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It is now well established that the immune system can control and eliminate

cancer cells. Adoptive T cell transfer has the potential to overcome the sig-

nificant limitations associated with vaccine-based strategies in patients

who are often immune compromised. Application of the emerging discipline

of synthetic biology to cancer, which combines elements of genetic engineer-

ing and molecular biology to create new biological structures with enhanced

functionalities, is the subject of this overview. Various chimeric antigen

receptor designs, manufacturing processes and study populations, among

other variables, have been tested and reported in recent clinical trials.

Many questions remain in the field of engineered T cells, but the encoura-

ging response rates pave a wide road for future investigation into fields as

diverse as cancer and chronic infections.
1. Introduction
It is widely accepted that the immune system has evolved cellular and humoral

mechanisms that can evoke natural immune responses to tumours [1]. However,

in most instances, vaccines fail to induce rejection of established tumours [2].

Adoptive T-cell transfer, a term coined by Billingham et al. [3], has the potential

to overcome one of the significant limitations associated with vaccine-based

strategies, and specifically the requirement to de novo activate and expand a

tumour antigen-specific T-cell response in patients, who are often immune com-

promised. Mitchison [4] first reported the targeting of cancer through the

adoptive transfer of lymphocytes in rodent models over 50 years ago.

Application of the emerging discipline of synthetic biology to cancer, which

combines elements of genetic engineering and molecular biology to create new

biological structures with enhanced functionalities [5], is the focus of this

volume. In 1989, Eshhar and co-workers [6] reported the first synthetic receptor

expressed in lymphocytes. Shortly thereafter, Irving & Weiss [7] reported that a

chimeric antigen receptor (CAR) comprised CD8, and the CD3z chain was suf-

ficient to activate T cells. A coalescence of pre-clinical and clinical data supports

the premise that the principles of gene transfer combined with adoptive cellular

therapy are poised to overcome the fundamental limitations associated with

central and peripheral tolerance and enable the potent and efficient at-will

targeting of tumours.

There are many mechanisms that prevent the immune system from eliminat-

ing tumours in most patients [8]. One major issue is the relatively low affinity of

T-cell receptors (TCRs) for self-antigens compared with foreign antigens. In

humans, comparative analyses have revealed that the TCRs from T cells that

recognize self-tumour antigens have a substantially lower affinity (approx. 1.5

logs) for cognate major histocompatibility complex (MHC) : peptide complexes

compared with their virus-specific TCRs [9]. Adoptive transfer using engin-

eered TCRs and CARs is a promising approach to overcome this obstacle

(figure 1). The adoptive transfer of T cells with endogenous TCRs is an effective

therapy for virally induced tumours. As reviewed by Rooney and co-workers

[10], the fraction of cancer known to be caused by tumour-associated viruses

continues to increase. Because cytomegalovirus (CMV) appears to infect

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0374&domain=pdf&date_stamp=2015-09-28
mailto:cjune@exchange.upenn.edu


endogenous
TCR

transgenic
TCR

e ed Y

z
LAT

ZAP70

a b

Y

z
LAT

ZAP70

CAR

signalling
domains

ligand binding domain

Y

z

ZAP70

e.g. scFv

C
O

ST
IM

hinge and transmembrane
domains

e ed

a b

Figure 1. T cells can be engineered to have retargeted specificity for tumours. Bispecific T cells are created by introduction of genes that encode T-cell receptors
(TCRs) and chimeric antigen receptors (CARs) of desired specificity and affinities for tumours. CARs target surface antigens in an MHC-independent fashion. The
T cells retain expression of the endogenous TCR, unless this is knocked down by various approaches. Costim, cosignalling domain such as CD28, ICOS or
4-1BB; LAT, linker for activation of T cells; scFv, single-chain variable fragment; ZAP70, z chain associated protein kinase 70 kDa. (Online version in colour.)
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glioblastoma [11], clinical studies are using CMV-specific T

cells as a potential therapy [10,12].

Despite anti-retroviral therapies (ARTs), HIV-1/AIDS

continues to cause a considerable medical and economic

burden, and there continues to be a pressing need for an

HIV-1 cure. The goal of engineered T-cell therapy for HIV

is to generate an immune system that can resist HIV-1 infec-

tion, control viral replication below the limit of detection and

persist at high functional competency in the absence of ART.

A number of recent technical, conceptual and clinical trial

advances now make the goal of a HIV-1 cure tangibly

within reach. Our group has recently infused CD4 T cells ren-

dered HIV-1 resistant by deletion of CCR5 using zinc finger

nucleases into HIV-1-infected individuals [13]. These modi-

fied T cells not only persisted during ART interruption, but

also exerted some control of HIV-1 replication in vivo. In an

unpublished follow-up study supported by Sangamo Bio-

sciences, two subjects controlled HIV-1 replication off ART,

one maintaining control for 48 weeks.
2. Tumour-infiltrating lymphocytes
Adoptive transfer of tumour-infiltrating lymphocytes (TILs)

following harvest from tumour and ex vivo expansion was

pioneered by a group at the National Cancer Institute, under

the premise that lymphocytic infiltrates at tumours are enriched

for tumour antigen-specific T cells. As reviewed by Hinrichs &

Rosenberg [14], many factors influence the success of this

approach, including culture technology and host condition-

ing with chemotherapy and ionizing radiation. TIL cultures

for adoptive transfer typically are generated via short-term

ex vivo expansion and screening for anti-tumour activity. TIL-

based approaches have been primarily evaluated in the setting

of melanoma, in part because melanoma biopsies are readily

obtainable and in part because melanoma has long been

considered to be an ‘immunogenic’ tumour. TIL therapy has

been shown to result in durable tumour regression in a subset

of patients with advanced metastatic melanoma [15]. As

reviewed by Linnemann et al. [16], the mechanisms of responses
of patients treated with TILs are the result of T cells reacting to

shared antigens as well as neo-antigens created by tumour-

specific mutations or by epitopes that are encoded by alterna-

tive open reading frames [17,18]. Preliminary data suggest

that some T-cell responses against neo-antigens may be of a

higher magnitude than T-cell responses against shared self-

antigens [19,20]. We believe that the major issue facing the

field that prevents the widespread use of TIL therapy has

been the infusions of high dose IL-2 and the attendant off

target toxicities. A secondary obstacle is the challenging logis-

tics of tumour harvest and TIL culture that has prevented

investigators from conducting randomized clinical trials

analysed with intent to treat endpoints.
3. Chimeric antigen receptors
CARs are modular polypeptides typically consisting of three

distinct modules: an extracellular target-binding module, a

transmembrane module anchoring the CAR into the cell mem-

brane and an intracellular signalling module. The extracellular

target-binding module is usually derived from scFv determi-

nants isolated from antibodies, linked in a single chain

through linker polypeptide sequences. Transmembrane mod-

ules are usually derived from molecules involved in T-cell

function such as the CD8 and CD4 coreceptor molecules [21].

Recent contributions by Chmielewski et al. [22], Cheadle et al.
[23], Ruella & Kalos [24] and Jensen & Riddell [25] focus on

the status of CARs in clinical trials. The principal advantage

of CAR-based strategies is that the target-binding moiety is

derived from antibodies with affinities several orders of magni-

tude higher than TCRs. In addition, because CARs recognize

intact cell surface proteins, targeting of target cells is neither

MHC restricted nor dependent on processing and effective

presentation of target epitopes, and therefore, CAR-based

approaches are insensitive to tumour escape mechanisms

related to MHC loss variants. At this point, many groups

have shown that CAR T cells have potent anti-tumour effects

against a variety of advanced haematologic malignancies of

the B-cell lineage. The central issue facing the field is whether
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the technology can be extended to non-B-cell derived malignan-

cies, and in particular, can this strategy work for carcinomas?

There are a number of limitations and challenges, both prac-

tical and theoretical, associated with CAR-based strategies.

In terms of practical limitations, CAR-based approaches are

restricted to the targeting of cell surface determinants to

which antibodies can be generated in heterologous species. In

addition, because CARs are chimeric molecules composed of

distinct combinatorial modules that include unique junctional

fragments, there is reasonable potential for CAR-modified

T cells to be targeted by patient humoral and cellular

immune responses, which may be a clinically silent event or

in rare instances can provoke anaphylaxis [26,27]. In terms of

theoretical limitations, because CARs are engineered to deliver

TCR and costimulation-mediated signals independently from

the physiological complex through which natural signalling

occurs, it is possible that the signalling cascades initiated

through CAR engagement are qualitatively and/or quantitat-

ively distinct from those evoked by native TCR signalling.

This could result in adverse effects such as uncontrolled

lymphoproliferation, an event which fortunately has not

occurred. However, the non-physiologic signalling modules

in CARs could also have beneficial effects. An example is that

CAR T cells may be less susceptible to regulation, and therefore,

may have improved function in the tumour microenvironment

[28]. Abken and co-workers [22] describe a clever strategy of

targeting the tumour stroma by recruiting innate immunity fol-

lowing the adoptive transfer of CAR T cells engineered to

secrete transgenic cytokines such as IL-12.

A number of toxicities have emerged from the trials with

CAR T cells. These include B-cell aplasia, cytokine release

syndrome, macrophage activation syndrome and neurologic

toxicity. The cause of the neurologic toxicity remains enig-

matic but may be a class effect with drugs targeting CD19,

because it has also been observed with blinatumomab [29].

The management of cytokine release syndrome has recently

been reviewed [30].
4. T-cell receptor engineering
The feasibility of transferring T-cell specificity into primary

T cells through transfer of TCR a and b chains was demon-

strated almost 20 years ago [31,32]. Tumour-antigen-specific

T cells, expanded from both cancer patients and healthy volun-

teers, have been a primary source for isolating tumour-specific

heterodimeric TCRs, and over the years, a large variety of

approaches using both peptides and whole antigen have been

implemented to expand such T cells. Because of the low fre-

quency of such T cells in peripheral blood, the lack of effective

culture and expansion methodologies, and the impact of central

tolerance on the repertoire, T cells have only be isolated with

considerable difficulty using these approaches; furthermore,

such T cells are in general of low affinity and demonstrate

weak anti-tumour activity. A number of approaches to over-

come these issues and generate more potent tumour antigen-

specific T cells have been developed. One recent and promising

approach to overcome the issue of the intrinsically low-affinity

of TCR to self-antigens has been to enhance the affinity of the

TCR isolated from such T cells by mutagenesis ofa andb recep-

tor chains. Recent technological advances have facilitated

elegant molecular and rational high-throughput genetic

approaches to affinity enhance TCRs [33–35], and such efforts
have resulted in the ability to reproducibly generate TCR with

substantially higher affinities for target antigens [36]. An

alternative strategy to enhance TCR affinity follows from

observations of enhanced functional avidity and improved rec-

ognition of tumour cells following introduction of mutations

that reduced N-glycosylation on TCR chains [37].

As reviewed by Hinrichs & Rosenberg [14], and Ruella &

Kalos [24], there are promising early results in a variety of

tumours treated with T cells expressing TCRs engineered by

various approaches. However, there have also been on-target

and off-target toxicities with engineered TCRs. In one trial, T

cells were engineered to express a TCR generated in HLA-

A*0201 transgenic mice (i.e. not subjected to selection by the

human immune system) and that recognized an epitope

shared between MAGE-A3, -A9 and -A12. Of nine patients

treated, five demonstrated objective clinical responses, but

three patients demonstrated serious adverse events associated

with neural toxicity, including two deaths. Post-mortem analy-

sis revealed rare and previously unrecognized expression of

MAGE-A12 in brain tissue [38]. Two trials that evaluated the

use of affinity enhanced HLA-A*01-restricted and MAGE-A3-

specific TCR to target melanoma and myeloma were reported

recently. The first treated patient in each of these trials experi-

enced severe cardiac toxicity, and each patient died within 7

days of T-cell infusion [39]. Retrospective analysis demon-

strated that the affinity enhancement of the TCR resulted in

the off target recognition of a related HLA-A*01-restricted epi-

tope from the protein titin expressed in cardiac cells [40]. These

results highlight the potency of adoptively transferred T cells

with redirected specificity and the need to develop improved

methods for pre-clinical screening of engineered TCRs.

A potential toxicity following the introduction of engin-

eered TCRs is the production of mixed dimers comprised

chains from the endogenous TCR with chains from the

transgenic TCR [41]. As reviewed by Torikai et al. [42], a

particularly elegant approach to prevent this complication

involves TCR gene editing with zinc finger nucleases.

Expression of the endogenous TCR a and b chains can be

permanently abrogated using this approach, resulting in

improved expression and function of the transgenic TCRs

and CARs [42,43].
5. Bridging success in cancer to HIV
It is interesting to note from a historical perspective that some of

the first forms of adoptive cell transfer (ACT) involving gene-

modified T cells were conducted two decades previously in

patients with advanced HIV-1/AIDS [44], and that many of

the results from trials conducted in patients with AIDS have

informed current concepts in the field of cancer [45]. The initial

trials were done in order to control drug-resistant forms of HIV-

1 infection. However, the current challenge in the field is to

develop cellular therapies with the potential to eliminate the

reservoir of HIV-1 that is resistant to current antiviral therapies

[46]. The field has been energized by an extraordinary exper-

iment conducted by Gero Hütter and co-workers in Berlin in a

patient who has apparently been cured of HIV infection follow-

ing an allogeneic haematopoietic stem cell (HSC) transplant and

ACT from a homozygous CCR5 delta32 donor [47]. There are a

number of approaches to induce a cell-intrinsic resistance

to HIV-1 infection and to target the reservoir of HIV-1 by

gene-modified ACT [48].
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6. Cellular engineering
In addition to receptor engineering, optimizing the effector

function of engineered T cells can also increase clinical effi-

cacy. Previous disappointing results with adoptive transfer

strategies were due to the use of cell culture approaches

that resulted in a population of terminally differentiated

effector cells. Recent results with CAR T cells indicate that

proliferative capacity of the infused T cells is a predictive bio-

marker of clinical responses, as reviewed by Kalos and co-

workers [24]. It is now well recognized that stimulation of

T cells via their TCR without a second costimulatory signal

induces tolerance and more recent CAR-based technologies

have focused on overcoming this limitation. Thus, while

first-generation CARs depended on intracellular transduction

of the recognition signal via the CD3z chain alone, second-

and third-generation CAR constructs have incorporated

costimulatory signalling domains such as those derived

from CD27, CD28, CD134 or CD137. In addition, culture sys-

tems that provide costimulation by immobilized ligands on

beads have improved the function of adoptively transferred

T cells [49]. Sophisticated artificial antigen-presenting cells

that provide arrays of selected costimulatory molecules and

cytokines have been developed [50,51], as reviewed by

Butler & Hirano [52].

A major controversy in the field is defining the optimal

cell product for infusion. At issue is whether to purify selected

subsets of cells for culture and subsequent genetic engineering

or, more straightforward, to use bulk cell products that con-

tain mixtures of CD4þ helper, CD8þ cytotoxic, naive, central

memory, effector memory and other subsets? For example,

cell culture conditions can be optimized to promote the

expansion of T-central memory cells using anti-CD3 and

anti-CD28 coated beads with IL-7 and IL-15 [53]. As summar-

ized by Fowler [54], the blockade of the mechanistic target of

rapamycin (mTOR) during culture has the potential to

enhance adoptive therapy approaches. Manipulation of meta-

bolic pathways with rapamycin and other mTOR kinase

inhibitors can change the fate and function of adoptively

transferred T cells [55]. Furthermore, CAR T cells encoding

a rapamycin-resistant mutant of mTOR have enhanced anti-

tumour effects in pre-clinical models [56]. The factors related

to the desired composition of the adoptively transferred

cells are reviewed by Jensen & Riddell [25]. T cells with

stem cell-like properties have been described [57,58]; however,

it is not yet known if these cells are superior to central

memory or naive T cells. Ghosh et al. [59] have focused on

the development of T-cell-based immunotherapy for use in

the context of allogeneic HSC transplantation. They have

reviewed some recent studies on the development of ‘off the

shelf’ cellular immunotherapies across MHC barriers, high-

lighting the key milestones in their development and use. In

particular, they show that the adoptive transfer of precursor

T cells enhances T-cell reconstitution after allogeneic stem

cell transplantation [60].

A major issue with clinical adoptive cell transfer therapy

is the avoidance of senescent and exhausted states in the

infused cells. This issue was not predicted in mouse models

because of substantial differences in telomere biology

between the mouse and human immune systems [61]. With

TIL therapy, the telomere length of the transferred lympho-

cytes correlates with in vivo persistence and tumour

regression in melanoma patients receiving cell transfer
therapy [62]. CD28 costimulation can augment telomerase

activity and enhance telomere length during in vitro culture

[63,64]. One approach to circumvent this issue is the use of

HSCs or induced pluripotent stem cells [65,66], as reviewed

by Gschweng et al. [67]. Another approach to prevent term-

inal differentiation during culture is to uncouple cell

proliferation from effector differentiation. Crompton et al.
[68] have reviewed the cellular mechanisms that lead to pro-

gressive differentiation during the physiologic immune

response and they propose the use of synthetic biology to

uncouple proliferation from differentiation.

A potential safety concern related to the infusion of

engineered T cells is virus integration-related insertional

mutagenesis and cellular transformation, which has been

demonstrated with the genetic engineering of HSCs [69]. This

issue may also occur with non-viral-based integration using

sleeping beauty, as described by Cooper [42,43]. In patients

with congenital and acquired immunodeficiency, genetically

modified T cells have been shown to persist after adoptive

transfer in humans for more than a decade without adverse

effects [45,70], indicating that the approach to genetically

modify mature human T cells is fundamentally safe, at least

in part, because lentiviral integration sites are not random

and do not favour proto-oncogenes [71]. Furthermore, unlike

B cells, T cells are subject to clonal competition at the TCR

level, which may explain the rarity of T-cell leukaemia and

the relative resistance of T cells to transformation [72].

The development of mechanisms to control the lifespan of

the transferred T cells is yet another challenge for the field.

Initial approaches attempted to introduce ‘suicide genes’

such as the herpes simplex virus thymidine kinase (TK) gene;

however, these efforts revealed the strong potential for immu-

nologic rejection based on targeting of TK-derived sequences

[73]. More recently, an elegant and potentially powerful indu-

cible system based on the use of a modified human caspase-9

fused to a human FK506 binding protein permits conditional

dimerization and delivery of apoptotic signals in response to

small molecules that can permeate the T-cell plasma mem-

brane is currently being evaluated in clinical trials [74].

Approaches to regulate the persistence of engineered T cells

are discussed by Dotti and co-workers, Gottschalk, Savoldo

and Brenner [75] and by Jensen & Riddell [25].
7. Conclusion
In this review, we have highlighted two basic gene-transfer

approaches that are being pursued to bypass the effects of

central and peripheral tolerance on the T-cell repertoire.

Clinical data from the group at the University of Pennsylva-

nia and elsewhere generated principally over the past

5 years suggest that we are at the threshold of a golden era

for adoptive T-cell therapy, with a number of recent profound

examples of the potency and promise of this approach to

target cancer. Recent reports, using CAR T cells with

CD137 and CD3z signalling domains, which documented

long-term functional persistence of T cells engineered to

target CD19, along with long-lasting clinical remissions and

ongoing B-cell aplasia, have highlighted the potential for

adoptive T-cell transfer to induce a profound long-term func-

tional anti-tumour activity [76,77]. Despite these early

successes, a number of fundamental and important questions

still remain to be resolved for the broad, reproducible and
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effective implementation of this approach to treat cancer

beyond B-cell malignancies.

A few common themes have emerged as the principle chal-

lenges to the field. First, identification of the optimal

composition of the transferred cellular product requires

clarification. Second, in ongoing clinical studies with CAR-

engineered cells that target CD19, patients remain disease

free with persisting engineered T cells for more than 4 years

post-treatment but also with ongoing B-cell aplasia owing to

targeting of normal CD19-positive B cells, highlighting the

practical necessity to eventually ablate engineered cells and

enable normal B-cell reconstitution. Therefore, a central issue

facing the field is the design and implementation of various

approaches to control the fate of adoptively transferred cells.

These findings are being translated into the clinic at a rapid

pace, and it is likely that engineered T-cell transfer will
become established as an effective cancer therapy during the

next decade. Finally, a challenge for adoptive T-cell therapy

will be the necessity and rationale to combine the therapy

with other anti-tumour therapies. In particular, we will require

information to rationally combine with therapeutic vacci-

nation, checkpoint inhibition, agonistic antibodies, small

molecule inhibitors of tumours and the targeting of tumour

stroma and neo-vasculature, as discussed by Yee [78].
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