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Parasite and predator risk assessment:
nuanced use of olfactory cues

John G. Sharp, Sarah Garnick, Mark A. Elgar and Graeme Coulson

School of BioScience, The University of Melbourne, Victoria 3010, Australia

Foraging herbivores face twin threats of predation and parasite infection,

but the risk of predation has received much more attention. We evaluated,

experimentally, the role of olfactory cues in predator and parasite risk assess-

ment on the foraging behaviour of a population of marked, free-ranging,

red-necked wallabies (Macropus rufogriseus). The wallabies adjusted their

behaviour according to these olfactory cues. They foraged less, were more vig-

ilant and spent less time at feeders placed in the vicinity of faeces from dogs

that had consumed wallaby or kangaroo meat compared with that of dogs

feeding on sheep, rabbit or possum meat. Wallabies also showed a species-

specific faecal aversion by consuming less food from feeders contaminated

with wallaby faeces compared with sympatric kangaroo faeces, whose gastro-

intestinal parasite fauna differs from that of the wallabies. Combining both

parasite and predation cues in a single field experiment revealed that these

risks had an additive effect, rather than the wallabies compromising their

response to one risk at the expense of the other.
1. Introduction
It is widely understood that foraging animals trade-off the risk of predation

against the risk of insufficient resources for maintenance and reproduction,

typically by increasing their investment in predator vigilance and/or avoiding

feeding in locations where they are vulnerable to attack [1,2]. Less well appreci-

ated is whether animals also incorporate the risk of parasite infection into such

foraging trade-offs [1], even though parasitism presents significant challenges

to host fitness through negative impacts on growth, reproductive success or

survival [3,4]. While several studies have investigated the combined effects of

parasites and predators on fitness [5,6] and general behaviours, such as groom-

ing [7,8], the combined effect on foraging behaviour is largely unknown. Yet

foraging animals may often face these risks in combination, especially in

times of peak parasite activity.

Accurate risk assessment of both predation and parasite infection requires a

nuanced recognition of appropriate cues. The faeces of carnivorous vertebrates

contain odour cues that are frequently used by herbivores to assess the risk of

predation [9–13]. While the precise nature of these cues is probably complex,

there is evidence that predator diet affects these volatile compounds, allowing

prey to perceive differences between predator species, and even between individ-

uals of the same species that have fed on different prey [14–16]. Similarly, many

grazing herbivores avoid areas adjacent to faeces to reduce the risks of parasite

transmission [1,17–20]. Herbivores infected with gastrointestinal parasites pro-

duce faeces containing parasite eggs that hatch into infective larvae on the

sward, where the larvae may be ingested by other herbivores [4,21]. The parasite

larvae are probably undetectable by the herbivore, so faeces are used as a cue for

infection risk [20]. While a generalized aversion to all faeces is advantageous for

herbivores foraging in the same areas as conspecifics, it may result in less efficient

foraging if heterospecifics share foraging grounds but not parasites [22,23].

Here, we experimentally test the responses of free-ranging, red-necked wal-

labies (Macropus rufogriseus) to cues associated with the risks of predators,

parasites and both in combination. Macropodid marsupials (kangaroos and

wallabies) have been exposed to predation from past and present predators

[24] and are typically wary of predator faeces [25,26]. Macropodids also have
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diverse and highly species-specific gastrointestinal parasite

faunas [27] and often share foraging grounds (e.g. [28]). We

asked the following questions: (i) do red-necked wallabies

vary their response to predator olfactory cues according to

variation in the predator’s diet; (ii) is faecal aversion in red-

necked wallabies host species-specific; and most importantly:

(iii) how do the combined risks of predators and parasites

impact on the foraging decisions of red-necked wallabies?
hing.org
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2. Material and methods
(a) Study site
We conducted this study at the Victoria Valley Airbase (Grampians

National Park, Australia; 378110 S, 1428200 E), which comprises

two 80� 800 m runways of mown native grasses and heath. Red-

necked wallabies and grey kangaroos (Macropus giganteus and

Macropus fuliginosus) are common, and they forage and defaecate

throughout the runways. Dingoes (Canis lupus dingo) preyed on

wallabies in the past [24], but have been extirpated from the Gram-

pians region; the main extant predator is the red fox (Vulpes vulpes).
In the Grampians region, red-necked wallabies have up to 22

parasitic helminth species in their gastrointestinal tracts, yet share

very few species with sympatric grey kangaroos [29,30] (see the

electronic supplementary material). Our experiments took place

during autumn and winter in both 2012 and 2013, the peak

time for parasite infection [31]. We observed the behaviour of

39 wallabies that were individually identified with unique colour

combinations of Allflexw eartags.
(b) Predator faecal aversion
We assessed responses to predation risk by exposing wallabies to

faeces from domestic dogs that had fed on five different herbivores:

(i) conspecifics (Bennett’s wallaby, Macropus rufogriseus rufogri-
seus); (ii) congenerics (a mix of kangaroos, Macropus rufus,

M. giganteus and M. fuliginosus); (iii) larger non-native eutherians

(sheep, Ovis aries); (iv) smaller, native marsupials (common brush-

tail possum, Trichosurus vulpecula); and (v) smaller, non-native

eutherians (European rabbit, Oryctolagus cuniculus). The meat

was obtained from Yarra Valley Game Meats (Healesville, Victoria,

Australia). We fed four adult dogs, of varying breed, sex and size,

with meat of one of the five prey types for 48 h to eliminate traces of

previous diets, and then collected faeces produced while on that

diet. We collected the faeces immediately on deposition and

immediately froze them in airtight containers. Containers were

later pooled into one set of experimental faeces for each diet.

We prepared feeders by placing 200 g of crushed maize and

100 g of an inedible matrix (eucalypt woodchips) in clear plastic

freezer trays (36 � 25 cm) placed on the open runways. We

placed four clear plastic lids, each with approximately 50 g of

defrosted experimental predator faeces, 30 cm from the feeder in

the four cardinal directions. Procedural controls had rocks on the

plastic lids to imitate faeces. Each trial involved a randomly

selected type of faeces or control; the observer was always blind

to the type of faeces.

We observed wallabies using a Kowa spotting scope (20 � 60)

from a distance of less than or equal to 40 m in a concealed

position, first recording the distance between the feeder and the

nearest cover, the weather conditions and the time of day. When

a wallaby entered a 3 m radius around the feeder, we recorded

its identity and time to subsequently arrive at the feeder. Once

feeding, we noted the number of times it exhibited vigilance

[32,33] and the time spent feeding until it either left the feeder or

1 h had elapsed. We then collected the feeders, weighed the

remaining contents, removed any residual food and faeces and

sealed them in a waste container. We discounted trials when
animals knocked over trays or were scared away by vehicles, or

when rain fell (affecting weights) during the trial. We analysed

data only from individuals that participated in fewer than

five trials on a specific predator cue type. In total, 21 wallabies

contributed to 97 trials.

(c) Herbivore faecal aversion
We confirmed that the wallabies exhibited herbivore faecal

aversion by presenting animals with paired feeders (as described

below) containing 200 g of crushed maize contaminated with

100 g of mixed macropod faeces. Pilot studies (72 replicates

from 14 individuals) indicated that wallabies always chose

uncontaminated trays when presented with a choice, so we did

not include uncontaminated trays in subsequent experiments.

We collected faeces, immediately after observing deposition,

from animals foraging around the airbase, separating them

by species. Each trial comprised a pair of adjacent feeders: one

contaminated with 100 g of faeces of red-necked wallabies (con-

specific feeder) and the other with 100 g of mixed faeces of

eastern and western grey kangaroos (heterospecific feeder). As

before, we observed wallabies from a concealed position. We

recorded the identity of wallabies that approached and fed at

the feeders, together with their choice of feeder and any switch-

ing between feeders. Observations lasted until the animal left the

feeder or 1 h had elapsed, when we collected and weighed

the feeders to determine the amount of food consumed. We dis-

carded any remaining food and faeces as before. We only

included in our analysis trials where the wallaby sniffed both fee-

ders, the animal contributed to fewer than five trials, and rain

did not fall before we collected the feeder. In total, 19 individuals

contributed to 46 trials.

(d) Combined faecal aversion
We assessed the combined risk of predators and parasites by

arranging feeders according to the previous predator faecal aver-

sion experiment, but replaced the inedible woodchip matrix with

100 g of either wallaby or kangaroo faeces. We used dog faeces

containing three prey cues: wallaby (conspecific), kangaroo (clo-

sely related) or possum (smaller prey) diet. We placed the faeces

around the feeder and collected data on foraging choices and

consumption as before.

(e) Statistical analysis
We analysed data using JMP v. 10 (SAS institute, USA). For the

predator faecal aversion experiment, we used restricted maxi-

mum-likelihood (REML) models to determine the source of

variation in foraging behaviours (approach time, number of vig-

ilance bouts and amount of food eaten), with treatment (faecal

source), distance to nearest cover, time of day (morning or eve-

ning) and their interactions as fixed effects, and animal

identification (ID) as a random factor to account for multiple

tests of the same individual. For the herbivore faecal aversion

experiment, we used a paired t-test to compare the amount of

food consumed from feeders contaminated with the faeces of

either kangaroos or wallabies. In the combined faecal aversion

experiment, we used REML to explore the sources of variation

in foraging behaviours (approach time, number of vigilance

bouts and amount of food eaten), with parasite type (kangaroo

or wallaby), prey type (kangaroo, wallaby or possum), distance

to nearest cover, time of day and the interaction terms as main

effects, and animal ID as a random factor. The approach time

and number of vigilance bouts were log transformed to improve

the distribution. In all analyses we initially included the full

model, but we report (see the electronic supplementary material)

reduced models in which we sequentially removed interaction

terms where they were not significant ( p . 0.1).
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Figure 1. The effects of the presence of the faeces of dogs, fed on different diets, on (a) the number of vigilance bouts and (b) the amount eaten (g) by red-necked
wallabies. Values are means with standard error bars, with letters above indicating significant differences between treatments and numbers indicating sample size.
(Online version in colour.)
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3. Results
In the predator faecal aversion experiment, wallabies

adjusted their foraging behaviour according to type of prey

consumed. The wallabies took significantly longer ( p ,

0.05) to approach feeders surrounded with faeces of dogs

fed on wallaby and kangaroo compared with the other prey

types, were more vigilant (figure 1a), and consumed less

food at these feeders (figure 1b and electronic supplementary

material, table S3).

In the herbivore faecal aversion experiment, wallabies

typically approached the feeders, sniffed each, then began

to feed from one of them, which we deemed their ‘choice’.

Once the wallabies had made a choice, they switched feeders

on only six (13%) occasions. The wallabies consumed five

times more from heterospecific feeders (70.3+7.1 g) than

from conspecific feeders (13.8+ 3.9 g; t45 ¼ 6.4, p , 0.0001).

In the combined faecal aversion experiment, the time taken

to approach the feeder was influenced by predator cues, but

not parasite risk (figure 2a). The time spent vigilant was influ-

enced by both predator and parasite cues (figure 2b), and an

interaction term including predator cues, parasite cues and dis-

tance from cover (electronic supplementary material, table S3).

The greater time spent vigilant in the wallaby faecal treatment

may reflect a general unwillingness to feed, since there was no
choice in this experiment. The amount of food consumed

was similarly affected by cues indicating the risk of both preda-

tors and parasites (figure 2c), and the distance from cover

(electronic supplementary material, table S3). The predator

cue � parasite cue interaction term was not significant

(F2,52.7 ¼ 0.022, p ¼ 0.98).
4. Discussion
Red-necked wallabies make impressive use of olfactory cues to

gauge the risk of predation and parasite infection. The walla-

bies approached feeders surrounded by the faeces of dogs

that had fed on macropodids more warily than if the faeces

came from dogs that had fed on other herbivores. Further,

herbivore faecal aversion in red-necked wallabies is host

species-specific; wallabies ate five times more from feeders con-

taminated by heterospecific than conspecific faeces. Finally, the

wallabies’ food consumption decreased additively when faced

with the combined faecal cues for the risk of predation and

parasite infection. While herbivore faeces may include social

information (including identity, gender, dominance), this is

unlikely to explain our results because the faeces included in

each trial derive from numerous individuals, and therefore

provide a non-specific cocktail of odours. We also think it
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Figure 2. The combined effects of predator risk (the presence of dog faeces
derived from different diets) and parasite risk ( presence of conspecific and
heterospecific macropod faeces) on: (a) the approach time (s); (b) the
number of vigilance bouts; and (c) the amount eaten (g) by red-necked wal-
labies. Values are means with standard error bars. Connecting lines above the
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unlikely that red-necked wallabies use conspecific faeces as a

cue to prior foraging by conspecifics, thereby improving fora-

ging efficiency by faecal avoidance. First, herbivores select

foliage by direct visual and olfactory assessment, which pro-

vides far more precise cues of forage quality and quantity.

Second, field experiments indicate that congeners will not

trade-off their aversion to faecal contamination for a gain in

foraging efficiency [20].

The precise chemical nature of the olfactory cues present in

carnivore faeces is not known in this system, but they are clearly
influenced by diet [34–36]. Such effects are also common in

other chemical sensory systems [37]. The results of our field

experiments caution against inferring that prey respond to

different predator species per se, because the predators may

also have different diets. Red-necked wallabies most strongly

avoided faeces produced from diets that contained either con-

specifics or closely related macropodids, rather than faeces

from diets of larger rather than smaller prey, or from faeces

containing other marsupial rather than eutherian material.

Perhaps, the responses of red-necked wallabies are learnt,

with the response reflecting the frequency of encounter [38,39].

Our results suggest that herbivore faecal aversion as a

means of minimizing gastrointestinal parasite infection

levels [18–20] may be more nuanced than previously

thought. Although wallabies fed more from uncontaminated

than contaminated food, their aversion was stronger if the

food was contaminated by the faeces of conspecifics rather

than heterospecifics. This finding suggests strong selection

for parasite avoidance on the one hand, and efficient foraging

on the other. Our results contrast with findings that reindeer

(Rangifer tarandus) do not avoid sheep faeces less than con-

specific faeces [40], perhaps reflecting relaxed selection

either because these two species share a sufficiently broad

gastrointestinal parasite fauna, or there has been little history

of the two species foraging in the same location.

Studies report both additive and interactive effects of para-

sites and predators on fitness [5,6]. The wallabies might be

expected to avoid feeders associated with predator cues,

regardless of whether they had greater risk of parasite infec-

tion, if the more immediate threat of predation outweighed

that of parasitism. This was not the case. Rather, avoidance be-

haviour was most evident at feeders that were associated with

the greatest combined danger of predators and parasites. This

suggests that while the fitness consequences of predation and

parasites are often different, wallabies do not compromise

their response to the risks of either predators or parasites in

the face of the other. More complete analyses of foraging

behaviour should consider these risks simultaneously: fora-

ging herbivores are likely to trade-off foraging efficiency

against avoiding both predators and parasites.
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