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Growing old is our destiny. However, the mature differentiated cells making

up our body can be rejuvenated to an embryo-like fate called pluripotency

which is an ability to differentiate into all cell types by enforced expression

of defined transcription factors. The discovery of this induced pluripotent

stem cell (iPSC) technology has opened up unprecedented opportunities in

regenerative medicine, disease modelling and drug discovery. In this review,

we introduce the applications and future perspectives of human iPSCs and

we also show how iPSC technology has evolved along the way.
1. Introduction
The cell, the smallest unit of a living organism, which was first observed by

Robert Hooke in 1665, still fascinates the scientists of today [1]. Our body con-

sists of more than 200 committed cell types, some of which work independently,

such as blood cells, whereas others form tissues and work in networks, like

synapses from the brain to the end of the body. Despite their great diversity,

all of the cells in our body evolve from a unicellular zygote.

A zygote, which is the earliest developmental stage of embryogenesis, trans-

forms into a morula and then a blastocyst through mitotic cell division before

implantation. The inner cell mass (ICM), which is a component of the blastocysts,

matures into an epiblast of the post-implantation embryo, and then commits to

one of the three germ layers: the endoderm, mesoderm or ectoderm. In other

words, the ICM can differentiate into all of the cell types in the human body.

This highly specialized ability is referred to as pluripotency. Pluripotency was

first introduced to the culture dish as embryonic stem cells (ESCs). ESCs have

made a great contribution to developmental biology through the generation of

genetically engineered mice [2–4]. In combination with homologous recombina-

tion technology innovated by Smithies, Capecchi reported Hprt deficient mice,

the first knockout mice [5,6]. These technologies robustly accelerated the follow-

ing era of life science. Normal embryonic development, including cellular

differentiation, has long been thought of as a one-way street, which may be

likened to a ball rolling downhill, from an undifferentiated stem or progenitor

cell state to a physiologically mature cell, as depicted by Conrad Waddington

during the mid-twentieth century (figure 1) [7]. Indeed, one can think of cells

rolling down this landscape into deeper, inescapable valleys that represent the

determination of cell fate during development until the cells reach a stable state

at the bottom. It was once believed that an unnecessary genetic code in committed

cells other than germ cells was released—a principle referred to as the Weismann

barrier [8]. The cloning of a frog through the nuclear transfer of embryonic cells,

but not somatic cells, in 1952 by Robert Briggs and Thomas Joseph King

suggested that irreversible changes took place in the somatic nuclei [9]. Thus, it

seemed likely that a change of cell fate was impossible once cells were committed.

However, the story took an unexpected turn with Sir John Gurdon’s landmark

experiments in Xenopus laevis, which first established the concept of the repro-

gramming of cell fate promptly after the emergence of Waddington’s dogma

[10]. The birth of a cloned sheep in the late-twentieth century, famously named

Dolly, meant that the erasing of epigenetic memories in somatic nuclei could be

achieved, even in mammals [11]. In this way, these facts suggest that an
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Figure 1. Cell fate changes on Waddington’s epigenetic landscape. Pluripo-
tent stem cells (top, yellow) can commit to various somatic lineages (bottom
left, green) via a progenitor state (middle left, light blue) during embryonic
development and in vitro differentiation. Direct reprogramming, or transdif-
ferentiation, using tissue-specific transcription factors convert the fate of
lineage-committed cells (bottom left, green) to another differentiated fate
(bottom centre, pink), bypassing the need for a pluripotent state. There
are several ways of reprogramming lineage-committed cells (bottom right,
purple) toward pluripotency (top, yellow). Adapted, with permission, from
Waddington [7]. (Online version in colour.)
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unidentified reprogramming activity exists in oocytes and that

the activity is conserved beyond species (figure 1).

The first discovery of defined reprogramming factors

was reported in 1987 [12]. Davis et al. performed a comple-

mentary DNA subtraction and found three genes that were

expressed predominantly in the proliferative myoblasts. One

of them was myogenic differentiation 1 (MYOD1, also known

as MYOD), which encoded a basic-helix–loop–helix transcrip-

tion factor that shared homology with a transactivation domain

of the c-myc proto-oncogene. The forced expression of Myod1 is

alone sufficient to convert fibroblasts to myosin-expressing

stable myoblasts. This precise moment was the dawn of the

direct reprogramming of somatic cells into cells of another

lineage—which is one of the trends in cell biology. It showed

that the concept was thoroughly alive and extremely changeable

(figure 1) [13].

The two scientific streams emerged as induced pluripotent

stem cells (iPSCs), which bear a striking resemblance to ESCs

(figure 1) [14]. Although the reprogramming process during

iPSC generation is still wrapped in mystery, the products

offer promise in many areas, such as drug discovery, pathologi-

cal studies, toxicology, the evaluation of secondary drug effects

and regenerative medicine [15]. Here, we outline the current

knowledge and future prospects for induced pluripotency.
2. Applications of induced pluripotent stem cells
(a) Cell transplantation therapy
Since they were first reported in 1998, human ESCs have been

strongly expected to be a key to the treatment of intractable dis-

eases such as Parkinson’s disease and spinal cord injuries [16].

In 2010, Geron Corporation pressed for the initiation of the

first-ever clinical trial of ESC-derived oligodendrocyte progeni-

tor cells for the patient with spinal cord injury. Advanced Cell

Technology, another biotechnology company, reported a clini-

cal trial using ESC-derived retinal pigment epithelium to treat
dry age-related macular degeneration (AMD). However, the

acceptance of human ESCs has faced several hurdles, including

an ethical concern regarding the use of human embryos and

immune rejection after transplantation.

iPSC technology has the potential to overcome these

issues. In 2007, the proof of concept of the therapeutic usage

of iPSCs was reported in a mouse model of sickle-cell anaemia,

a genetic blood disorder caused by a defect in the b-globin

gene [17]. Homologous recombination-mediated gene correc-

tion in mutant iPSCs allowed for the disease to be cured

in donor mice. This was an example of a perfect model for

iPSC-mediated regenerative medicine. Namely, an ideal and

distinctive potential of iPSC technology exists in their use in

made-to-order therapies with autologous cells. The iPSC-

based autologous method is advantageous in comparison

with allografts from other donors, because it is not associated

with immunological rejection or infection with unidentified

viruses or other pathogens [18–20]. The first clinical trial of

the treatment of a wet AMD patient using autologous iPSCs

was launched in September 2014 by Masayo Takahashi

in Japan.

In spite of the potential benefits of autologous iPSC

therapies, there are some associated limitations. First, the prep-

aration of autologous iPSCs from each patient carries a high

medical cost. In addition, because more than three months are

needed to generate the iPSCs, it is not possible to meet the

deadline for effective treatments of some disorders such as

spinal cord injuries. It is therefore important to take a realistic

approach to the use of allogenic iPSCs in regenerative medicine.

Fortunately, the striking advantage of iPSC technology is the

flexibility of establishment from any age of donor candidates

in the world and the ease of access to their origins. Before

the generation of clinical-grade iPSC clones, we can closely

examine all of the aspects of donors such as health conditions

and their human leucocyte antigen (HLA) type. In addition, it

is possible to rigorously evaluate single nucleotide and copy

number variation based on donor information. Another

strength is the abundant availability of multiple clones from

each donor. Because human pluripotent stem cells generally

show clonal variations such as differentiation propensities, it

allows researchers to make choices based on the purpose of

each application [21,22].

Based on the experiences of bone marrow transplantation,

the matching of types of three major HLA loci including A, B

and DR between recipient and donor is expected to elicit

immune rejection after transplantation less frequently. The

most realistic method for iPSC therapy that is conceivable

under the present circumstances is based on the collection of

iPSC stock from various HLA-homozygous donors [23–25].

In the case of Japan, for example, 75 types of HLA-homozy-

gous donors can theoretically cover approximately 80% of

the Japanese population (127 300 000). It is calculated that

40 000 candidates could include these 75 donors [25]. This

search would become more promising with the cooperation

of existing cell banks making available their HLA data of

stocked cells. In fact, in 2013, the Hyogo Cord blood bank,

one of the non-government organizations in Japan, decided

to provide 10 cord blood cells of HLA-homozygous donors

for an iPSC stock project organized by Kyoto University.

Early human iPSC research has coped with problems such

as the integration of viral vectors as a possible risk of tumour-

igenicity [26,27]. Furthermore, the culture media for human

pluripotent stem cells contained animal-derived components



Figure 2. Human iPSCs for clinical use. A phase contrast image of human
iPSCs maintained in chemical defined xenofree medium on laminin 511
E8-coated tissue culture plate. The scale bar indicates 100 mm.
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that could pose a hurdle for therapeutic use in humans. How-

ever, most of the issues have been solved by recent

technological innovations such as use of integration-free

methods and xenofree culture (figure 2) [25,28–32]. Hence,

we expect that, in the near future, clinical-grade iPSCs will

be generated under conditions that correspond to good

manufacturing practices (GMPs).

Human iPSCs were first established from skin fibroblasts

[26,27,33]. A skin biopsy for fibroblast isolation may only be a

sideline issue for the surgery. However, for healthy individ-

uals, it is important to be cautious when deciding on the

harvest sites, because a biopsy may leave a visible scar, and

because the procedure carries some associated risk of infec-

tion. The sources of human iPSCs should therefore be, to

the maximum extent possible, obtained with minimally inva-

sive procedures. Cord blood is an attractive source for iPSCs

[34–36]. Immature cells such as CD34-positive cells, which

are contained abundantly in cord blood, can be a suitable

source of iPSCs, not only from the standpoint of availability,

but also because of the expectation of fewer acquired genetic

mutations. However, while cord blood banks should stock

only the cells derived from seemingly healthy donors, it is dif-

ficult to trace whether the donors remain healthy in older age.

Peripheral blood is another promising source of iPSCs [37,38].

In particular, T lymphocytes can be reproducibly converted

into iPSCs through transient-expression methods [25,39,40].

Because the rearrangement patterns of T-cell receptor loci are

different and readily distinguishable in each T lymphocyte, it

would be easy to monitor and trace the clonality of iPSCs in

the procedure under GMP. Through medical diagnosis, we

are at least able to confirm the donor’s health at the age of col-

lection. Because of the minimal invasiveness associated with

peripheral blood collection, there is a strong expectation that a

large number of healthy donors will cooperate with collection

efforts. In many nations, there are huge stocks of cord blood

and large numbers of donor candidates for platelet transfusion

or bone marrow transplantation. Peripheral blood donors are

definitely one of the most powerful and effective sources for

clinical-grade iPSC collection.

Overall, although many drawbacks of iPSC for cell

therapy were pointed out, advances have overcome many

of them and consequently led to the first clinical study.

Researchers succeeded in eliminating oncogene from repro-

gramming factors, genomic integration of viral vector, and
any animal-derived compounds from culture conditions. To

save time and cost, some HLA-homozygous iPSC bank pro-

jects have been prepared and maintained in Japan, Europe

and USA. The quality of ESC/iPSC, though it is not easy to

tell with 100% accuracy, became able to be assessed in

combination with genomic sequencing testing.

(b) Disease modelling and drug screening
A stereotypical conception related to iPSCs is that their best

medical application is in cell transplantation therapy. In our

opinion, however, disease modelling and drug screening

are at least as important as cell therapy [41]. Animal

models have made a tremendous contribution to the better

understanding of disease mechanisms. However, we do

recognize limitations of animal models in recapitulating

human diseases. For example, a number of drugs have been

developed that showed therapeutic effects in rodent models

of amyotrophil lateral sclerosis, but which proved to be inef-

fective in the treatment of human patients. Such occurrences

underscore the necessity of disease models using human

cells.

Disease-specific iPSC lines were first reported from two

groups in 2008 [42,43]. The first successful in vitro reconstruc-

tion of a disease state was the reconstruction of spinal

muscular atrophy [44,45]. Patient-derived iPSCs were demon-

strated to be useful for drug validating in Rett syndrome [46]

and in familial dysautonomia [47]. Recently, Yamashita et al.
successfully demonstrated that statin, a well-known drug for

high blood pressure, could correct degraded cartilage in both

chondrogenically differentiated thanatophoric dysplasia type I

and achondroplasia iPSCs [48]. These results not only showed

that the reproduction of disease phenotypes using patient-

derived iPSCs was possible, but also the potential applications

of iPSCs in drug screening including drug repositioning. To

date, many patient-specific iPSC lines have been established

and used for disease modelling. These are expected to facilitate

the accession of rare disease studies [49]. One of the critical

issues regarding patient-derived iPSC is of control. Despite

the ready availability of ES cells and iPSCs derived from healthy

donors, the big differences that may exist in genetic back-

grounds are often a source of controversy. Healthy family

members such as mothers and brothers are better targets for

control donors. In addition, the recent progress of genetic edit-

ing technologies using custom-made nucleases, including zinc-

finger nucleases, transcription activator-like effector nucleases

and clustered regularly interspaced short palindromic repeat/

Cas9 ground the gene collection in patient-specific iPSCs

more in reality [50,51].
3. The challenges of induced pluripotent
stem cells

(a) Diversity of induced pluripotent stem cell
characteristics

Although it has been demonstrated that each ESC line has its

own clonal differences [21], the iPSC lines have shown greater

diversity than ESCs. The cause of the variety has been

explained in several ways such as retained epigenetic

memory [52,53], genetic background [54] and features

newly obtained during reprogramming. Recent analysis
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dissecting the reprogramming process in mouse [55] and

human [56] revealed that the cells in transitional phase are

dramatically distinct from both original and fully repro-

grammed cells. Because of that iPSC diversity could be due

to the epigenetic dynamics during the process of iPSC gener-

ation from cells of somatic origin. This idea is supported by

the evidence that some distinct iPSC lines exhibit features

of incomplete reprogramming [57].

Many of the reported ‘incomplete’ human/mouse iPSC

lines have characteristics that are similar to ESCs, such as

morphology, marker gene expression and basic pluripotency

represented in the teratoma formation, while they exhibit par-

ticular defects such as poor quality of differentiation, low

growth rate, aberrant transcription, DNA methylation, chro-

matin regulation or chimeric animal contribution in mouse

[58–63]. Dissecting the molecular and biological differences

among the various iPSC lines has greatly helped in gaining

an in-depth understanding of the mechanisms that are central

to complete pluripotency.

To select completely reprogrammed iPSC lines, evidence-

based key criteria are required to be defined. However, there

have not been many reports that exhibited the link between

biological phenotype and molecular marker of human ES/

iPSCs. For example, KLF4, one of the reprogramming factors,

was considered to interrupt neurogenesis of iPSCs [57,64].

XIST is also implied as a benchmark to assess human ESC/

iPSC quality. The study comparing XaXi hiPSCs with and

without XIST expression suggests the possibility that XIST

expression influences the proliferation speed and differen-

tiation potential of hiPSCs [65]. Like these, further studies to

pursue molecular markers to evaluate ESC/iPSC quality are

required in the future.

(b) Differences between embryonic stem cells and
induced pluripotent stem cells

The claim, in dozens of reports, that epigenetic relics of

somatic origin, including DNA methylation and gene

expression, remain in iPSCs, distinguishes iPSCs from ESCs

despite their shared pluripotency [66–73]. On the other

hand, many other reports have demonstrated that no distinct

differences (including differences in epigenetic memory) exist

between ESCs and iPSCs [54,74–76]. The number of cells

used in such studies may influence conclusions. Studies

that used 2–6 ESCs and 2–12 iPSCs found notable differ-

ences in gene expression and/or DNA methylation between

ESCs and iPSCs [66–73]. Those that investigated 20–36

ESCs and 12–68 iPSCs found otherwise [74–76].

Koyanagi-Aoi et al. performed comparison analyses of

gene expression, miRNA expression and DNA methylation

between 10 ESCs and 49 iPSCs [77]. Although they saw no

clear differences between the two cell types, they did find

that some iPSCs exhibited distinguishing expression signa-

tures that were related to defects in differentiation. In

contrast, incomplete reprogramming produced clones with

distinguishable properties. A recent study has further

shown that approximately 40% of the 3771 human endogen-

ous retroviruses type-H (HERV-Hs) on the human genome

are transiently activated during reprogramming [57]. An

aberrant increase of HERV-H expression in human ESCs/

iPSCs caused by failure of silencing induces a defective phe-

notype in the directed differentiation into the neural lineage

[57,77]. Therefore, with the exception of incompletely
reprogrammed clones, substantially mature iPSCs are

thought to be indistinguishable (with regard to gene

expression and epigenetic status) from ESCs. However, the

variation in genetic backgrounds has made certain analyses

more difficult.

Recently, the invention of human somatic cell nuclear

transfer (SCNT)-ESCs has been reported [78–80], and the

comparison of gene expressions, epigenetic statuses and gen-

etic alterations between isogenic human SCNT-ESCs and

iPSCs derived from the same somatic cell cultures has been

discussed [81,82]. Ma et al. concluded that iPSCs have

inherent abnormalities, because the similarity of SCNT-

ESCs to ESCs derived from in vitro fertilized eggs is greater

than that of iPSCs [82]. They found that iPSCs have aberrant

DNA methylation statuses for some imprinted genes, such as

DIRAS3, MEG3 and PEG3, and regions of X-chromosome

inactivation. However, Johannesson et al. concluded that

human SCNT-ESCs and iPSCs have no significant differences

in gene expression, DNA methylation or frequency of de novo
coding mutations [81]. In addition, imprinting loss was

shown to occur in both SCNT-ESC and iPSC lines with a

similar frequency. A better description of human pluripo-

tency will help us to identify which of these two cell types

makes the more suitable model for development.
(c) Naive pluripotency
The combination of bone morphogenic protein and leukae-

mia inhibitory factor (LIF) causes mouse naive pluripotent

stem cells to self-renew, but into a heterogeneous population

[83]. The ground state of mouse naive pluripotency, which is

defined as a fundamental proliferative state with no epige-

netic restriction and minimal requirements of extrinsic

signals, can be achieved using chemical inhibitors for mito-

gen-activated protein kinase (MEK) and glycogen synthase

kinase 3 (GSK3) [84]. It makes pluripotent stem cell popu-

lations homogeneous and allows for the generation of

germline competent ESCs derived from non-permissive

mouse strains, such as non-obese diabetic mice [85]. Thus,

the ground state buffers cell characteristics acquired from

genetic backgrounds that create a considerable difference in

extrinsic stimuli responsiveness. It has since been demon-

strated that another approach to generating a homogenous

population is the continuous passaging of mouse iPSCs,

which abrogates transcriptional, epigenetic and functional

differences [53]. Additionally, the tetraploid complementa-

tion of mouse iPSCs has been shown to produce normal

pups, suggesting that selected fully reprogrammed iPSCs

have bona fide pluripotency that is indistinguishable from

that of ESCs [86–88]. In conclusion, these data suggest that

transcription factor-mediated reprogramming can achieve

the full spectrum of mouse naive pluripotency as well as

embryo-derived pluripotent stem cells in mice.

Recent technologies have allowed for the analysis of

human embryos [89], and two recent papers have revealed

significant differences in the global DNA methylation sta-

tuses of ESCs and blastocysts whose origins are ESCs

[90,91]. Thus, the human ESCs in the dish were no longer

identical to their embryonic origins. It therefore makes no

sense to ask, at the present time, whether factor-induced

reprogramming causes abnormalities, because we still lack

a description of desirable human pluripotent stem cells.
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A way to define human pluripotency is to understand the

ground state of human pluripotent stem cells. In the past few

years, several strategies to create human naive pluripotency

have been proposed [92–97]. The published strategies for

the conversion of human primed pluripotent stem cells to

naive state commonly use inhibitors of MEK and GSK3.

However, the use of only these inhibitors differentiates

human primed pluripotent stem cells into neural stem-like

cells [98]. Therefore, the published studies differ in their use

of additional chemical compounds or growth factors. Nota-

bly, naive human ESCs were obtained using the inhibitors

for MEK, GSK3 and protein kinase C (PKC) developed by

Takashima et al. which exhibited global DNA hypomethyla-

tion (except for the imprinted gene loci), a feature similar to

that of pre-implantation embryos [94]. A deeper understand-

ing of the ground state of human pluripotency will bring a

definitive end to the controversial comparisons and shed

light on the goal of reprogramming.
 0:20140367
4. Conclusion and future perspectives
Towards the practical use of human ESCs/iPSCs for clinical

and industrial application, a large-scale suspension cell cul-

ture system for human ESCs/iPSCs has been proposed

instead of the conventional adherent cell culture system

[35,99–101]. To achieve scaling-up, uniformed quality and

low cost, three-dimensional culture devices have been devel-

oped such as a spinner flask with dynamic stirring system.

These efficient manufacture technologies should promote

the widespread use of pluripotent cells in future [100].

iPSC generation can be used as the technology of genome-

wide epigenetic resetting in the cancer research field. The

stepwise accumulation of genetic mutation is a fundamental

model of cancer initiation and progression [102], but

the contribution of epigenetic abnormality such as aberrant

methylation is still unclear. To assess the influence of abnor-

mal epigenetic alteration on malignant cancer cell behaviour,

Stricker et al. established glioblastoma-derived iPSCs

and induced neural progenitors. iPSCs exhibited erasure of

cancer-specific epigenome whereas re-established neural

progenitors showed infiltrative behaviour upon xenotransplan-

tation, indicating the mutated genome of glioblastomawould be

a definitive cause of malignant behaviour rather than epigenetic

changes [103]. On the other hand, the epigenetic instability

induced after the forced expression of reprogramming factors

can be also used in the field of cancer development. That

the reprogramming process, in some respects, resembles the

cancer initiation process [104–110] implies the involvement of

common molecular mechanisms. The incomplete reprogramm-

ing by overexpression of OSKM factors drove the development

of Wilms-like tumours in mouse kidney without any genomic

alterations [111]. Further OSKM expression can reprogram
these tumour cells into complete iPSCs in vitro, suggest-

ing that an epigenetic change, but not genomic mutation,

could be sufficient for the occurrence of some tumorigenesis.

Mutual progression in both fields could facilitate an in-depth

understanding of cancer development.

Most of the directed differentiation methods from ESCs/

iPSCs were established models for in vivo differentiation from

the embryo. The ability of pluripotent stem cells to recapitulate

the developmental process in vitro makes PSCs useful in the

study of developmental biology [112]. The less invasive gener-

ation of iPSCs from somatic cells of rare animals facing

extinction allows us to access their developmental processes.

Thus far, iPSCs have been generated from, for example, a

northern white rhino, drill monkey [113], snow leopard [114],

domesticated horse [115] and prairie vole [116]. Such iPSCs

from various bioresources should facilitate the understanding

of species-specific molecular biology. The information yielded

from such research can be used for the conservation of endan-

gered animals, in the industrial use of molecules from valuable

bioresources and in the study of species specification.

In particular, the non-human primate iPSCs, which

have thus far been established from a range of primates

[113,117–119] are expected to serve as tools for evolutionary

analysis [120]. Their iPSCs, which are derived from fibroblasts

or blood cells which are relatively easy to obtain, have made it

possible to analyse and compare interspecies cells in vitro. The

comparison of humans and apes has revealed human-specific

traits in the regulation mechanisms of LINE-1 transposons

[121]. Although the iPSC-facilitated study of evolution and

development has just begun, the iPSCs in those fields offer

huge potential in elucidating the processes by which living

things obtained diversity and complexity.

In summary, the technology of factor-mediated induced

pluripotency has had a great influence upon the field of medi-

cine such as in transplantation therapy, disease modelling and

drug discovery. We have picked the recent advances both in

medicine and life science triggered by the generation of iPSCs.

Ongoing clinical studies of cell transplantation, improvement

of the clinical-grade iPSC bank and storage, drug screening

and repositioning will accelerate the achievements of iPSC-

based therapy. Developments have also been made in the fun-

damental life sciences, such as stem cell biology, cancer

research and evolution, by using iPSC techniques. These

studies, though still exploratory and even challenging, have a

future growth potential in these fields.
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