotype bias can overcome fitness differences

in an RNA system [20]. Bias should therefore affect outcomes

for multiple evolutionary scenarios. Indeed, important prior

studies have suggested that natural RNA could have larger

than average V [17,18]. We took every L ¼ 20 sequence in the

fRNAdb database [21] for Drosophila melanogaster (see Methods

and electronic supplementary material) and calculated the NS

size V of its associated SS using the neutral set size estimator

(NSSE) from [18]. Not only are SSs with larger V overrepre-

sented, but the entire natural distribution is remarkably close

to the genotype sampled PG(V) (figure 2).

2.2. Sampling for lengths up to L ¼ 126
While these results for L ¼ 20 are suggestive, distributions for

larger length RNA are needed to ensure that we are not just

observing database biases or artefacts of the short length.

Because the number of sequences grows exponentially with

increasing L, exhaustive enumeration is not an option for

lengths much larger than L ¼ 20. Instead, we estimate the

NS size distributions by randomly sampling genotypes, fold-

ing them into an SS, and then measuring their NS size with

the NSSE (Methods). This process naturally generates

PG(V); PP(V) can be backed out by dividing by V and nor-

malizing. However, it is hard to sample SSs with small V,

so PP(V) is only partially determined. To make progress,

we use a simple analytical ansatz based on a log-binomial

approximation to the distributions (see Methods), which

works well for both PG(V) and PP(V) for L ¼ 20 (figure 2).

We compare this approximation with sampled data for L ¼
20 up to L ¼ 126 (figure 3 and electronic supplementary

material, figures S1 and S2). In each case, the analytic fit to

PG(V) is excellent, and the fit to PP(V) works well, giving

confidence that this form provides a reasonable approximation

to the full PP(V).

2.3. Entropy and the bias ratio
The PG(V) distributions can be further quantified by the

Shannon entropy H ¼ �
PNP

k¼1 Pð pkÞ log2ðPð pkÞÞ, where P( pk)

is the probability of choosing one of the NP possible phenotypes

pk by G-sampling. The exponential of the entropy, 2H, is used in

statistical physics and information theory [24] as a measure of

the effective number of states. Because Pð pkÞ ¼ Vð pkÞ=4L, it

follows straightforwardly that

2H ¼ 4L

10
�SG

, ð2:1Þ

where �SG is a G-sampled average of S ¼ log(V). Thus to

measure the ‘effective number’ of phenotypes that take up the

majority of genotypes, one only needs to determine �SG: This
can be done rapidly, because the G-sampled distributions

are sharply peaked in a manner reminiscent of statistical

mechanics [24].

As an example of how the highly peaked nature of these

distributions facilitates the calculation of averages, consider

the case of L ¼ 126. We find that �SG � 51:5 with standard

deviation (s.d.) �sG � 2:1, so that 95% of SS structures found

by G-sampling have S in range 51.5+4.2, which is very

narrow compared with the full range [0, 64.5] and compara-

tively far (about 6 s.d.) from the phenotype averaged
�SP � 38:6: Rather strikingly, this implies that, even though

the set of all possible L ¼ 126 nucleotide sequences would

weigh more than the mass of the observable universe (see

Methods), sampling the NS size for just 10 randomly

chosen L ¼ 126 structures is enough to fix the exponent �SG

to within about 1.3% relative accuracy, which allows us to

determine, for example, the number of relevant states 2H

via equation (2.1).

To further quantify the bias, we introduce the bias ratio
b [ ð0, 1� as

b ¼ 2H

NP
� 0:25� 0:91L, ð2:2Þ

which can be interpreted as the ratio of the effective number

of phenotypes that take up most of the sequences to the total

number of phenotypes NP. For example, if all V are equal,

then 2H ¼ 2log2ðNPÞ ¼ NP, b ¼ 1, and bias is weak. On the

other hand, if just one phenotype accounts for nearly all the

genotypes, then 2H � 20 ¼ 1, b! 0 and bias is very strong.

The number of phenotypes NP can be estimated from

PP(V); NP � 0:13� 1:76L fits the data well (see Methods).

From this, we find b � 0.25 � 0.91L, which shrinks with

increasing L. Typically, we find that about 75% of genotypes

map to the ‘effective number’ bNP ¼ 2H of structures. Never-

theless, bNP ¼ 2H � 0:033� 1:60L, and continues to grow

exponentially. For L ¼ 55, b � 0:001 and bNP � 4� 109 of

the NP � 4� 1012 phenotypes take up about 75% of the gen-

otypes. For L ¼ 126, b � 2� 10�6 and bNP � 1� 1024: Even

though bias greatly reduces the effective number of pheno-

types accessible to mutations, their number continues to

grow exponentially, and so can still be extremely large for

this system.

2.4. Comparison with fRNAdb database of functional
non-coding RNA

To explore how this bias plays out in nature, we took, for

lengths ranging from L ¼ 20 to 126, every sequence in the

fRNAdb database [21] and calculated the NS size V of its

associated SS. The correspondence between PG(V) from

random sampling and the distribution of V from the database

is striking (figure 3 and electronic supplementary martial,

figures S1 and S2). Not only are these natural RNAs mainly

drawn from the minuscule fraction b of SSs with large V, but

their distribution is remarkably close to what one would

obtain from randomly sampling genotypes. Rank plots for

L ¼ 55 (figure 4) further illustrate how natural ncRNAs are

constrained mainly to the set of bNP¼ 2H ‘relevant structures’.

These results are, at first glance, surprising, because many

ncRNAs have well-defined functional roles and so will have

been subject to natural selection for which there exists exten-

sive evidence [7]. Some insight may be gleaned from an

exchange that occurred not long after the start of the molecular
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Figure 3. Neutral set size distributions illustrate how bias constrains natural RNA secondary structures. Sampled distributions PP(V) (red diamonds) and PG(V)
(blue circles) and analytic approximations to PP(V) (black lines) and PG(V) (cyan lines) are compared with ncRNA from the fRNAdb database [21] (green squares).
For each length (denoted in the top corners), the data are shown both on a lin – log and log – log graph to highlight different parts of the distributions. The natural
data are remarkably close to the G-sampled PG(V), but quite far from the P-sampled PP(V). The number of natural structures plotted are 7327 for L ¼ 20 (which
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melanogaster are used, and for L ¼ 55 and L ¼ 126, where we also plot a smaller curated dataset of 213 and 172 structures, respectively (magenta triangles),
where the SS is known to be important (see electronic supplementary material). Smaller numbers of data lead to larger binning error bars, but the curated sets are
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revolution in biology. Frank Salisbury [4] expressed doubt that

evolutionary search could work, because genetic spaces are

typically exponentially large, and, he claimed, are probably

sparsely populated with functional phenotypes. In a famous

response [5], John Maynard Smith pointed out that evolution

is aided by neutral mutations, because these imply many

fewer phenotypes than genotypes and also connect genotypes

into neutral networks that can be explored by evolving popu-

lations. Phenotype bias may further facilitate evolutionary

search by limiting potential outcomes. But, taken together,

this still does not counter the heart of Salisbury’s objection,

namely that functional phenotypes are extremely rare and so

hard to find.

Here, we instead suggest that the reason the ‘null model’

PG(V) predicts what is found in nature so accurately is that

‘good enough’ SSs are relatively easy to find. Of course, the

full functional ncRNA phenotype typically has a smaller NS

size than the SS does, because it requires further constraints on

the sequence to achieve functionality [8]. We postulate that

while natural selection creates function by acting on such

sequence constraints, it also automatically draws from a palette

of easily accessible SS variation that is strongly pre-sculpted
by the mapping (see [14] for a similar suggestion). Another possi-

bility might be that the correspondence with PG(V) simply

means that the SS has no adaptive value. However, this scenario

is unlikely, because it is well established that the SS is an impor-

tant determinant of the three-dimensional structure [6,8,9],

which, in turn, helps determine function. Moreover, the corre-

lation with PG(V) remains strong when we curate the database

for structures where SSs is known to be important. Altogether,

this suggests that RNA SSs that facilitate biological function

are—contra Salisbury—not rare, at least not within the set of

‘relevant structures’ most easily accessible to random mutations.

Salisbury’s arguments are also undermined by in vitro
evolution experiments that selected random RNA strands

for self-cleaving catalytic activity and found that the hammer-

head ribozyme repeatedly emerged, suggesting convergent

evolution [25]. The hammerhead ribozyme appears so

frequently in all three kingdoms of life that it has recently

been termed ubiquitous [26]. We examined the 13 hammer-

head ribozymes from the natural dataset [21] for L ¼ 55,

finding that S ¼ logðVÞ � 23:87 + 0:64 4, very close to the

peak of the G-sampled distribution at �SG � 23:4 (see L ¼ 55

panel in figures 3 and 4). We postulate that evolutionary
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convergence is observed in these experiments and in nature,

not so much because the hammerhead ribozyme is fitter than

other possible self-cleaving enzymes but, rather, because it is

particularly easy to find. There may even be many other self-

cleaving ribozymes among the 99.9% of L ¼ 55 structures that

evolution is unlikely to search through [25]. It would in fact

be interesting to devise artificial methods to search for such

undiscovered ribozymes [27,28].
2.5. Distribution of stacks
Are the 2H relevant structures different from the whole set of

NP possible structures? Our arguments above suggest that

this should be the case for properties that correlate with NS

size. Previous studies (typically on much smaller datasets)

have found that structural features (e.g. distributions of

stack and loop sizes) of the natural and random SSs are

quite similar [13], and that natural and random rRNA share

strong similarities in the sequence nucleotide composition

of SS motifs such as stems, loops and bulges [16], although

natural RNAs are more stable than random RNAs [14].

Indeed, we find that the natural RNAs have slightly more

bonds than in G-sampled structures (see electronic

supplementary material, figure S3c,d ).

We find that V correlates negatively with the number of

stacks (i.e. sets of contiguous base-pairs) K (see electronic sup-

plementary material, figure S6). The natural distribution of

stacks closely follows the G-sampled distribution, but differs

markedly from the P-sampled distribution (figure 4a). For

example, the hammerhead ribozyme has three stems, close to

the most likely number by random G-sampling for L ¼ 55,

but much less than the P-sampled average of �10. Bias

means that it will be difficult for evolution to find L ¼ 55 struc-

tures with a large number of stacks, again raising the question

of what kind of functionality is possible in principle that cannot

be reached by evolution because of such phenotype bias

constraints.

As an independent check on our stack predictions, we also

obtained 214 natural experimentally determined SSs from the

STRAND RNA database [29], and plot the experimentally

determined number of stacks versus length L in figure 5b.

The majority of experimentally determined structures have

numbers of stacks that are within 1 s.d. of the mean
calculated from G-sampling, as one would expect if our

theoretical predictions were accurate. By contrast, the exper-

imentally determined number of stacks differs significantly

from P-sampling estimates.

2.6. Distribution of mutational robustness
Interestingly, the bias towards larger V also leads to structures

with larger mutational robustness [6,12], and again natural

data closely follow G-sampled distributions (figure 6). Larger

robustness is considered to be advantageous [6], so that, in

this important way, phenotype bias facilitates evolution. It is

also interesting to note just how large the mutational robust-

ness is for these data. For L ¼ 55, there are of the order of

NP � 8� 1012 phenotypes, so that the mean probability

of finding a phenotype by randomly picking a genotype is

of the order of 1 � 10213. Instead, for both the G-sampled

and the P-sampled structures, the probability of a nearest

neighbour generating the same phenotypes is of the order of

1012 times higher than random chance. As recently emphasized

in [31], this large difference arises from genetic correlations,

and typically lifts the robustness well over the minimal

threshold d ¼ 1=3 L [5] (d � 0:0061 for L ¼ 55) needed to

generate large connected neutral networks.
3. Discussion
By solving properties of the GP map from sequences to

RNA SSs for strands up to L ¼ 126 nucleotides in length, we

show explicitly that the vast majority of sequences map to an

exponentially small fraction of all possible phenotypes (a sum-

mary of scaling forms for key properties of RNA can be found

in table 1). One consequence of this strong bias is that only an

exponentially small proportion of the morphospace of possible

structures can ever be presented to natural selection. Even if

one could re-run the tape of life over again multiple times,

many structures that are physically feasible and potentially bio-

chemically functional are extremely unlikely to appear simply

because they are inaccessible to evolutionary search.

While the existence of bias in the RNA GP map has been

known for quite some time [6,12–20], and studies using smal-

ler amounts of natural data have suggested that aspects of the

mapping are reflected in nature [13,14,16–18], our ability to
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Figure 5. Natural stack distributions for ncRNA correlate with G-sampling but not with P-sampling. (a) Distribution of the number of stacks for L ¼ 55 via G-sampling
(blue circles) and P-sampling (black diamonds). Natural data (green squares) are remarkably close to the G-sampled distribution, and are drawn from a tiny fraction of
the full morphospace of structures (the P-sampled distribution) with small numbers of stacks. The red diamonds are from a combinatorial estimate of stack number [30]
that helps corroborate our P-sampling result. (b) Comparison with experimentally measured structures: the brown squares denote the number of stacks experimentally
determined for 214 non-pseudo-knotted structures with L . 20 which were taken from the RNA STRAND database [29]. The cyan diamonds show �K G, the mean
number of stacks calculated by G-sampling with the Vienna package [10], which can be accurately fitted with �K G ¼ 0:074 L� 0:377: The blue diamonds show
the G-sampled number of stacks 1 s.d. above or below the mean. The natural data (brown squares) from the RNA STRAND database are consistent with the G-sampled
theoretical data. By contrast these natural data are far away from the expected number of stacks from P-sampling, shown here for an estimate that uses the linear
relationship between the P-sampled distribution of log(V) and K (electronic supplementary material, figure S6) to infer �K P (red diamonds), which are well described by
a linear fit �K P ¼ 0:177 L� 0:443 (solid red line). Independent estimates of �K P come from [30], and include an asymptotic measure �K P � 0:1717 L (dashed-dotted
line) (see electronic supplementary material). The close agreement between the two independent methods for estimating the mean number of stacks from P-sampling
gives us further confidence in our fits to the full P-sampled distribution. (Online version in colour.)
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Figure 6. Natural robustness distributions for ncRNA correlate with G-
sampling but not with P-sampling. The distribution of robustness, defined
as the fraction of mutations r that retain the same SS phenotype, is given
for L ¼ 55 via P-sampling (black line) and G-sampling (blue circles). Natural
data (green squares) are remarkably close to the G-sampled distribution, and
are considerably more robust than the average of structures in the full
morphospace. We also note that most phenotypes have a robustness that
is above the threshold (r . d � 0:0061) needed for the formation of
connected neutral networks [31]. (Online version in colour.)
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calculate GP map properties for much larger L allows us to

make a comprehensive comparison with the fRNAdb data-

base for functional ncRNA [21]. While one might expect

that, owing to bias, large V structures are relatively more

plentiful in nature [17,18], perhaps the most surprising

result of this study is just how closely the natural data

follow the prediction of uniform G-sampling over genotypes.

We find that the distribution of NS sizeV, the number of stacks

S and the mutational robustness r of naturally occurring

ncRNA all closely follow the G-sampled distributions, and

deviate significantly from the P-sampled distributions. The dis-

tribution of bonds also deviates strongly from the P-sampled

distribution, but, in contrast to the other distributions above,
it also exhibits a small deviation from the G-sampled distri-

bution, with natural RNA having slightly more bonds [14]

(see electronic supplementary material, figure S3c,d).

Why does it appear as if we can virtually ignore natural

selection with G-sampling? We postulate that, even though

the number of relevant structures remains extremely large,

SSs that are good enough for function are nonetheless abun-

dant, most likely because small differences between them do

not matter that much. Instead, some broader coarse-grained

structural features are likely to be sufficient for many func-

tional roles. We suggest that natural selection works on this

pre-sculpted variation mainly by further refining parts of

the sequence. Some evidence for this picture can be gleaned

by the fact that natural structures have slightly more bonds

than G-sampled RNA structures do, suggesting selection

for greater thermal stability [14].

Interestingly, the fact that many properties of ncRNA SSs so

closely follow the G-sampled distribution is direct evidence

against claims that the hyper-astronomically large size of

genotype space makes functional structures virtually impossible

to find. Such assertions were perhaps most famously made by

Salisbury [4] over 45 years ago. Despite an illuminating response

by Maynard Smith [5], and much experimental evidence to

the contrary, such ‘arguments from large numbers’ remain a

popular trope in anti-evolutionary polemics today.

The ease with which we can calculate distributions of RNA

properties suggests an analogy to the concept of ergodicity in

statistical physics, which means that ensemble averages are

equivalent to time-averages. When ergodicity (approximately)

holds, then it is often true in practice that sampling (via compu-

ter simulation for example) a relatively small number of

‘typical’ states (small compared with the total number of poss-

ible microstates) is sufficient to accurately calculate ensemble

averages of key properties. Something akin to ergodicity may

be operating in our case, because statistical averaging via

G-sampling is close to the snapshot of many trajectories over



Table 1. Large L scaling of some key quantities for RNA SSs. For the number of
sequences V for the NS of the largest non-trivial structure, defined as V¼
10U, we find U ¼ ð0:514 + 0:009ÞL� ð0:20 + 0:5Þ, whereas for the
trivial structure, with V¼ 10T, we find T ¼ ð0:5166 + 0:0009Þ
Lþ ð1:33 + 0:06Þ so that U becomes relatively more close to T as L
increases. The G-sampled mean of S ¼ logðVÞ scales as �SG ¼
ð0:399 + 0:0014ÞLþ ð1:48 + 0:09Þ: For large L, �SG � 0:78 U, whereas
for P-sampling �SP � 0:63 U so that �SP=�SG � 0:8: Similarly, the standard
deviations of log(V) can be directly calculated, and in the large L limit tend to
�sP=U � 0:37=

ffiffi
L
p

and �sG=U � 0:31=
ffiffi
L
p
: This explains analytically what

can be observed qualitatively in figure 3 and the electronic supplementary
material, figures S1 and S2: the PG(V) distribution is slightly narrower than the
PP(V) distribution. As L increases both distributions become more sharply
peaked relative to the total range [0, U ] and PG(V) highlights SS phenotypes
that are deeper into the tails of the PP(V) distribution (and vice versa).

quantity large L scaling form

total number of genotypes NG ¼ 4L

total number of SS phenotypes NP � 0:13� 1:76L

mean V 4L=NP � 7:7� 2:27L

largest non-trivial V 10U � 0:7� 3:27L

V for the trivial structure 10T � 21:4� 3:29L

probability to sample trivial

structure

PT � 21:4� 0:82L

V near peak for phenotype

sampling

10�SP � 0:01� 2:1L

V near peak for genotype

sampling

10�SG � 30:2� 2:5L

Shannon entropy of distribution H � 0:675 L� 4:92

‘effective number’ of SS phenotypes bNP � 0:032� 1:60L

bias parameter b ¼ 2H=NP � 0:25� 0:91L

G-sampled mean number of stacks �K G ¼ 0:074 L� 0:377

P-sampled mean number of stacks �K P ¼ 0:177 L� 0:443
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time that we observe in the database, the latter being analogous

to a time-average. On the other hand, evolution is not an

equilibrium process. Indeed, the exponential bias in the GP

map suggests that evolutionary waiting times for more rare

phenotypes to appear also grows exponentially [20]. Thus,

the number of novel phenotypic possibilities will continue to

(slowly) increase with time. With large waiting times, contin-

gency is more likely to play an important role. So if a certain

evolutionary change is predicated on one of these rare pheno-

type fixing, then the process of waiting for these innovations

may be non-ergodic.

The suggestion that biases in development or other internal

processes could strongly affect evolutionary outcomes has tra-

ditionally been highly contentious (see [32,33] for an

overview). For example, in a recent exchange, entitled: ‘Does

evolutionary theory need a rethink?’, Laland et al. [34] argue

in favour of the thesis by, among other things, advocating for

the importance of developmental bias. In their rejoinder,

Wray et al. [35] write: ‘Lack of evidence also makes it difficult

to evaluate the role that developmental bias may have in the

evolution (or lack of evolution) of adaptive traits’, and call

for new evidence: ‘The best way to elevate the prominence of
genuinely interesting phenomena such as . . . developmental

bias . . . is to strengthen the evidence for their importance’.

While the RNA system we study here is much simpler than a

typical developmental system, that vice is also a virtue, because

it allows us to make detailed calculations of the whole morpho-

space that can then be closely compared with natural data.

Thus, RNA SS provides perhaps the clearest and most unam-

biguous evidence for the importance of bias in shaping

evolutionary outcomes.

Bias in the GP map constrains outcomes and so naturally

suggests one mechanism for homoplasy (where similar biologi-

cal forms evolve independently) [36]. The causes of homoplasy

are sometimes elaborated in the context of the difference between

parallel evolution, where homoplasy is thought to occur because

two organisms share a common genetic heritage, and conver-

gence proper, where the same solution is found by different

genetic means, and where the primary causal force is usually

attributed to selection. While this binary distinction may be too

simplistic (see [36–39] for some recent discussion), very roughly,

parallel evolution is thought to be considerably weaker evidence

than true convergent evolution is for the idea that re-running the

tape of life would generate similar outcomes. Interestingly, the

bias in the GP map discussed here does not fit into this twofold

demarcation at all. Re-run the tape of life, and as long as RNA

graces the replay, so will a very similar suite of molecular

shapes. But the reason for this repetition is not a contingent

common genetic history, nor the Allmacht of selection [40], but

rather a different kind of ‘deep structure in biology’ [41].

Our ability to make detailed predictions about evolution-

ary outcomes as well as counterfactuals for RNA may also

shed light on Mayr’s famous distinction between proximate

and ultimate causes in biology [42], which has been the

subject of much recent debate in the literature [43]. This

distinction has historically been used to argue against the

role of developmental bias in determining evolutionary out-

comes [33,44]. While, as also mentioned above, the RNA GP

map is much simpler than a typical developmental system, it

is instructive to consider how the bias described in this

paper plays into Mayr’s ultimate–proximate distinction. For

example, what is the cause of convergent evolution of the ham-

merhead ribozyme [25]? The ultimate cause for a self-cleaving

ribozyme emerging in populations or in in vitro experiments is

surely natural selection for self-cleaving catalytic activity. But

why is a three-stack structure repeatedly found, and not say

a 10-stack structure, even though the latter are much more

common in the morphospace? The cause here is not natural

selection per se because it is unlikely that an efficient 10-stack

ribozyme is biophysically or biochemically impossible to

make. Instead, the explanatory force [44,45] for the ‘why’ ques-

tion is mainly carried by a proximate GP mapping constraint,

namely that the frequency with which 10-stack structures arise

as potential variation is many orders of magnitude lower than

the frequency with which three-stack structures do. Because

the fittest can only be selected and survive if they arrive in

the first place [22,23], the evolutionary mechanism that leads

to convergence here might be better termed the arrival of the
frequent [20].

We also note that the mapping constraint described here

differs from classical physical constraints, which would act on

the whole morphospace, and from phyletic constraints, which

are contingent on evolutionary histories [46]. This mapping

constraint has some resemblance to classical morphogenetic

constraints which also bias the arrival of variation [47]. But it
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also differs, because the latter are conceptualized at the level of

phenotypes and developmental processes, and may have been

shaped by prior selection, whereas the former constraint is a

fundamental property of the mapping from genotypes to phe-

notypes and was not selected for (except perhaps at the origin

of life itself).

Finally, strong phenotype bias is also found in model GP

maps for protein tertiary [48,49] and quaternary structure

[50], gene regulatory networks [51,52] and development [53],

suggesting that some of the results discussed in this paper for

RNA may hold more widely in biology. While all these

GP maps only capture a tiny fraction of the full biological

complexity of an organism, if the bias is also (exponentially)

strong, then its effects on the rate with which novel variation

appears are likely to persist even when further biological details

are included. Although more evidence needs to be gathered

before making firm pronouncements, it may well be that we

need to let go of the commonly held expectation that variation

is isotropic in phenotype space or morphospace [54]. Or to put

it more provocatively, perhaps our null models should by

default assume that variation is highly anisotropic and biased

towards certain outcomes over others, unless there is direct

evidence to the contrary.
4. Methods
4.1. Folding RNA structures
To map a sequence to an SS, we use the Vienna package [10]

with all parameters set to their default values (e.g. the temperature

T ¼ 378C). This software employs dynamic programming tech-

niques to efficiently fold sequences based on thermodynamic

rules. Methods of this type are widely used, have been extensively

tested and are thought to be relatively accurate. For example, a

related method [55] was recently shown to correctly predict

73+ 9% of canonical base pairs for a database of known RNA

structures up to lengths of 700 nucleotides. Generally, these

methods are expected to work better for shorter strands [56],

and should work well for the lengths we explore. However, they

typically cannot correctly predict pseudo-knots. Knowledge-

based methods that also take input from known structures and

other information may be more accurate for predicting the struc-

tures of individual sequences [57], but such methods could

introduce biases for GP maps because they take input from natural

structures. Thermodynamically based methods such as the Vienna

package are therefore probably better suited for working out

global properties of the entire GP map, including structures that

have not (yet) been found in nature. For these reasons, this package

has been most frequently used in studies of full GP maps [6,12–20].

To check our Vienna package results, we compared RNA structure

package [55] calculations for the G-distributions of stacks and

bonds (electronic supplementary material, figure S3), finding

very similar distributions. We also compared the two packages

for other motifs like bulges, loops and junctions, finding again

very similar predictions (graphs are not shown).
4.2. Exponential growth of the number of strands with
strand length L

To illustrate how rapidly the number of sequences grows with

length consider the following: there are L4L nucleotides in the set

of all possible sequences of length L. The mean mass of a single

RNA nucleotide is about 5 � 10223 kg, so that, for example, the

set of all L ¼ 55 strands weighs about 3.8 � 1010 kg, the set of

all L ¼ 79 strands weighs about 1.5 � 1025 kg or about 2.6 times
the mass of our Earth, whereas the set of all L ¼ 126 RNA

strands would have an almost unimaginably large mass of about

5 � 1053 kg, more than the mass of the observable Universe,

which is estimated to be about 1053 kg.
4.3. Generating distributions PG(V) and PP(V)
by sampling

We used a standard (PYTHON) random number generator to create

sets of random sequences. For each sequence, we used the

Vienna package to find the lowest free energy SS. To determine

V for each SS, we used the NSSE described in [18], which

employs sampling techniques together with the inverse fold

algorithm from the Vienna package. We used default settings

except for the total number of measurements (set with the -m

option), which we set to 1 instead of the default 10 for the sake

of speed. We checked that this has a negligible effect (typically

less than 1%) on the accuracy of our distributions. We also

checked the NSSE against the full enumeration for L ¼ 20, find-

ing an agreement of R2 ¼ 0.97 for structures with V larger than

the average; it performs slightly less well for rare structures.

For longer lengths, the number of samples were: 105 for L ¼ 30,

3 � 105 for L ¼ 40, 20 000 for L ¼ 35280, 5000 for L ¼ 852100

and 1000 for L ¼ 126. Sequences that generate the trivial structure

are discarded. A small fraction of sequences (which increa-

ses with increasing length) were also discarded owing to the

inverse folding package failing to converge (see electronic

supplementary material).

To generate the PG(V) distribution, we partition the support of

the distribution into bins which are uniform on an S ¼ log10ðVÞ
scale. We then determine the probability mass PG(V) in each bin.

Error bars are simply statistical: there is a trade-off between

making smaller bins to give a greater resolution and minimizing

statistical errors that increase when there are fewer measurements

per bin. Bins with too few sampled points were typically not

included in the graphs to avoid large error bars. PP(V) is generated

from the sampled data by dividing though by V (measured at the

midpoint of the bin). PP(V) is normalized with the NP calculated

from the analytic approximation to PP(V) (see below).

4.4. Analytical fit to neutral set size distributions
For analytic fits, we make a simple log-binomial ansatz:

PPðVÞ ¼
N
q

� �
ð pPÞqð1� pPÞN�q, ð4:1Þ

where q ¼ logðVÞN=U, 10U is the largest non-trivial V, and N and

pP are parameters that are fitted to measured distributions. In other

words, the probability that a P-sampled SS is found with S ¼
log(V) is distributed binomially. By definition PGðVÞ/VPPðVÞ:
Taking normalization into account is enough to show that PG(V)

has the same binomial form as equation (4.1), but with parameter

pP replaced by pG ¼ ð pP10U=NÞ=ð1� pP þ pP10U=NÞ: Fixing the

parameters N, U and either pG or pP thus fixes both distributions.

For L ¼ 20, equation (4.1) with U ¼ 10, N ¼ 8.0 and pP ¼ 0.55

describes the exact PP(V) from full enumeration very well, as can

be seen in figure 1b. The related approximation for PG(V)

performs slightly less well for G-sampled data for L ¼ 20, but

it still captures the main qualitative features.

For larger L, we determine the parameters as follows: first, we

estimate U from the largest non-trivial NS size found. This method

inevitably provides a lower bound U0 on the true maximum U.

However, given the rather sharp upper bound generated by the

binomial fit, we expect that the relative errors in U are quite

small. For example, for L ¼ 60, we used 20 000 samples to deter-

mine U0 ¼ 30.56. From the binomial form, we estimate that U0 is

within an error dU ¼ 0:45 of the true U with 90% probability.

Next, we calculate �SG, the G-sampled average of S ¼ log(V), as
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well as the standard deviation �sG in S from G-sampled data. We

can then determine the parameter pG ¼ �SG=U, derived by

taking the mean of q through equation (4.1). The parameter N
can subsequently be extracted from the measured G-sampled

standard deviation: �sG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N pGð1� pGÞ

p
U=N: The P-sampled

standard deviation is given by �sP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N pPð1� pPÞ

p
U=N: Because

pP ¼ �SP=U , pG, so also �sP , �sG: In this way, we obtained the

binomial fits shown in figure 3 and the electronic supplementary

material, figures S1 and S2. The close agreement between the

sampled data and our fits for lengths up to L ¼ 126 suggests that

this procedure is fairly robust.

It is harder to find structures with small V, so that the PP(V)

can only be partially sampled, especially for larger L. However,

given how well our simple ansatz works for predicting PG(V),

and given that for L ¼ 20 RNA the binomial form works so

well for the full range of structures, we expect the full PP(V) to

be at least similar if not very close to equation (4.1). Further

evidence for this form can also be extracted from combinato-

rial arguments for the distributions of stacks [30], which are

correlated with log(V) (see below).
53
4.5. Rank plots
Analytic rank-plot functions are the cumulative density function

of PP(V). For L ¼ 20, all structures are known, so a rank plot

can be directly made. For L . 20, the measured V of natural

SSs was used to align points to a rank function calculated from

the analytic binomial fit to PP(V).
4.6. Scaling forms as a function of L
We further used the lengths L ¼ 30–100 to extract scaling forms

for several properties as a function of L. Linear fits in L are

shown for U, T, SG and N in the electronic supplementary

material, figure S5. T is close to U, so that the relative difference

between T and U decreases as L increases (electronic supplemen-

tary material, figure S5). A summary of the scaling forms for

different properties in the large L limit can be found in table 1.
4.7. Probability PT to find the trivial structure
The probability of finding the trivial structure, PT, decreases

exponentially with increasing L:

PT ¼
10T

4L � 21:4� 0:82L: ð4:2Þ

For example, for L ¼ 20, we can directly measure PT � 33%,

whereas for L ¼ 55 it has already dropped down to a mere

0.04%. This rapid decrease in PT justifies our decision to ignore

the trivial structure in our fitting to PG(S) and PP(S).
4.8. The number of SS, NP, as a function of L
For L ¼ 11220, we used full enumerations [20] to calculate NP.

For longer L, we used our analytic fit as follows: the

mean (including trivial structure) of V is 4L/NP, so that

ð1� PTÞ4L=NP ¼
PU

S¼0 PPðVÞV: Given the binomial form of

PP(V), the sum can be carried out analytically, from which it

follows that NP ¼ ð1� PTÞ4L=ð1� pP þ pP10U=NÞN : At each L,

we evaluated N,PT,pP and U, and used this to evaluate NP.

A simple linear form,

NP � ð0:13 + 0:04Þ � ð1:760 + 0:007ÞL, ð4:3Þ

provides a good fit to the data (electronic supplementary

material, figure S5).
4.9. Scaling forms for the Shannon entropy H and bias
parameter b as a function of L

From the expression for the entropy derived above, it directly

follows that H ¼ 2 L� log2ð10Þ�SG: Using the fit derived above

for SG, the entropy grows with L as H � 0:675 L� 4:92 and the

effective number of states scales as 2H¼ 4L=10
�SG � 0:033� 1:60L

(this ignores the trivial structure, but the effect is very small for

larger L). Note that one only has to find �SG, which is easily

obtainable, to determine this important quantity. By combining

with equation (4.3), we find that the bias parameter scales as

b ¼ 2H=NP � 0:26� 0:91L:

4.10. Sampling natural RNA from the fRNA database
To generate the distributions of functional ncRNA, we took

all available sequences for each length studied (ranging from

L ¼ 40 to 126) from the non-coding functional RNA database

(fRNAdb [21]). For L ¼ 20, we took data from Drosophila
melanogaster only, but this made up 77% of all L ¼ 20 SSs in

the database. For each sequence, we found the SS and used the

NSSE to estimate its V. A small fraction of the natural RNA

sequences contained non-standard nucleotide letters, e.g. N or

R; such sequences were ignored, because the standard packages

cannot treat them. Similarly, a small fraction of sequences were

also discarded owing to the NSSE failing to converge (see elec-

tronic supplementary material). We checked that there were no

repeated sequences in the database of natural RNA. Finally, in

the electronic supplementary material, we provide a breakdown

of the identity of the structures for L ¼ 20, 55, 70 and 126 and

also take curated subsets of the data to emphasize structures

where the SS is known to be important. In figure 3 and the elec-

tronic supplementary material, figures S1 and S2, we show for

L ¼ 55 and L ¼ 126 that the close correlation with PG(V) remains

when data are curated.

4.11. Checking for codon bias
Genetic mutations are random in the sense that they do not arise to

benefit an organism. Nevertheless, it is well known that in other

ways mutations are not uniformly random [58]. One example

(among several) is that transitions (pyramidines$ pyramidines

or purines$ purines) are more frequent that transversions (pur-

ines$ pyramidines) [58]. For many of these biases, mutations

can still effectively sample the whole space uniformly without

preferring certain genotypes over others. Nevertheless, there are

biases that lead, for example, to an excess of GC over AT base

pairs, or vice versa in DNA [58]. To test for the effect of strong

bias of this type, we generated V distributions with 30% GC

(AU bias) and 70% GC (GC bias) content for different lengths.

The overall effect becomes less pronounced for longer strands

(electronic supplementary material, figure S4). Because natural

DNA (and by extension RNA) can show biases for both larger

and smaller GC content, we argue that this can to first order be

ignored when comparing with natural datasets across many

species, although the effects may be observable on datasets with

large content bias.

4.12. Calculating P-distribution of stacks
We used a linear relationship between log(V) and K (electronic

supplementary material, figure S6) to transform PP(V) into an

estimated P-sampled distribution of stacks, as shown in

figure 4a, and used this to obtain the P-sampled average �KP:

We also adapted analytic results from [30] based on combinato-

rics (see the electronic supplementary material) to calculate

estimates for the P-sampled distribution of K and for �KP: The

close agreement shown in figure 4a,b, between the two

independent methods for estimating the number of stacks from
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P-sampling increases our confidence in our binomial fits to the

full P-sampled distribution.

4.13. Calculating the robustness distribution
A strong positive correlation between mutational robustness and

V is well established in the literature [6]. For figure 6, the robust-

ness for G-sampled data (taken from 105 random sequences) and

natural data (taken from the 504 natural sequences for L ¼ 55)

was calculated by folding all 3L strands within one point mutation

and calculating the fraction r that generates the same SS. Error bars

come from our binning procedure. For the P-sampled distribution,

such a sequence robustness cannot be defined, so instead the

robustness per sequence was first averaged over a set of sequences

for each SS to estimate a mean robustness (phenotype robustness)

per SS. We next generated a cubic fit to the mean r per SS versus
logV. The fit was constrained to have r ¼ 0 at V ¼ 1 and had

R2 ¼ 0.93. This was then combined with PP(V) to generate an esti-

mate of the r distribution for P-sampled data. Because we do not

have many data points at small V, the fit is partially an extra-

polation. Further error may arise from the partial sampling of the

phenotype robustness. Nevertheless, we do not expect this

procedure to lead to a significant difference in the qualitative com-

parison between P- and G-sampled data for robustness, given that

the two are so different.
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