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Fixational eye movements predict visual
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During steady fixation, observers make small fixational saccades at a rate of

around 1–2 per second. Presentation of a visual stimulus triggers a biphasic

modulation in fixational saccade rate—an initial inhibition followed by a

period of elevated rate and a subsequent return to baseline. Here we show

that, during passive viewing, this rate signature is highly sensitive to small

changes in stimulus contrast. By training a linear support vector machine to

classify trials in which a stimulus is either present or absent, we directly com-

pared the contrast sensitivity of fixational eye movements with individuals’

psychophysical judgements. Classification accuracy closely matched psycho-

physical performance, and predicted individuals’ threshold estimates with

less bias and overall error than those obtained using specific features of the sig-

nature. Performance of the classifier was robust to changes in the training set

(novel subjects and/or contrasts) and good prediction accuracy was obtained

with a practicable number of trials. Our results indicate a tight coupling

between the sensitivity of visual perceptual judgements and fixational eye con-

trol mechanisms. This raises the possibility that fixational saccades could

provide a novel and objective means of estimating visual contrast sensitivity

without the need for observers to make any explicit judgement.
1. Introduction
Even during stable visual fixation, when the visual world seems stationary, our

eyes are moving. These movements consist mainly of slow drifts in eye position

that are punctuated by tiny (,18) rapid flicks (fixational saccades) at a rate of

around 1–2 per second [1]. Fixational saccades share many features with larger

voluntary saccades (such as a correlation between amplitude and peak eye

velocity [2]) and an increasing body of neurophysiological evidence points to a

common generation mechanism involving the superior colliculus (SC) [3,4–8]

and cerebellum [9,10] with modulation (at least for voluntary saccades) by cortical

regions including the lateral intraparietal area and the frontal eye fields [11–13].

The influence of fixational saccades on visual processing has been investigated

at both the physiological and perceptual levels. Firing rates of individual neurons

in the SC, lateral geniculate nucleus, V1, V4, MT and intraparietal cortex are sup-

pressed before and during fixational saccades [14–17]. Mirroring findings with

large voluntary saccades, a variety of perceptual costs have been reported

around the time of fixational saccades, including reduced contrast sensitivity

[18–20] (but see [21,22]), impaired motion detection [17] and distortions of per-

ceived position [23]. Recent work, however, suggests that fixational saccades

may facilitate the processing of fine spatial detail [24,25] by re-positioning gaze

on the most sensitive parts of the fovea [26,27]. They may also serve a functional

role in counteracting visual fading in the peripheral visual field [28,29], though

this view has recently been criticized on several grounds [27].

As well as exerting an effect on visual processing, the production of

fixational saccades is itself shaped by visual input [30–32]. The presentation

of a peripheral visual stimulus biases the distribution of fixational saccade
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directions: they tend to be directed first towards the location

of the stimulus and subsequently back towards fixation, a

pattern that has been attributed to shifts in covert attention

[8,33–37]. Visual input also exerts a modulatory influence

on the frequency of fixational saccades. Following the presen-

tation of a visual stimulus, fixational saccade rate exhibits a

characteristic biphasic signature: initially decreasing (inhi-

bition) before rebounding to a higher level and then

returning to baseline levels [1,38]. This rate signature is

induced by a wide variety of stimulus transients, even

when the stimulus is task-irrelevant [1,33,38].

To date, studies of the rate signature have opted to aggre-

gate data across multiple subjects and compare fixational

saccades across a limited number of discrete conditions. For

example, a recent study compared the mean rate signatures

in a group of 27 subjects at three different luminance contrast

levels, finding systematic changes in the amplitude and

latency of the inhibition phase [38]. Here we take a para-

metric approach to probing the contrast sensitivity of the

rate signature in individual subjects. We first show that

features of the rate signature change systematically across

small increments in contrast close to subjects’ detection

thresholds. By training a machine-learning algorithm to clas-

sify trials on the basis of whether a stimulus was presented,

we further demonstrate that fixational saccades during pas-

sive viewing can be used to accurately predict individual

psychophysical contrast sensitivity.
2. Methods
(a) Participants
Seven participants (two females; mean age ¼ 32, range ¼ 19–46)

with normal or corrected-to-normal vision participated in the

study. Five observers were naı̈ve to the aim of the experiment,

including one observer who had little or no experience of

visual psychophysics.

(b) Stimulus materials and procedure
Observers sat in a dark room and were instructed to maintain

fixation on a central white dot (0.088 diameter; Weber contrast

0.95). The head was secured using a chin and forehead rest.

Stimuli were large Gabor patches presented centrally (standard

deviation of 58; spatial frequency of 0.33 cycles deg21; 1 frame

duration at 85 Hz). Phase was randomized to prevent the

build-up of a retinal afterimage and orientation was randomly

set to +458. There were two trial types: passive and response.

During response trials (indicated by a synchronized tone pip),

observers were required to indicate the orientation of the Gabor

using the left and right arrow keys on a keyboard. During passive

trials, no response was required. Passive and response trials were

randomly interleaved with inter-trial intervals randomly selected

from a uniform distribution (1–1.4 s) to counteract effects of expec-

tation observed when fixed intervals are used [8,34]. We opted to

have distinct response and passive trials because the fixational sac-

cade rate is modulated by manual response preparation [39].

However, the two types of trials were interleaved so that any con-

trast sensitivity differences due to tear break-up [40], learning or

fatigue affected oculomotor and behavioural estimates equally.

Stimulus contrast was randomly selected from the range 0.7 to

4% (12 contrasts with log steps), with the addition of a baseline

condition (0%) for passive trials.

Stimuli were generated using PSYCHOPY [41,42] on a Viglen

computer and presented on an 18 inch CRT monitor (Clinton

Monoray, CRS Ltd, Cambridge, England; resolution 1024 � 768;
Ib ¼ 148 cd m22) with a viewing distance of 65.5 cm. The lumi-

nance response of the monitor was gamma-corrected and 14-bit

greyscale resolution was obtained using a Bitsþþ stimulus

processor (CRS Ltd).

(c) Eye movement analysis
Eye movements were recorded binocularly (500 Hz) with an

Eyelink 1000 infrared eye tracker (SR Research Ltd, Ontario,

Canada). Raw gaze positions were converted to degrees of visual

angle using the data from a nine-point calibration at the beginning

of each block. Each observer completed at least 10 sessions

(seven blocks per session), yielding a minimum of 900 passive

trials and at least 224 response trials per contrast level (max ¼

322, mean ¼ 250 trials).

Observers were instructed that they could blink freely; how-

ever, to maximize the number of trials with no blinks, after every

20 trials they were given a break during which they could blink

and rest their eyes. Data during blink periods (pupil size ¼ 0)

and semi-blinks (pupil velocity exceeded 50 units sample21

[43]), along with a buffer of samples 200 ms before and after,

were ignored for subsequent analyses.

Saccades were detected using an established velocity-

threshold algorithm [1,44], using a threshold of six times the

standard deviation of the median velocity. Identified saccades

with duration ,6 ms or amplitude ,3 or .60 arcmin were

discarded. Saccades within 50 ms of each other were merged to

deal with situations in which overshoots were classified as separ-

ate saccades. To improve the robustness of saccade classification,

fixational saccades were required to overlap in time across both

eyes. We verified that fixational saccades followed the main

sequence [2] by plotting amplitude against peak velocity.

For all saccades across the population, R2 was equal to 0.92, ran-

ging from 0.83 to 0.96 across individuals. In total, we collected

around 2 24 000 fixational saccades (mean and range per

individual¼ 32 000, 25 800–41 600).

(d) Rate signature features and saccade amplitude
Saccades were placed in 2 ms time bins within an epoch of

100 ms before to 1100 ms after the stimulus onset (using the

start time of each saccade so that it would be counted only

once). The mean rate in each bin was calculated and multiplied

by the sample rate to give saccades per second. Trials in which

a blink interval overlapped for at least 100 ms of the epoch

were discarded. Amplitudes (maximum displacement of eye

position during a saccade) were also averaged within each bin.

95% confidence intervals were calculated using non-parametric

bootstrapping across trials (10 000 repeats) and data were

smoothed using a Savitzky–Golay filter with a 102 ms window.

To extract features of the rate signature, the saccade rate was

normalized using the baseline rate for each individual. The

latency and magnitude of the inhibition, and minimum saccade

amplitudes, were computed from a time window 0–400 ms

post-stimulus. The latency and magnitude of the rebound were

calculated from the maximum rate in a time window between

the minimum of the inhibition and 800 ms post-stimulus.

(e) Psychophysical and oculomotor contrast detection
thresholds

Individual psychophysical contrast detection thresholds were

computed from a logistic fit of the proportion of correct responses

at each contrast during response trials. We explored a similar

curve-fitting approach to estimate contrast detection thresholds

from individual features of the rate signature and saccade ampli-

tude data. Further details of the estimation and comparison of

thresholds are included in the electronic supplementary material.
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Figure 1. Fixational saccade rate and psychophysical performance vary as a function of small changes in stimulus contrast. (a) Fixational saccade rate (computed
from passive trials) as a function of time since stimulus onset for subject 6. Solid blue lines show the mean rate at the contrast indicated above each panel and solid
black lines the mean rate for the no stimulus condition, with shaded regions indicating 95% confidence intervals. Raster plots at the top of each panel show
fixational saccade events from 30 trials per line. (b) Fixational saccade rates normalized to the baseline condition with each of the seven subjects represented
in different colours. Note the variability in the lowest contrast at which the rate signature becomes apparent. (c) Proportion correct contrast detection performance
from trials in which subjects were prompted to respond. Data were fitted with a logistic function and thresholds (75% correct) are indicated in each panel.
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( f ) Support vector classifier
For each contrast condition, we trained a separate support vector

classifier using the normalized saccade data for that contrast as

one group and the normalized saccade data for the no contrast

condition (blank trials) as the second group (example shown in

figure 3). We used the LIBSVM algorithm [45] in MATLAB with

a linear kernel and the cost parameter set to 1e6. The performance

of the classifier was poor using raw trials, probably due to the

sparse nature of fixational saccades, so we down-sampled the

raw data across time bin and trial. A detailed description of the sup-

port vector classifier and our manipulations of the data used to train

the classifier are included in the electronic supplementary material.
3. Results
(a) Changes in the rate signature as a function

of stimulus contrast
Figure 1a shows the effects of increasing stimulus contrast on

the fixational saccade rate signature for an example individual
(subject 6). In trials where no stimulus was present, the fixa-

tional saccade rate fluctuated around a baseline level (black

line in each panel) and this is also the pattern observed when

the contrast was low (for example, the blue line representing

the 1.3% condition). With increasing contrast, a gradual emer-

gence of the stimulus-induced biphasic rate signature can be

seen. Rate signatures for all subjects are depicted in figure 1b.

As contrast increased, each showed a systematic increase in

the inhibition of saccades immediately following stimulus

presentation. There was also an increase in the magnitude of

the subsequent rebound in saccade rate in all but one subject,

for whom the rebound was absent (subject 7 in figure 1b).

While all subjects displayed a gradual emergence of the rate

signature across the contrast range tested, there are clear indi-

vidual differences. For example, a robust rate signature can be

seen in subject 1 for contrasts as low as 1.8%; however, subject 2

shows little or no rate signature for contrasts below 2.5%. For

comparison, figure 1c shows psychometric functions con-

structed from response trials in which subjects judged the

orientation of the Gabor patch stimulus (see Methods for
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details). Psychophysical contrast detection thresholds (inset in

each panel) appear to covary with the minimum contrast at

which a rate signature is observed for each individual.

(b) Estimating contrast detection thresholds using
features of the rate signature

To investigate the quantitative link between psychophysical

detection thresholds and the modulations of saccade rate, we

first characterized the rate signature by calculating the magni-

tude and latency of the inhibition and rebound stages. Both

inhibition and rebound magnitude varied markedly across

individuals, with maximum rebound ranging between 1.31

and 2.88, and maximum inhibition ranging between 0.44 and

0.95 times the baseline rate. There was a weak but not signifi-

cant correlation between inhibition and rebound magnitudes

within individuals (rs(5) ¼ 0.68, p ¼ 0.11). There was also a

modest shortening of the latency of the rate signature with

increases in contrast, both for the inhibition (population

maximum mean latency was 235 and 181 ms for the 1.8 and

4.0% conditions, respectively) and the rebound (population

maximum mean latency was 439 and 387 ms for the 1.8 and

4.0% conditions, respectively). Mean fixational saccade ampli-

tudes decreased during the inhibition phase, exhibiting a dip

similar to that observed for the saccade rate. We computed

the minimum amplitude in the same time window in which

we calculated the maximum inhibition: the mean across

individuals fell from 21 arcmin for the baseline condition to

17 arcmin for the 4% contrast condition.

We fitted logistic functions (see equation 2 in electronic sup-

plementary material, Methods) to several features of the rate

signature (figure 2a–c) and to the minimum fixational saccade

amplitude (figure 2d; see Methods). Behavioural thresholds

and those predicted from the fixational saccade data are com-

pared directly in figure 2e–h and summarized in figure 2i.
The inhibition magnitude and the total magnitude (rebound

magnitude2inhibition magnitude) had RMS prediction

errors across subjects of 0.078 and 0.087, respectively. Rebound

magnitude and fixational saccade amplitude had larger RMS

prediction errors across subjects (0.103 and 0.098), and logistic

fits were rejected for one subject in each case because the R2 of

the fit was below 0.3 (indicated by filled triangles in figure 2f,h).

Thresholds predicted from the fixational saccade data were

generally higher than behavioural thresholds, indicated by a

positive bias in the mean prediction errors (figure 2j).
The feature-based approach for estimating behavioural

thresholds has several drawbacks. Psychophysical thresholds

were defined against an objective criterion (75% correct perfor-

mance). In contrast, rate signature features varied markedly

across individuals and the scaling that was employed to

account for this variation led to different criterion thresholds

for each subject (essentially the mid-point between the maxi-

mum and minimum values). Further, certain features could

not be extracted for each individual and contrast condition.

At low contrasts, where no rate signature was apparent, it

was not possible to define latencies and it was not possible to

extract any features from the rebound for subject 7.

(c) Estimating contrast sensitivity using the
performance of a support vector classifier

To overcome the limitations associated with the feature-

based analysis, we employed a supervised machine-learning
algorithm to analyse the fixational saccade rate. We trained

support vector machines to classify trials into one of two

groups: those in which a certain stimulus contrast was pre-

sented and those where no stimulus was presented

(baseline trials). Given the sparse nature of fixational sac-

cades, we down-sampled across trial and time (see

electronic supplementary material, Methods; figure 3a) and

then performed a leave-one-out cross-validation on paired

samples from each group. The inhibition and rebound are

visible in the down-sampled trials for the 4% contrast con-

dition but not for the baseline condition (main panels in

figure 3b). When tested with the left-out sample the classifier

successfully categorized baseline trials and 4% contrast trials

for all but three samples (‘classifier decision’ panels in

figure 3b). We trained classifiers for each contrast condition

and calculated the percentage correct for each sample at

each contrast (figure 3c: the last column shows the six incor-

rect decisions from the classifier decision panels for the 4%

condition in figure 3b). The mean classifier performance

across samples exhibited a sigmoidal increase as the contrast

increased, from chance performance to 95% correct

(figure 3d ), similar to psychophysical performance. Perform-

ance for individuals was calculated from the mean classifier

performance when the left-out samples belonged to that indi-

vidual (figure 3e). Thresholds predicted from classifier

performance (figure 3f,g) displayed less bias than those pre-

dicted from rate-signature features, and the RMS error was

slightly lower across subjects (0.072).

(d) The effect of leaving a subject out of the training
set

To investigate which features of the data were important in

the estimation of individual thresholds, we manipula-

ted the training set in three ways. First, we addressed the

dependence of the threshold prediction on whether the clas-

sifier had been exposed to the data from each subject. We

trained the classifier as before but with the difference that

one subject was left out of the training set (see electronic sup-

plementary material, Methods). In the cross-validation phase,

we tested the classifier both with the left-out sample and with

one of the samples taken from the subject who had been left

out of training. Prediction errors for each combination of sub-

ject left out and subject tested are displayed in figure 4. The

mean RMSE was similar irrespective of which subject was

left out of the training set (left panel) and varied little as a

function of which subject was in the test set (lower panel).

Thus, the classifier generalized no matter whether a subject

was present in the training set or not. The diagonal of the

matrix (highlighted with black dashed lines) indicates predic-

tion errors when the classifier was tested with an individual

who had been omitted from the training set. These errors are

summarized in the top panel (blue line with circles) along

with the prediction error when the classifier was trained

with all of the subjects (red line with crosses). The cost in

prediction error associated with leaving out a subject was

generally small, suggesting that the classifier could be used

to estimate contrast sensitivity in individuals whose data

had not been used to train it. The large cost observed for sub-

ject 7 suggests that a classifier trained with the other subjects

did not capture the idiosyncrasies present in that subject’s

data; one qualitative difference is that subject 7 exhibited

little or no rebound.
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(e) The effect of training on one contrast and testing
on all contrasts

Our second manipulation tested the dependence of the

threshold prediction on whether the classifier had been

exposed to a certain contrast in the training stage. We trained
the classifier with data from one contrast condition and then

tested it with data from all of the other contrasts (figure 5).

Even when tested on data from novel contrast conditions,

classifier performance increased as a function of test contrast,

although overall performance increased as a function of the

trained contrast (figure 5a). There was a cost to testing with
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data from a novel contrast: the error and positive bias were

larger than for the classifier trained and tested with data at

the same contrast (asterisks in figure 5a,b). However, only

for the three lowest contrasts is the error more than twice

that of the classifiers trained and tested with the same

contrast.
( f ) The effect of varying the number of trials
in a sample

Finally, we investigated the dependence of predicted

thresholds on the amount of test data by varying the number

of trials in a sample (keeping the number of samples constant;

see electronic supplementary material, methods). Both the

positive bias and error decreased as the number of trials

increased (figure 6a); overall, this decrease began to plateau

when the number of trials per sample was around 30 (300

trials in total). However, there was a substantial inter-individ-

ual variability in the RMSE function across the number of trials
per sample (figure 6b), indicating that the classifier perform-

ance was more robust for some subjects with smaller

amounts of data.
4. Discussion
We investigated the effect of varying stimulus contrast on the

biphasic fluctuation in the fixational saccade rate that occurs

in response to visual transients. Rate signatures measured

in individual subjects were sensitive to small changes in

contrast around the detection threshold, with a systematic

increase in the magnitude of both the inhibition and rebound

accompanying each step increase in contrast. The effects

of varying contrast on the rate signature, albeit averaged

across subjects, has previously been reported for coarser con-

trast steps [38]. Our data demonstrate that the rate signature

is sensitive to much smaller manipulations of contrast within

individual subjects. It has previously been shown that

inhibition latency decreased as the contrast increased [38].
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We noted only a modest decrease in inhibition latency (and

rebound latency) within subjects; however, we employed a

narrow range of contrasts around threshold. As there were

no latencies associated with conditions in which no rate

signature occurred, we did not attempt to estimate contrast
sensitivity based on the latency of the inhibition or rebound.

Both our and previous [38] data are at odds with a recent

study in which no systematic relationship between stimulus

contrast and fixational saccade rate was reported [46].

This apparent discrepancy may be due to differences in the
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analyses used. In that study the analysis focused on a time

window 100–250 ms after stimulus onset, within which

robust changes in the proportion of fixational saccades directed

towards a parafoveal target were observed. However, applied

to the frequency of fixational saccades, it is possible that this

may have overlapped both inhibition and rebound phases of

the rate signature. In addition, data were averaged across

eight subjects, and given that it is unclear how the contrasts

used related to individual behavioural thresholds, this aver-

aging may have further diluted the effect of contrast on

fixational saccade rate. Consistent with our findings, a recent

study reported that the total number and amplitude of fixa-

tional saccades during stimulus presentation were inversely

correlated with the visibility of the stimulus [47]. This study

also reported substantial individual variability in the patterns

of fixational saccades, reinforcing our approach of collecting

many trials for each individual.

The rate signature was discovered in the course of inves-

tigations directed at how fixational saccades changed during

tasks involving covert attention. Many studies have now

demonstrated that the average direction of fixational saccades

changes as a function of cue location (a possible correlate of

covert attention), either towards this location in the time

window just after presentation [8,34] or away from this

location at later times [33,35–37]. However, given that we

employed large stimuli centred on fixation, it is unsurprising

that we found no evidence of this orientation effect. Previous

work suggests that while the direction of attention towards a

stimulus is not required for it to generate a rate signature [38],

it may have a modulatory effect. For example, inhibition

associated with an infrequent stimulus in an oddball paradigm

is lengthened during active trials relative to passive viewing

[48]. Although we did not attempt to explicitly manipulate sub-

jects’ attention, we can be reasonably confident that stimuli on

passive and response trials were equally attended, due to

their random interleaving throughout the experiment and

unpredictable timings. Given that several studies have shown

that psychophysical contrast sensitivity is also modulated

by attention [49,50], it would be interesting to see whether
the tight coupling between the rate signature and contrast

sensitivity that we observe is maintained across different

attentional states.

(a) The neural basis of the rate signature
Although no study has directly investigated the neural circui-

try underlying the rate signature, it has been posited that

inhibition of both fixational [38] and larger, voluntary sac-

cades [51] is mediated by a retinotectal pathway operating

directly through the SC. The short latency of the inhibition

(in some cases ,100 ms) means that cortical involvement is

unlikely [38]. Conversely, the rebound in rate occurs at a

latency .300 ms, increasing the probability of influences

from more indirect, cortical pathways. Our data show that

inhibition (figure 2a) and rebound (figure 2b) components

of the rate signature emerge at similar contrast levels,

suggesting that if they do arise from distinct neural mechan-

isms they must share a common dependence on stimulus

visibility. It may be the case, however, that contrast sensi-

tivity does not provide a clear means of discriminating

between sub-cortical and cortical influences. For example,

semi-saturation contrasts measured in individual neurons

tend to be similar in the SC (24% [52]) and V1 (24.1% [53]).

Indeed, neuronal responses to low-contrast stimuli tend to

be weaker and more delayed in both cortical and sub-cortical

regions [54,55], making it difficult to infer a specific neural

locus from contrast-dependent changes in the amplitude

and/or latency of the rate signature.

(b) The rate signature as an objective measure of
sensitivity

Visual contrast sensitivity is a key indicator of real-world visual

performance and a reliable biomarker for a range of ocular

diseases. For example, age-related macular degeneration,

glaucoma, diabetic retinopathy, cataract and optic neuritis are

all associated with abnormal contrast thresholds (see [56]).

Similarly, measures of contrast sensitivity have been useful for
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evaluating the therapeutic effectiveness of surgical or pharma-

cological interventions [57]. Given its clinical importance, it is

vital that contrast sensitivity can be measured reliably in a

broad range of clinical groups. However, current clinical tests

rely on repeated subjective responses from observers, making

them unsuitable for use in paediatric and older adult popu-

lations, or any situation where cognitive impairments limit

response accuracy. Therefore, there is a recognized clinical

need to develop an objective measure of contrast sensitivity.

To date, the most promising approach has focused on electro-

physiological estimates of contrast sensitivity, but practical

limitations and issues relating to data quality [58] have

meant that it has had little impact on clinical practice. The

close relationship between precisely measured behavioural

thresholds and those predicted from classifier performance

suggest that the rate signature could be used as a new objective

measure of contrast sensitivity.

By manipulating the composition of the datasets used to

train and test the classifier, we were able to investigate the

dependence of our approach on several factors. Estimation

of contrast threshold was generally robust to removal of

all data from a given test subject from the training set, indi-

cating good inter-subject generalization. There was, however,

a noticeable deterioration in performance following self-

exclusion for one subject, who had a particularly idiosyncratic

rate signature profile. Interestingly, there was no cost associ-

ated with including this or any subject in the training set.

Together, these results suggest that successful estimation of

detection thresholds using the classifier depends on sufficient

capture of inter-subject variation during the training phase,

raising the possibility that expansion of the training sample

could further improve the prediction accuracy obtained with

novel subjects. Our results clearly indicate that successful

threshold estimation does not require a precise match in stimu-

lus contrast between training and test phases. Indeed, we

found only small prediction costs when the classifier was

trained with data from a single contrast, provided that it was
sufficient to elicit a rate signature. Unsurprisingly, the accuracy

of threshold estimates derived from fixational saccades is

dependent on the amount of test data available. In this study,

reasonable estimates required a sizeable, but practicable

number of stimulus repetitions per contrast. It is likely that

the time efficiency of this approach could be further improved

upon; whether it can realize its potential in a clinical setting

remains to be seen. Even if this proves ultimately impossible,

there may nevertheless be potential applications in basic

research. For example, in studies where a change in psycho-

physical contrast sensitivity is found, it is invariably difficult

to dissect the contribution of ‘early’ mechanisms that encode

visual information in cortex from relatively ‘late’ stages of pro-

cessing, which decode this information into a perceptual

decision. This is a recurring issue that has fuelled debate across

a diverse range of research areas including perceptual learning

[59], attention [60] and multi-sensory integration [61]. The ability

to measure visual contrast sensitivity without the need for any

perceptual decision could provide a novel approach towards

partitioning the relative contribution of these factors.
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