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In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem
cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition
from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes,
PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell
maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ
boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6)
together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues
pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf
restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA
PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering,
we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by
promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ
boundary genes by PNY-PNF is essential for flowering.

Plant development relies on the activity of the shoot
apicalmeristem (SAM) as a continuous source of founder
cells for production of new leaves, shoots, and internodes
throughout the life cycle (for review, see Aichinger et al.,
2012). A tight balance between the allocation of cells to
developing primordia and the perpetuation of pluripo-
tent stem cells in the central zonemaintains the SAM at a
constant size. In Arabidopsis (Arabidopsis thaliana), the
vegetative SAM produces leaves in a spiral phyllotaxy
with dormant axillary meristems. In conjunction, inter-
node elongation is repressed, resulting in a basal rosette.
The transition to flowering is governed by internal and
external signals that converge at the SAM to promote
acquisition of inflorescence meristem (IM) fate (for re-
view, see Amasino and Michaels, 2010; Srikanth and
Schmid, 2011; Andrés andCoupland, 2012). This process,
known as floral evocation, results in new patterns of

growth at the shoot apex, including production of flow-
ers, and an increase in stem elongation, called bolting.
Lateral organ boundaries are specialized domains of re-
stricted growth that separate meristem and organ com-
partments and produce axillary meristems (for review,
see Aida and Tasaka, 2006; Tian et al., 2014). Early in the
transition to flowering, the IM produces cauline leaves
and axillary meristems that develop as secondary inflo-
rescences. After several nodes, the IM ceases production
of leaves, and axillary meristems develop as flowers.

Floral repressors in the SAM block meristem com-
petence to flowering during vegetative stages of de-
velopment.Major pathways for promotion of flowering
work in two ways: by down-regulation of floral re-
pressors in the meristem and by production of factors
that promote IM and floral meristem identity (Bernier,
1988; Yant et al., 2010; Srikanth and Schmid, 2011). The
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switch to flowering is governed by internal signals, in-
cluding age, Suc content, and GA, in conjunction with
external cues based on photoperiod, vernalization, am-
bient temperature, and responsiveness to light or stress
stimuli (for review, see Srikanth and Schmid, 2011;
Wang, 2014). Inputs from these different pathways con-
verge to regulate a number of floral integrator genes,
including FLOWERING LOCUS T (FT), which is a central
component of the photoperiod response (Srikanth and
Schmid, 2011; Andrés andCoupland, 2012). FT encodes a
small phosphatidylethanolamine-binding protein that is
synthesized in leaves and travels through phloem to the
SAM (for review, see Corbesier et al., 2007; Jaeger and
Wigge, 2007; Mathieu et al., 2007; Andrés and Coupland,
2012), where it interacts with the basic region/leucine
zipper motif (bZIP) transcription factor FD to activate
genes conferring inflorescence identity, including
SUPPRESSOROFOVEREXPRESSIONOFCONSTANS1
(SOC1)/AGAMOUS-LIKE20 (AGL20), AGL24, and
FRUITFULL (FUL; Abe et al., 2005; Teper-Bamnolker and
Samach, 2005; Wigge et al., 2005). These factors in turn
promote the expression of floral meristem identity genes
LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER
(CAL), which confer floral fate (Bowman et al., 1993). In
parallel, age-regulated down-regulation of microRNA156
(miR156) stabilizes mRNA encoding SQUAMOSA PRO-
MOTER BINDING PROTEIN-LIKE (SPL3), SPL4, and
SPL5 transcription factors, which function with FT-FD to
specify flower development by directly activating AP1,
LFY, and FUL expression (Yamaguchi et al., 2009; Jung

et al., 2012; Wang, 2014). The plant hormone GA is a
positive regulator of flowering with function that is more
pronounced under short days (SDs) when other regula-
tory pathways are inactive. Under SDs, GAs activate the
transcription of SOC1 and LFY in the shoot apex. Under
long days (LDs), GA is not required for activation of
SOC1 but is important for activation of other transcripts
at the shoot apex. Its targets include SPL genes, which are
also directly activated by SOC1 and FD (Galvão et al.,
2012; Porri et al., 2012). How these various pathways are
integrated with stress signals is an area of active study
(Yang et al., 2012; Heinrich et al., 2013; Hou et al., 2013;
Diallo et al., 2014; Stief et al., 2014).

Members of the THREE-AMINO-ACID-LOOP-
EXTENSION (TALE) class of homeodomain transcrip-
tion factors constitute major regulators of meristematic
activity. This family includes KNOTTED1-like (KNOX)
and BEL1-like (BELL) or BEL1-LIKE HOMEODOMAIN
(BLH) members, which function as heterodimers (for
review, see Hamant and Pautot, 2010; Hay and Tsiantis,
2010). SHOOT MERISTEMLESS (STM), which is the
foundingmember of the KNOX family in Arabidopsis, is
required for SAM initiation and maintenance (Clark
et al., 1996; Endrizzi et al., 1996; Long et al., 1996). Other
TALE members, such as BREVIPEDICELLUS (BP)/
KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1
(KNAT1), KNAT6, PENNYWISE (PNY; also known as
BELLRINGER,REPLUMLESS,VAAMANA, orLARSON),
POUND-FOOLISH (PNF), andARABIDOPSIS THALIANA
HOMEOBOXGENE1 (ATH1) are expressed in the SAM
and contribute redundantly with STM in meristem
initiation and maintenance (Byrne et al., 2000; Belles-
Boix et al., 2006; Rutjens et al., 2009).

PNY contributes to meristem maintenance and flower-
ing with its closest relative, PNF (Smith et al., 2004). Dur-
ing vegetative development, the SAM in pny pnf mutants
frequently terminates with development resuming from
leaf-derived axillary meristems, a phenotype linked to
reduced expression of STM (Smith et al., 2004; Ung et al.,
2011; Ung and Smith, 2011). The pny pnf double mutant is
also nonflowering. The pny pnfmeristem changes shape in
response to floral inductive signals, and inflorescence
identity genes SOC1 and FUL are up-regulated; however,
FT levels are reduced, and floral meristem identity genes
LFY, AP1, and CAL are not expressed (Smith et al., 2004;
Kanrar et al., 2008). The basis of this phenotype is only
partly understood. Ectopic expression of LFY in pny pnf
mutants partially rescues flowering at axillary meristems,
whereas ectopic expression of FT fails to rescue flowering
and partially restores internode elongation at length,
suggesting that FT requires PNY-PNF to initiate flower
development (Kanrar et al., 2008). Additional data show
that STM functions in association with PNY-PNF to
specify flowers by promotion of LFY expression (Kanrar
et al., 2006, 2008). This has led to the proposal that STM
and PNY-PNF function together with flowering time
products FT-FDandAGL24-SOC1 to initiate development
of reproductive structures, flowers, and internodes (Smith
et al., 2011). More recently, PNY-PNF were shown
to promote the expression of SPL3, SPL4, and SPL5
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transcription factors that direct activation of floral meri-
stem identity genes in parallelwith FT-FD (Lal et al., 2011).
Compatible with this, miR156 is up-regulated in pny pnf
apices. Ectopic expression of SPL4 in pny pnf restores ac-
cumulation of LFY and AP1 transcripts and partially re-
storesflower formation (Lal et al., 2011).However, none of
thesemechanisms identified to date fully explain the basis
of pny pnf meristem defects.

In addition to roles in the SAM, these factors have dis-
tinct functions in establishing inflorescence architecture.
Significant reorganization ofKNOX-BELL gene expression
occurs at the transition to flowering in correlation with
new patterns of aerial development (Lincoln et al., 1994;
Byrne et al., 2003; Smith andHake, 2003; Smith et al., 2004;
Proveniers et al., 2007; Gómez-Mena and Sablowski,
2008). PNY and BP maintain proper internode patterning
through the regulation of cell wall remodeling proteins
(Mele et al., 2003; Etchells et al., 2012). Mutations in bp
cause short internodes and downward-pointing flowers,
whereas mutations in pny cause irregular elongation of
internodes, leading to clusters of flowers on the primary
stem with phenotypes enhanced in the double mutant.
Studies in Arabidopsis have identified the joint activities
of BLADE-ON-PETIOLE (BOP) Broad Complex,
Tramtrack, and Bric-a-brac (BTB)-ankyrin coactivators
and TALE homeodomain transcription factors as im-
portant in maintaining lateral organ boundaries (for re-
view, see Hamant and Pautot, 2010; Hay and Tsiantis,
2010; Khan et al., 2014). BP andPNY restrict expression of
lateral organ boundary genes BOP1/2, KNAT2, KNAT6,
and ATH1 to boundaries at the base of the floral shoot in
controlling growth patterns in the inflorescence (Ragni
et al., 2008; Khan et al., 2012a, 2012b; Zhao et al., 2015).
These studies revealed that BOP1/2 promote ATH1 and
KNAT6 which form a module that opposes BP-PNY ac-
tivity in regulating inflorescence architecture (Rutjens
et al., 2009; Khan et al., 2012a, 2012b, 2014; Li et al., 2012).

Here, we investigated the interaction of BOP1/2 with
TALE members in flower formation. Our studies reveal
that PNY and PNF repress the lateral organ boundary
genes BOP1/2 and transcriptional targets ATH1 and
KNAT6 to maintain meristem integrity and flowering.
Inactivation of genes in this module fully rescues pny pnf
defects in meristem maintenance, internode elongation,
and flowering. To gain insight into how this module
blocks flowering, we analyzed the transcriptome of
BOP1-overexpressing plants. Our data indicate a role for
stress signaling by promotion of jasmonic acid (JA) as a
potential mechanism for counteracting flowering, in-
cluding responsiveness to GA acting in part through the
miR156-SPL-miR172 module.

RESULTS

Inactivation of BOP1/2, KNAT6, or ATH1 Rescues
Meristem Maintenance, Internode Elongation, and
Flowering Defects in pny pnf

Previously, we showed that misexpression of
boundary genes BOP1/2, KNAT6, and ATH1 in bp and

pny internodes perturbs inflorescence architecture
through localized restriction of growth. Inactivation of
genes in this module fully rescues pny defects in inter-
node elongation and phyllotaxy, but inactivation of
KNAT2 has no such effect (Ragni et al., 2008; Khan et al.,
2012a, 2012b). We anticipated that antagonistic func-
tions of these same genes might cause pny pnf defects.
The pnf single mutant has no obvious phenotype. The
pny mutant has a functional SAM, but apical domi-
nance is reduced, flowering is delayed, and organs are
clustered on the primary stem because of irregular in-
ternode elongation. In pny pnf/+ hemizygous plants,
these defects are enhanced, and stem-pedicel fusions
occur (Smith and Hake, 2003; Supplemental Fig. S1,
A–G). In pny pnf double mutants, the SAM terminates
after the initiation of three to five leaves in a majority of
seedlings (Smith et al., 2004; Rutjens et al., 2009). Lateral
meristems in the axil of rosette leaves support the
continued production of leaves, but flowering and in-
ternode elongation are blocked (Smith et al., 2004;
Rutjens et al., 2009; Lal et al., 2011). To determine if
BOP1/2, KNAT/6, and ATH1 are required in generating
pny pnf defects, we constructed bop1 bop2 pny pnf, ath1
pny pnf, knat2 pny pnf, knat6 pny pnf, and knat6 knat2 pny
pnfmutants. We first tested for rescue of pny pnf defects
in SAM maintenance. Previous studies using the ath1-1
allele indicated that SAM arrest in triple mutants with
pny pnf is markedly enhanced, likely because of the
depletion of BELL-STM functional complexes (Rutjens
et al., 2009). Here, we repeated the analysis with ath1-3,
which unlike ath1-1 and ath1-4 alleles, produces no full
or partial mutant transcript (Supplemental Fig. S2).
Although 57.7% of pny pnf plants showed a meristem
arrest, no such arrest was observed in ath1-3 pny pnf
mutants (“Materials and Methods”; Fig. 1). Meristem
function was also rescued by bop1 bop2 and knat6 mu-
tations but not by inactivation of KNAT2 (Fig. 1). These
data suggest that PNY-PNF/STM antagonizes the ac-
tivity of lateral organ boundary genes to maintain stem
cell identity. Flower formation, internode elongation,
and organ fusion defects were also rescued in bop1 bop2
pny pnf and knat6 pny pnf or ath1-3 pny pnf triple mu-
tants compared with pny pnf and/or pny pnf/+ plants
(Fig. 2, A–H; Supplemental Fig. S3). Quantitative phe-
notypic analyses showed that inflorescence architecture
of bop1 bop2 pny pnf, ath1 pny pnf, and knat6 pny pnf
mutants was similar to that of wild-type plants
(Supplemental Fig. S4). In contrast, knat2 pny pnf mu-
tants remained nonflowering (Fig. 2I).

Overexpression studies further support a role for
BOP1/2, ATH1, and KNAT6 in the same genetic path-
way. Plants that overexpress BOP1/2 are late flowering
with shortened internodes and clustered fruits similar
to pny and pny pnf/+ mutants (Supplemental Fig. S1,
A–C; Norberg et al., 2005; Ha et al., 2007; Khan et al.,
2012b). Plants overexpressing ATH1 and occasionally,
KNAT6 have similar defects that mimic the inflores-
cence architecture of pny and pny pnf/+ mutants
(Supplemental Fig. S1, B–I; Proveniers et al., 2007;
Gómez-Mena and Sablowski, 2008; Shi et al., 2011). The
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most severe KNAT6 transgenic lines were strongly
inhibited in their development and failed to flower
(Supplemental Fig. S1, J and K). Collectively, these data
indicate that PNY-PNF plays no essential function in
meristem/boundary maintenance, internode elonga-
tion, and flowering beyond repression of BOP1/2 and
ATH1/KNAT6.

BOP1/2, ATH1, and KNAT2/6 Expression Domains Are
Expanded in pny pnf Apices

Inflorescence defects in pnymutants correlate with an
expanded pattern of expression for BOP1/2, ATH1, and
KNAT2/6 in internodes (Ragni et al., 2008; Khan et al.,
2012a, 2012b). We therefore examined the expression
patterns of these genes in pny pnf apices. In wild-type
apices, BOP2 transcripts accumulate in the adaxial do-
main of floral meristems until late stage 2, when ex-
pression shifts to the boundary with the cryptic bract.
Expression is found in the boundary domains of older
flowers (Fig. 3A; Xu et al., 2010). ATH1 transcripts are
expressed in incipient floral primordia and the dome of
stage 2 floral primordia in a pattern similar to KNAT2.
KNAT6 transcripts are localized to boundary domains
flanking the IM and in flowers also overlapping with
KNAT2 (Fig. 3, B–D). In pny pnf apices, the domain of
expression for all of these genes expands into the central
and rib zones of the meristem (Fig. 3, E–H). This was
also observed for BOP1 using a BOP1-GUS line
(Supplemental Fig. S5). Misexpression of these genes
likely begins during the vegetative stage based on
analysis of BOP2:GUS lines (data not shown), consis-
tent with SAM structural defects (Ung et al., 2011).
Little or no misexpression was observed in pny or pnf
control apices (Supplemental Fig. S6). These data con-
firm that pny pnf defects are caused bymisexpression of
BOP1/2, ATH1, and KNAT6 in the meristem. We next

examined regulatory interactions between these genes
in the pathway.

ATH1 Is a Direct Target of BOP1

BOP1/2 was previously shown to promote the ex-
pression of ATH1 and KNAT6 and require these activ-
ities to exert changes in inflorescence (Khan et al., 2012a,
2012b). To test if ATH1 and/or KNAT6 are immediate
transcriptional targets of BOP1/2, we used a transgenic
line expressing a translational fusion of BOP1 to the
steroid-binding domain of the rat glucocorticoid re-
ceptor (GR; Lloyd et al., 1994). This dexamethasone
(DEX)-inducible system was used previously to show
that BOP1 directly activates the transcription of
ASYMMETRIC LEAVES2 in leaves (Jun et al., 2010).
Function of the BOP1-GR fusion protein was confirmed
by expressing it under the control of a BOP1 native
promoter and observing efficient complementation of
bop1 bop2 leaf and abscission defects upon addition of
DEX (Supplemental Fig. S7). Direct regulation of ATH1
and/or KNAT6 was tested using the BOP1-GR fusion
protein expressed in wild-type plants under the control
of a double 35S promoter. D35S:BOP1-GR plants trea-
tedwith DEX for 4weeks had shortened internodes and
clustered fruits similar to bop1-6D mutants, which
constitutively overexpress BOP1 (Fig. 4, A–D; Norberg
et al., 2005). Transcripts forATH1were increased 13.29-
fold and transcripts for KNAT6 were increased 2.59-fold
in bop1-6D internodes compared with the wild type (Fig.
4E). Similarly,D35:BOP1-GR plants treated with DEX for
4 weeks showed a 6-fold up-regulation of ATH1 tran-
script (Fig. 4E). After 2 and 4 h of DEX treatment, tran-
script levels for ATH1 were at least 2-fold higher, but
KNAT6 transcript levels showed no increase relative to
mock-treated control plants (Fig. 4F; 24-h time point not
shown). Rapid activation of ATH1 suggested that its

Figure 1. Inactivation of BOP1/2, ATH1, and
KNAT6 rescues pny pnf meristem arrest. Plants
were grown under SDs. Numbers of plants
showing ameristem arrest on day 25 are indicated
at the upper right. A, Col-0 plant. The SAM pro-
duces leaves. B, pny pnf mutant showing a meri-
stem arrest; 90 of 156 (57.7%) of expected pny pnf
mutants in a pny pnf/+ segregating population (n =
624) showed SAM arrest (arrow). C, knat2 pny pnf
triple mutant (identical to pny pnf mutant); 11 of
36.5 (30.1%) of expected knat2 pny pnf triple
mutants in a knat2 pny pnf/+ segregating popu-
lation (n = 146) showed SAM arrest (arrow).
D, ath1 pny pnf triple mutant (no meristem arrest).
E, bop1 bop2 pny pnf quadruple mutant (no
meristem arrest). F, knat6 pny pnf triple mutant (no
meristem arrest). Bars = 5 mm.
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induction by BOP1 may be direct. We tested this by an-
alyzingATH1 andKNAT6 expression in response toDEX
induction in the presence of the protein synthesis inhib-
itor cycloheximide (CHX). After 2 and 4 h of combined
treatment with DEX and CHX, ATH1 transcripts were
increased 5- to 7.5-fold relative to CHX-treated control
plants. KNAT6 transcripts were increased up to 2-fold
after combined DEX and CHX treatment but not after
DEX alone. Presumably, this is an indirect effect of BOP1
dependent on repression of protein synthesis. These data
are consistent with ATH1 being a direct target of BOP1
and KNAT6 being an indirect target.

To examine tissue specificity of this interaction, 3.3-
and 2-kb ATH1p:GUS reporter genes expressed in
D35S:BOP1-GR (“Materials and Methods”) were mon-
itored for induction by DEX. Consistent with previous
reports (Proveniers et al., 2007; Gómez-Mena and
Sablowski, 2008), these reporters were expressed in
shoot apices, leaves, and floral organ abscission zones
and weakly expressed in the stem. After 4 h of DEX
treatment, GUS activity was enhanced relative tomock-
treated controls for both promoter lines in all tissues
(Fig. 5, A–H). These data confirm that the ATH1 pro-
moter is responsive to BOP1 induction.

Figure 2. Inactivation of BOP1/2, ATH1,
and KNAT6 rescues internode and flower
formation in pny pnf mutants. Represen-
tative 8-week-old plants are shown. A,
Col-0 plant. B, pnfmutant showing a wild-
type phenotype. C, pny mutant showing
partial loss of apical dominance, short
stature, and clusters of siliques. D, pny
pnf/+ hemi mutant showing partial loss of
apical dominance, short stature, clusters of
siliques, and stem/pedicel fusion defects
(Supplemental Fig. S1). E, pny pnf double
mutant (nonflowering). F, bop1 bop2 pny
pnf quadruple mutant (similar to bop1
bop2). Inactivation of BOP1 and BOP2 in
pny pnf rescues internode elongation and
flowering. G, ath1 pny pnf triple mutant
(similar to ath1). Inactivation of ATH1 in
pny pnf rescues internode elongation and
flowering. H, knat6 pny pnf mutant (simi-
lar to the wild type). Inactivation of KNAT6
in pny pnf rescues internode elongation
and flowering. I, knat2 pny pnf mutant
(identical to pny pnf mutant). Bars = 2 cm.
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BTB-ankyrin proteins, including BOP1/2, have no
DNA-binding domain and interact with TGA bZIP
binding factors for recruitment to DNA (Després et al.,
2000; Hepworth et al., 2005; Xu et al., 2010; Khan et al.,
2014). Direct association of BOP1 with the ATH1 pro-
moter was tested by chromatin immunoprecipitation
(ChIP) using an anti-GR antibody followed by quanti-
tative reverse transcription (qRT)-PCR. Leaf material
was collected from BOP1p:BOP1-GR bop1 bop2 flower-
ing plants. Assays were performed using eight sets of
primers spanning 2,178 bp of genomic sequence up-
stream of the ATH1 transcription start site based on
regions enriched in TGA bZIP binding sites (Fig. 5I; see
”Materials and Methods“). Motifs that match or closely
match consensus binding sites for TGA factors are also
found in the intragenic and 39 untranslated regions of
the ATH1 genomic sequence (data not shown). Quan-
titative analysis by qRT-PCR revealed at least one po-
sition in the ATH1 promoter (site IV) showing a
reproducible 1.77-fold enrichment of BOP1 protein in
DEX-treated plants (Fig. 5J). ChIP assays performed
using the mock control showed no significant enrich-
ment at this position or the control UBIQUITIN5
(UBQ5) genomic region. Site IV (nucleotides 22,686 to
22,577) is located approximately 1,515 bp upstream of
the ATH1 transcription start site and found within the
3.3-kbATH1p:GUS construct that is responsive to BOP1
induction in leaves and inflorescences (Fig. 5). Site VII
(nucleotides 21,529 to 21,416) was identified as a sec-
ond potential binding site. Taken together, these data
support that BOP1 directly associates with the ATH1
promoter in vivo to regulate its transcription.

Restored Accumulation of Flowering Transcripts in pny pnf
Apices after Rescue by Inactivation of BOP1/2, KNAT6,
and ATH1

Nonflowering pny pnf apices accumulate SOC1 and
FUL transcripts markers of inflorescence identity but
fail to accumulate FT or LFY, AP1, and CALmarkers of
floral fate (Smith et al., 2004; Kanrar et al., 2008). Ac-
cumulation of SPL3, SPL4, and SPL5 transcripts is also
diminished in pny pnf apices (Lal et al., 2011). Flowering
time of wild-type plants was compared with those of
bop1 bop2 pny pnf, knat6 pny pnf, and ath1 pny pnf mu-
tants to further quantify rescue. Figure 6A shows that
flowering time for knat6 pny pnfmutants and wild-type
control plants was similar. Flowering time of bop1 bop1
pny pnf mutants was slightly delayed (+3.6 d) and
flowering time of ath1 pny pnf mutants was slightly
earlier (26.9 d) than the wild type, consistent with pa-
rental controls (Fig. 6A; Xu et al., 2010). To test if inac-
tivation of BOP1/2, ATH1, and KNAT6 correlates with
restored expression of meristem identity genes in pny
pnf apices, we measured relative transcript abundance
in the wild type and mutants; 25-d-old plants grown
under SDs were transferred to LDs to induce flowering.
Apices were harvested 12 d later. The floral transition
was complete for all genotypes at this time point. Figure
6B confirms that SOC1 and FUL transcripts are rela-
tively unchanged in the wild type compared with mu-
tants. Figure 6B also shows that low to undetectable
levels of FD, LFY, AP1, and CAL transcripts in pny pnf
apices resumed expression in triple and quadruple
mutants, except for CAL, which remained low in bop1
bop2 pny pnf apices. Transcripts for FUL, LFY, AP1, and

Figure 3. BOP2, ATH1, KNAT2, and KNAT6 expression in pny pnf apices. Plants were grown for 3 weeks under SDs and
transferred to continuous light to induce flowering. Apices were harvested on day 15. Transcript accumulation was monitored by
in situ hybridization using longitudinal sections of Col-0 (A–D) and pny pnf (E–H) apices and gene-specific probes. Numbers in
panels indicate the stage of floral development (Smyth et al., 1990). A, Col-0 apex showing BOP2 expression in floral meristems
(until stage 2) and the boundary domains of older flowers (late stage 2 and stage 3 are shown). B, Col-0 apex showing ATH1
expression in an incipient floral primordium and the dome of a stage 2 flower. C, Col-0 apex showing KNAT2 transcripts localized
to boundary domains flanking the IM and older flowers. Expression is also observed in floral primordia and the dome of stage 2
flowers. D, Col-0 apex showing KNAT6 transcripts localized to boundary domains flanking the IM and in a stage 3 flower. E to H,
pny pnf apices showing expanded expression of BOP2 (E), ATH1 (F), KNAT2 (G), and KNAT6 (H) in the central and rib zones of
the meristem. Bars = 40 mm.
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CAL were elevated in ath1 pny pnf apices, consistent
with earlier flowering. Figure 6C shows that patterns of
miR156 and SPL transcript accumulation in triple and
quadruple mutants are likewise restored to resemble
the wild type. Collectively, these data show that PNY-
PNF is dispensable for flowering when BOP1/2, ATH1,
and KNAT6 activities are eliminated.

BOP1 Overexpression Mimics pny pnf Defects in SPL
Transcript Accumulation and Responsiveness to GA

Given that pny pnf mutants misexpress BOP1/2, we
used transcript profiling to test if dwarfism and late
flowering exhibited by the gain-of-function bop1-6D
mutant impact similar pathways. We first monitored

the accumulation of miR156 and SPL transcripts in
bop1-6D internodes for comparison with pny pnf using
qRT-PCR (Fig. 7A). These data show that miR156
transcripts in bop1-6D are 1.4-fold up-regulated relative
to the wild type. In addition, SPL transcripts in bop1-6D
were significantly down-regulated, with the exception
of SPL5. These data suggest that bop1-6D partially
mimics pny pnf (compare Fig. 6C with Fig. 7A).

To further explore similarities and differences be-
tween these two mutants, we examined transcripts in-
volved in the regulation of GA, which is a positive
regulator of internode elongation and flowering
(Mutasa-Göttgens and Hedden, 2009; Porri et al., 2012).
The expression levels of genes required for GA bio-
synthesis and catabolism and DELLA repressors of GA
signaling weremonitored by qRT-PCR in pny pnf apices

Figure 4. Activation of ATH1 and KNAT6 in the DEX-induced D35S:BOP1-GR line. A, Col-0 plant. B, bop1-6D mutant with
shortened internodes and clustered siliques. C and D, D35S:BOP1-GR plants treated with mock or DEX solutions for 4 weeks.
C, Mock-treated D35S:BOP1-GR plant showing a wild-type phenotype. D, DEX-induced D35S:BOP1-GR plant showing a
phenotype similar to bop1-6D mutant. E, Comparison of KNAT6 and ATH1 transcript levels in the wild type versus bop1-6D
mutants andmock- versus DEX-inducedD35S:BOP1-GR plants after continuous treatment for 4 weeks. F, Comparison of KNAT6
and ATH1 transcript levels in DEX-induced D35S:BOP1-GR lines with and without protein synthesis inhibitor CHX. Transcripts
were measured after 2 and 4 h of treatment. Bars = 2 cm.
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and bop1-6D apices and internodes and revealed similar
patterns (Fig. 7, B–D). In both genotypes, there was little
or no change in ent-kaurene synthase (KS) transcript,
but GA20ox1 transcripts were significantly increased
(Fig. 7, C and D; Yamaguchi, 2008). In bop1-6D, there
was a compensatory decrease in GA3ox1 transcripts
functioning later in the biosynthetic pathway (Fig. 7D;
Yamaguchi, 2008). In internodes, there was also a
compensatory increase in GA2ox7 transcripts required
in catabolism (Fig. 7, B and D; Yamaguchi, 2008). All
five DELLAs encoding repressors of GA signaling were
up-regulated in pny pnf, whereas selective up-
regulation of REPRESSOR OF GA1-3 LIKE3 (RGL3)
was observed in bop1-6D (Fig. 7, C and D). These data
indicate that GA homeostasis is disrupted in both mu-
tants. Nevertheless, deficiency alone does not account
for phenotypic defects. Spray treatments with GA3
failed to rescue flowering in pny and did not enhance

internode elongation in bop1-6D, although this mutant
flowered 4 d earlier than mock-treated control plants
(Fig. 7, E and F; Smith et al., 2004). In conclusion, SPL
transcript accumulation and responsiveness to GA are
blocked in both mutants. We, therefore, used micro-
array analysis of bop1-6D internodes to identify addi-
tional factors that might antagonize flowering and
internode elongation in these mutants.

Overexpression of BOP1 Activates Stress Pathways and
Promotes Accumulation of JA as a Mechanism for
Repression of Growth and Flowering

The transcriptomes of bop1-6D versus wild-type in-
ternodes were assessed by microarray (“Materials and
Methods”). Gene Ontology (GO) analysis of differen-
tially regulated genes revealed significant enrichment

Figure 5. Identification of the genomic region responsible for ATH1 induction by BOP1. A to H, Functional characterization of
the ATH1 regulatory region. Representative expression patterns are shown forD35S:BOP1-GR plants containing 2- (A, C, E, and
G) or 3.3-kb (B, D, F, and H) ATH1p:GUS reporter genes as diagrammed in I. Promoter activity was monitored by GUS staining
after incubation of 10-d-old seedlings or 6-week-old inflorescences for 4 h in mock or 30 mm of DEX solution. Comparison of
mock (A–D) and DEX (E–H) shows that expression is up-regulated in the leaves, flowers, and stem of DEX-induced lines for both
promoter constructs. Bars = 1mm. I, Map of theATH1 promoter and 59 untranslated region. Black arrowheadsmark the 59 ends of
genomic fragments used in construction of 2- and 3.3-kb ATH1p:GUS reporter genes. Predicted consensus binding sites for TGA
bZIP factors (Schindler et al., 1992; Izawa et al., 1993; Fode et al., 2008) are shown in relation to fragments amplified by qRT-PCR
after ChIP to test for BOP1 localization (horizontal bars). Sites in red (IV and VII) contain A boxes and show enrichment for BOP1.
J, Quantification of BOP1-GR enrichment at sites IV and VII in the ATH1 promoter by qRT-PCR. Anti-GR ChIP was performed
using leaves frommock- and DEX-treated 35S:BOP1-GR bop1 bop2 plants. Fold enrichment at sites IV and VII is presented as the
ratio of DEX versus mock transcript levels after normalization to the unrelated UBQ5 control sequence. Three biological repli-
cates were quantified to show enrichment at site IV. One biological replicate was quantified to show enrichment at site VII. Three
technical replicates were performed for each. Error bars indicate SD.
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of terms associated with response to biotic and abiotic
stress stimuli (Supplemental Table S1). Response to JA
stimulus (GO:009753)was at the top of the list, but other
hormone pathways associated with stress showed
similar enrichment. In descending order, these were
response to salicylic acid stimulus (GO:0009751),

response to ethylene stimulus (GO:009723), and re-
sponse to abscisic acid stimulus (GO:0099737). These
data suggest that bop1-6D plants have heighted ex-
pression of stress-related genes. Trade-offs between
plant defense and plant growth are well established in
the recent literature (Navarro et al., 2008; Wild et al.,

Figure 6. Quantification of flowering time and
meristem identity transcripts in the wild type and
mutants. A, Quantitative analysis of flowering
time. Plants were grown under LDs. Date of apex
emergence for bop1 bop2 pny pnf, knat6 pny pnf,
and ath1 pny pnfmutants is comparable with that
of the wild type with minor variations. Lines
containing ath1 flowered slightly earlier (26.7 d)
and lines containing bop1 bop2 flowered slightly
later (+3.1 d) than the wild type. *, Significant
differences (Student’s t test; P , 0.01). B, Quan-
titative analysis of meristem identity gene ex-
pression. Floweringwas induced by shifting plants
from SDs to LDs. Apiceswere harvested on day 37
at the end of 12 LDs. IM identity gene transcripts
SOC1 and FUL are expressed at similar levels in
Col-0 and pny pnf apices. Floral meristem identity
gene transcripts FD, LFY, AP1, and CAL are sig-
nificantly lower in pny pnf compared with Col-0
apices. Transcript accumulation resumes in bop1
bop2 pny pnf, knat6 pny pnf, and ath1 pny pnf
apices. *, Significant differences (Student’s t test;
P, 0.05). C, Quantitative analysis ofmiR156 and
SPL transcript abundance in wild-type andmutant
apices. Nonflowering in pny pnf correlates with a
significant increase in miR156 abundance at the
expense of SPL3, SPL4, SPL6, SPL9, and SPL15
transcripts relative to Col-0 plants. Transcript ac-
cumulation in bop1 bop2 pny pnf, knat6 pny pnf,
and ath1 pny pnfmutants follows a pattern similar
to the wild type, consistent with restored flower-
ing. *, Significant differences (Student’s t test; P,
0.05).
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Figure 7. BOP1 overexpression mimics pny pnf defects in SPL transcript accumulation and GA homeostasis. Plants were grown in
continuous light. qRT-PCRwas used to assess transcript accumulation in apices and/or internodes. A, Accumulation ofmiR156 and SPL
transcripts in Col-0 and bop1-6D internodes. B, Schematic representation of non-13-hydroxylated GA biosynthetic and catabolic
pathways inArabidopsis (Hu et al., 2008; Yamaguchi, 2008).Green lettering indicatesGAbiosynthetic enzymesmonitored for transcript
accumulation inCandD.Red lettering indicatesGAcatabolic enzymemonitored for transcript accumulation inCandD.BioactiveGA4
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2012; Yang et al., 2012; Wild and Achard, 2013), and
therefore, we further explored this mechanism. We
specifically examined floral repressors in the micro-
array using a candidate gene approach (Fig. 8A). This
analysis revealed up-regulation of DELLA, FLOWER-
ING LOCUS C (FLC)-LIKE (FLC-like), and AP2-
like members. However, the highest fold changes
were observed among AP2/ETHYLENE RESPONSE
FACTOR (ERF)-like factors that repress growth and
flowering under stress conditions (Magome et al., 2004,
2008; Kang et al., 2011; for review, see Licausi et al.,
2013). To validate these findings, selected transcripts
were quantified by qRT-PCR using independently iso-
lated tissue samples. Floral repressor transcript profiles
of bop1-6D and pny pnf apices genotypes showed strong
agreement (Fig. 8B). Consistent with the microarray, no
significant change was observed for FLC, but tran-
scripts encoding AP2-like repressors TARGET OF
EAT2 (TOE2; 1.6- to 4-fold) and SCHLAFMUTZE
(SMZ; 8.5- to 21-fold) were highly up-regulated com-
pared with the wild type. The highest fold changes
(6.2- to 454-fold) were observed for stress-induced
AP2/ERF floral repressor transcripts, including
DWARF AND DELAYED FLOWERING1 (DDF1) and
DDF2, which encode proteins that inhibit growth by re-
ducing bioactive GA content (Magome et al., 2004, 2008;
Kang et al., 2011; for review, see Licausi et al., 2013).

Inspection of the microarray also showed an increase
in expression of biosynthetic enzymes for JA (Fig. 9, A
and B). Validation of these data by qRT-PCR confirmed
significant up-regulation of transcripts involved in JA
biosynthesis in bop1-6D and pny pnf tissues (Fig. 9C). To
determine if these increases reflect changes in hormone
accumulation in plants, JA levels were quantified in
internodes and buds from bop1-6D and pny pnf apices
(“Materials and Methods”). BOP1-overexpressing
plants showed 2.5-fold higher levels of JA relative to
wild-type plants (Fig. 9D). Conversely, hormone levels
were decreased in bop1 bop2 compared with wild-type
control plants. pny pnf apices showed 1.5-fold higher
levels of JA relative to wild-type control apices at the
same stage of development (Fig. 9D). These data sug-
gest that BOP1/2 promotes JA production.

To further examine JA effects on reproductive plant
development, methyl jasmonate (MeJA) was applied to
wild-type and pny plants grown under LDs (Fig. 10).
Plants of both genotypes treated with MeJA developed
a compact rosette with small dark green leaves, similar
to those of bop1-6D mutants (Fig. 10, A–C). Wild-type
plants treated with MeJA showed partial loss of apical
dominance similar to pnymutants (Fig. 10, D–G). Plants
in both treatment populations were late flowering with
short internodes relative to mock-treated control plants

(Fig. 10, D–G) and similar to pny pnf/+ mutants
(Supplemental Fig. S1, A–G). Organ fusions or clusters
were not observed. In both wild-type and pny popula-
tions, a small subset of plants developed a disordered
rosette phenotype similar to pny pnf mutants and were
nonflowering after 10 weeks (data not shown). No such
defects were observed in mock-treated control plants.
Thus, treatment of wild-type plants with exogenous
MeJA mimics the phenotype of bop1-6D and pny or pny
pnf/+ plants.

In parallel, we tested if reducing JA content rescues
internode elongation or flowering in pny pnf and/or
bop1-6D mutants by crossing them to the allene oxide
synthase (aos) mutant, which is defective JA synthesis
(Park et al., 2002; Figs. 7B and 10). Triple mutants with
pny pnf remained nonflowering, even with addition of
exogenous GA3 (Fig. 10H; data not shown). However,
quantitative analysis of bop1-6D aos double mutants
revealed a small but significant (P# 0.0001) increase in
flowering time (+1.8 d) and plant height (+1.5 cm)
compared with bop1-6D siblings in a segregating pop-
ulation (Fig. 10, I and J). These data provide evidence
that modulation of growth by JA is a potential factor in
conditioning bop1-6D and pny pnf phenotypic defects.

DISCUSSION

Floral evocation is dependent on SAM restructuring
to form an IM (Bernier, 1988). The TALE homeodomain
PNY and PNF transcription factors are essential for this
process by permitting responsiveness to floral induc-
tive signals (Smith et al., 2004; Kanrar et al., 2008; Lal
et al., 2011; Smith et al., 2011; Ung et al., 2011; Ung and
Smith, 2011). In pny pnfmutants, meristems support the
production of leaves, but internode elongation and
flower initiation are blocked.

In this article, we characterized the interaction of
PNY and PNF with lateral organ boundary factor
BOP1/2 and a pair of downstream effectors: the
KNOX-BELL homeodomain factors KNAT6 and
ATH1. We show that misexpression of these genes in
pny pnf apices blocks floral evocation (Fig. 11). Inacti-
vation of BOP1/2 and ATH1 or KNAT6 fully restores
pny pnf defects in meristem and boundary maintenance
and stem elongation and restores expression of floral
meristem identity genes to allow flowering. Remark-
ably, other factors compensate for the loss of these
genes in maintaining the SAM and responsiveness to
floral inductive signals. Thus, PNY and PNF allow
flowering by excluding boundary genes from the mer-
istem. Similar antagonistic interactions for PNY or BP
with members of the BOP1/2-ATH1/KNAT6 module

Figure 7. (Continued.)
is indicated in bold. Inactive GA metabolites shown on right. CDP, ent-Copalyl diphosphate; CPS, ent-copalyl diphosphate synthase;
GGDP, geranylgeranyl diphosphate; KAO, ent-kaurenoic acid oxidase; KO, ent-kaurene oxidase; KS, ent-kaurene synthase. C and D,
Accumulation of GA pathway transcripts in pny pnf apices and bop1-6D apices and internodes. E, pny pnf and bop1-6D plants treated
with 100mmofGA3or amock solution. F, Flowering timeandplant height of Col-0 andbop1-6Dplants treatedwith 100mmofGA3 or a
mock solution. *, Significant differences (Student’s t test; P , 0.05).
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function in various other developmental contexts, in-
cluding abscission, fruit patterning, and inflorescence
architecture (Ragni et al., 2008; Shi et al., 2011; Khan
et al., 2012a, 2012b; Li et al., 2012).
We further investigated the organization of this

module and its transcriptional targets. Our data show
that BOP1 is a direct regulator of ATH1, whereas pro-
motion of KNAT6 is probably indirect. Indeed, DEX

and CHX treatment of 35S:ATH1-GR plants produces
rapid induction of KNAT6 transcript, and reporter gene
expression is missing at boundaries in ath1-3 but not
bop1 bop2 mutants, suggesting a direct requirement for
ATH1 (data not shown). BOP1/2 coactivators are
recruited to DNA through interactions with TGA bZIP
transcription factors (Hepworth et al., 2005; Xu et al.,
2010). These TGA factors remain unknown in the context
of flowering, but several candidates are being investi-
gated (Fig. 11). Transcript profiling was used to probe
how this module blocks flowering. Comparison of the
gain-of-function bop1-6D mutant and pny pnf showed
similar transcriptional defects in core pathways control-
ling flowering. Our data are consistent with the model
that BOP1/2-ATH1/KNAT6 boundary genes activate
stress pathways that promote JA biosynthesis, which
directly or indirectly interferes with signals integrated by
the miR156-SPL-miR172 module to antagonize IM func-
tion (Fig. 11). Details of this model are discussed below.

The miR156-SPL-miR172 Module as a Hub for Integration
of Flowering Signals

The miR156-SPL-miR172 module is a core pathway
for integration of flowering signals, including age,
sugar, GA, and stress (Huijser and Schmid, 2011; Cho
et al., 2012; Proveniers, 2013; Cui et al., 2014; Stief et al.,
2014; Wang, 2014). In brief, miR156 levels decline with
age, leading to a concomitant increase in abundance of
SPL transcripts with products that act on distinct tar-
gets in leaves and the shoot apex to promote flowering
(Wu and Poethig, 2006; Wang et al., 2009; Wu et al.,
2009). SPL3 and SPL9 members in the SAM directly
promote the activation of floral meristem identity genes
(Wu et al., 2009; Yamaguchi et al., 2009). SPL9-like
members have additional functions in leaves, where
they activate the transcription of miR172b, which
lowers the abundance AP2-like floral repressor tran-
scripts and allows accumulation of FTmRNA (Zhu and
Helliwell, 2011; Matsoukas et al., 2012; Wang, 2014).

Significant reduction of miR156-regulated SPL tran-
scripts was observed in pny pnf and bop1-6D mutants.
This reduction is likely driven by multiple factors, in-
cluding lower levels of FD, which recruits FT to the
promoter of SPLs for activation (Jung et al., 2012; Andrés
et al., 2015), and higher steady-state levels ofmiR156 (Lal
et al., 2011). An increase in miR156 was less marked in
bop1-6D, suggesting that the reduction in SPL transcript is
mediated bymiR156 and other regulators. These data are
consistent with previous work showing that SPL3/4/5
transcripts are reduced in pny pnf apices and partly ac-
count for nonflowering (Lal et al., 2011). Transgenic pny
pnf plants expressing an miR156-resistant form of SPL4
were restored for LFY andAP1 expression but only partly
restored for flowering, suggesting that multiple SPL
factors are involved (Lal et al., 2011).

Concomitantly, transcripts encoding miR172-regulated
AP2-like repressors of flowering and internode elonga-
tion were elevated in bop1-6D and pny pnf mutants. This
group of repressors includesAP2, SMZ, TOE1, TOE2, and

Figure 8. Transcript profiling of floral repressor genes in bop1-6D and
pny pnf mutants. A, Floral repressor genes differentially expressed in
bop1-6D compared with Col-0 internodes according to microarray
experiment (“Materials andMethods”). B, Repressor transcript profile of
bop1-6D and pny pny mutants quantified by qRT-PCR. No differential
expression was observed for FLC transcript. Transcripts encoding AP2-
like TOE2 and SMZ repressors and AP2/ERF Dehydration-responsive
Element (DRE)-binding Protein-like TINY, DDF1, and DDF2 repressors
were differentially up-regulated in agreement with A. *, Significant
differences (Student’s t test; P , 0.05).
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TOE3 with overlapping functions (Aukerman and Sakai,
2003; Jung et al., 2007; Mathieu et al., 2009; Yant et al.,
2010). SMZ and presumably, other members of this
family delayflowering through the direct repression of FT
and promotion ofmiR156 (Mathieu et al., 2009; Yant et al.,
2010). Of these, TOE2 and SMZ show consistent up-
regulation in the transcriptome of bop1-6D and pny pnf
apices. Thus, overexpression of AP2-like members in
bop1-6Dmaybe a route to restricting internode elongation
and flowering.

Integration with Signals for Stress and
Carbohydrate Metabolism

Stress and sugar signals are also integrated through
the miR156-SPL-miR172 module to control flowering

(for review, seeWang, 2014). Recent studies address the
mechanism. One study shows thatmiR156-SPL3 delays
flowering under cool ambient temperatures by regula-
tion of FT (Kim et al., 2012). Similarly, plants over-
expressing miR156 are late flowering with increased
tolerance to stress linked to down-regulation of SPL9
(Cui et al., 2014). Stief et al. (2014) further showed that
heat stress induces miR156 isoforms linked to down-
regulation of SPL9-like transcripts (SPL2, SPL9, and
SPL11) and delayed flowering. Induction ofmiR156h in
this cascade is predicted to target the pectin methyl-
esterase inhibitor At5g38610 , which may affect bolting
(Stief et al., 2014). PNY controls inflorescence pattern-
ing by regulating cell wall modification enzymes, in-
cluding pectin methylesterases, which loosen cell walls
in the stem to promote internode elongation and in the
SAM to facilitate organ initiation (Etchells et al., 2012;

Figure 9. BOP1 overexpression increases JA content by transcriptional up-regulation of biosynthetic genes. A, JA-related genes
differentially expressed in bop1-6D compared with Col-0 internodes identified by microarray experiment (“Materials and
Methods”). B, Schematic representation of the JA biosynthetic pathway in Arabidopsis (Park et al., 2002; Wasternack and Hause,
2013). Red lettering indicates transcripts investigated by qRT-PCR in C. Linolenic acid is released from membrane lipids by a
lipolytic enzyme (DEFECTIVE IN ANTHER DEHISCENCE1 [DAD1]) and converted to allene oxide (12,13-epoxy-octadecan-
trienoic acid) by lipoxygenase (LOX) and AOS.One cyclization, one reduction, and three rounds of b-oxidation steps are required
in producing JA, which is conjugated to Ile (JA-Ile) in bioactive form (Wasternack and Kombrink, 2010). ACX, Acetyl-CoA oxidase;
AOC, allene oxide cyclase; JAR1, JASMONATE RESISTANT1; KAT, L-3-ketoacyl CoA thiolase; MFP, multifunctional protein;
OPR3/DDE1, 12-oxo-phytodienoic acid-10,11-reductase3/DELAYEDDEHISCENCE1. C, Quantitative analysis of JA biosynthetic
gene transcripts in bop1-6D and pny pnf mutants grown under SDs or LDs. *, Significant differences (Student’s t test; P , 0.05).
D, Concentration of JA in wild-type tissues comparedwith bop1-6D, bop1 bop2, and pny pnfmutants (“Materials andMethods”).
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Peaucelle et al., 2011). At5g38610 and related genes are
up-regulated in the transcriptome of bop1-6D inter-
nodes, whereas PNY-regulated PECTIN METHYL-
ESTERASE5 is down-regulated, consistent with dwarf
stature (data not shown; Peaucelle et al., 2011).
The miR156-SPL-miR172 module is also a sensor

for nutrients. A developmental decline in miR156 is

partially mediated by sugars produced by photosyn-
thesis that accumulate with age (Proveniers, 2013; Yang
et al., 2013; Yu et al., 2013). Global transcript changes in
bop1-6D mutants are characterized in large part by al-
terations in stress signaling and carbohydrate metabo-
lism (Supplemental Table S1). GO enrichment analysis
of the bop1-6D transcriptome identifies significant

Figure 10. Effect of loss or gain of JA con-
tent on phenotype of the wild type and
mutants. A to G, Wild-type and pny plants
were sprayed daily untilmaturitywith 100mm
of MeJA or a mock solution. A, Mock-treated
Col-0 plant. B, MeJA-treated Col-0 plant
showing small dark green leaves. C,bop1-6D
mutant showing a compact rosette similar to
that in B. D, JA-treated Col-0 plants showing
pny-like partial loss of apical dominance
and short stature. E, JA-treated pnymutant
showing enhancement of defects in inter-
node elongation and apical dominance
relative to mock control (see G). F, JA-treated
pny mutant showing delayed flowering rela-
tive to mock control. G, Quantitative phe-
notypic analysis ofwild-type and pnymutant
plants treated with MeJA. Plants were grown
under LDs. For both genotypes, treatment
with MeJA resulted in additional rosette
paraclades, indicating loss of apical domi-
nance, reduced height, and delayed flow-
ering. H to J, Effect of aos loss of function on
pny pnf and bop1-6D phenotypes. Repre-
sentative plants are shown. H, pny pnf
aos mutant remains nonflowering. I and J,
Phenotype of bop1-6D versus bop1-6D aos
mutants. A small but highly significant (P,
0.0001) increase in plant height (+1.26 cm)
and earlier flowering (21.8 d) aremeasured
in bop1-6D aos compared with bop1-6D
control plants. Analysis was performed in a
bop1-6D/+ aos/+ segregating population (n =
100). Bars = 1.5 cm. *, Significant differences
(Student’s t test; P,0.05).

Plant Physiol. Vol. 169, 2015 2179

Role of PNY-PNF in Meristem Competence to Flower

http://www.plantphysiol.org/cgi/content/full/pp.15.00915/DC1


down-regulation of cellular carbohydrate metabolism,
metabolic processes, and nitrogen metabolism, which
potentially act to restrict Suc availability at the shoot
apex (Supplemental Table S1). Parts of these changes
were confirmed in pny pnf mutants, suggesting that
resources are allocated toward defense in detriment to
flowering.

Integration with GA Pathways

Our study also identifies GA pathway changes in
bop1-6D and pny pnf mutants detrimental to flowering.
In wild-type plants, bioactive GA content increases 100-
fold at the transition (Eriksson et al., 2006), facilitating
internode elongation and flowering by lowering the
abundance of DELLA repressors (Mutasa-Göttgens and
Hedden, 2009; Galvão et al., 2012; Porri et al., 2012; Yu
et al., 2012). GA signals are partly integrated through
the miR156-SPL-miR172 module based on studies
showing that GA/DELLA regulates SPL3/4/6/9 tran-
scription at the shoot apex independent of SOC1
(Galvão et al., 2012; Porri et al., 2012). Physical interac-
tion of REPRESSOR OF GA1-3 DELLA with SPL9 inter-
feres with activation ofMADS-box flowering genes at the
shoot apex and activation of miR172b in leaves, thereby
maintaining AP2 and AP2-like repression of stem
elongation and flowering (for review, see Wang, 2014).
Other nodes of integration with the miR156-SPL-
miR172 module are likely given so that GA treatment
does not markedly accelerate flowering in an miR156
overexpression line (Yu et al., 2012). Transcriptional
profiling in bop1-6D and pny pnf plants indicates com-
plex changes affecting biosynthesis, catabolism, and/or

signaling. Exogenous GA fails to restore flowering in
pny pnf apices or internode elongation in bop1-6D,
similar to transgenic plants overexpressing ATH1
(Smith et al., 2004; Gómez-Mena and Sablowski, 2008;
this study) and consistent with blockage at multiple
steps. Four of five DELLA transcripts are significantly
up-regulated in pny pnf apices, whereas RGL3 is selec-
tively up-regulated in bop1-6D. Transcript accumula-
tion and steady-state level of protein show strong
correlation in previous studies (Wild et al., 2012).
Transgenic plants overexpressing DELLAs or DELLA
proteins resistant to degradation are dwarf and late
flowering, similar to bop1-6D plants (Dill et al., 2004;
Hamama et al., 2012). RGL3, in particular, mediates
cross talk between GA and JA pathways (Hou et al.,
2013; Wild and Achard, 2013). JA selectively up-
regulates RGL3, which binds to jasmonate ZIM-domain
repressors of JA signaling to boost the immune response
at the expense of growth (Wild et al., 2012; Wild and
Achard, 2013).

JA Antagonism of Growth and Flowering

Our data raise the interesting possibility that JA an-
tagonism of GA conditions bop1-6D and pny pnf phe-
notypic defects. GO analysis of differentially regulated
genes in the bop1-6D transcriptome revealed significant
enrichment of terms related to stress stimuli, including
response to JA stimulus and to a lesser extent, responses
to salicylic acid, ethylene, and abscisic acid stimuli,
leading to the model that BOP1 overexpression repri-
oritizes the plant for defense at the expense of growth.
Higher levels of JA biosynthetic gene transcripts and

Figure 11. Summary andmodel. PNY-PNF/STM limits expression of BOP1/2 and downstream effectorATH1/KNAT6 to boundary
domains flanking the IM. BOP1 acting through an unknown TGA bZIP cofactor directly activates ATH1, whereas promotion of
KNAT6 is indirect (red arrow). These products form amodule that represses growth,meristem activity, and flowering by increasing
JA content by transcriptional promotion of JA biosynthetic genes. Either directly or indirectly (dashed lines), we propose that
misexpression of this pathway leads to down-regulation of GA pathway components and repression of themiR156-SPL-miR172
module at one ormore nodes in correlationwith increased content of associated classes of floral repressors (e.g. DELLA, AP2-like,
and AP2/ERF clades). Ultimately, SPL and FD/FT transcripts (not depicted) fail to accumulate, and activation of floral meristem
identity genes LFY, AP1, and CAL required for flower initiation is blocked. Internode elongation is also blocked.
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hormone are found in bop1-6D and pny pnf apices rel-
ative to wild-type control plants. These data support
the findings by Canet et al. (2012), which identified
BOP1/2 as essential for MeJA induced in priming for
resistance to Pseudomonas syringae pv tomato DC3000.
Plants exposed to high levels of jasmonate are stunted
in growth of roots, leaves, and stems (Ellis et al., 2002;
Cipollini, 2005; Bonaventure et al., 2007; Hyun et al.,
2008; Zhang and Turner, 2008; Heinrich et al., 2013).
Arabidopsis plants treated with jasmonate are also late
flowering with short internodes and loss of apical
dominance, giving an appearance similar to bop1-6D or
pny pnf/+ mutants. Inhibitory effects of MeJA on flow-
ering are also reported in Pharbitis nil (Maciejewska and
Kopceiwicz, 2002;Maciejewska et al., 2004),Chenopodium
rubrum (Albrechtová and Ullmann, 1994), and einkorn
wheat (Triticum monococcum; Diallo et al., 2014). JA an-
tagonism of growth or flowering has been linked to re-
pression of GA biosynthesis (Magome et al., 2004;
Heinrich et al., 2013), stabilization of DELLAs (Yang
et al., 2012), and/or induction of AP2/ERF factors
(Magome et al., 2008; Sun et al., 2008; Kang et al., 2011;
Licausi et al., 2013). These data are consistent with JA
contributing to bop1-6D and pny pnf developmental de-
fects. Although inactivation of jasmonate biosynthesis by
mutation of AOS fails to rescue flowering in pny pnf
mutants, a small but significant increase in plant height
and flowering time in bop1-6D supports this model.
Our data suggest that resources in pny pnf are real-

located toward defense at the expense of flowering and
provide evidence for JA as a factor in modulating
growth and meristem activity at boundaries.

MATERIALS AND METHODS

Plant Material and Growth Conditions

In the laboratory of S.R.H., Arabidopsis (Arabidopsis thaliana) plants were
grown on soil or in vitro on minimal media (Haughn and Somerville, 1986)
in growth chambers at 21°C under continuous light (24 h of light; intensity of
100 mmol m22 s21), LD (16 h of light), or SD (8 h of light) conditions. In the
laboratory of V.P., plants were grown in LD (16 h of light; 150 mmol m22 s21)
or SD (10 h of light; 1 h at 80 mmol m22 s21, 8 h at 130 mmol m22 s21, and 1 h at
80 mmol m22 s21) conditions. The wild type was the Columbia (Col-0) ecotype
of Arabidopsis. Mutant lines were obtained from the Arabidopsis Biological
Resource Center (https://abrc.osu.edu/) or the NottinghamArabidopsis Stock
Centre (http://arabidopsis.info/). The pny-40126 (SALK_40126), pnf-96116
(SALK_96116), bop1-3 (SALK_012994), bop2-1 SALK_075879), knat6-1
(SALK_047931), knat6-2 (SALK_054482), knat2-5 (SALK_099837), ath1-1 (GABI-
KAT_114A12), and ath1-3 (SALK_113353) mutants have been described previ-
ously (Smith and Hake, 2003; Smith et al., 2004; Hepworth et al., 2005; Belles-Boix
et al., 2006; Proveniers et al., 2007; Gómez-Mena and Sablowski, 2008). The ath1-4
mutant was a gift from Lin Xu (Li et al., 2012). 35S:BOP2 and bop1-6D over-
expression lines were described previously (Norberg et al., 2005). The BOP1:GUS
and BOP2:GUS reporter lines were described previously (McKim et al., 2008; Xu
et al., 2010). The 35S:KNAT6 overexpression linewas also describedpreviously (Shi
et al., 2011).

Plant Genetics

Primers and strategies used for genotyping bop1-3, bop2-1, knat6-2 (Khan
et al., 2012b), pny-40126 (Smith and Hake, 2003), pnf-96116, pnf-33879 (Smith
et al., 2004), knat6-1, knat2-5 (Ragni et al., 2008), ath1-1 (Proveniers et al., 2007),
and ath1-3 (Gómez-Mena and Sablowski, 2008) have been previously described.

For genotyping ath1-4, primers ath1-4dCAPS-F and ath1-4dCAPS-R were used
to amplify a 198-bp product from genomic DNA. Only the ath1-4 product is
cleaved by SspI to yield a 173-bp fragment. All mutant combinations were
generated by crossing and confirmed by PCR genotyping. Primers are listed in
Supplemental Table S2.

Phenotypic Analyses

For quantitative analysis ofmeristem arrest, seedlingswere germinated on agar
plates under SDs, transferred to soil on day 10, and scored for meristem arrest on
day 25. Progenies froma selfed pnypnf/+plant (n= 624) and a selfed knat2 pny pnf/+
plant (n = 146) were analyzed in parallel with wild-type plants and bop1 bop2 pny
pnf, ath1 pny pnf, and knat6 pny pnf mutants (n = 144). Quantitative analyses of
inflorescence phenotypes were performed with 8-week-old plants grown under
LDs. Average height, internode length, and rosette paraclade number were de-
termined for 10 plants per genotype as previously described (Ragni et al., 2008).
Flowering time was scored for at least 24 plants per genotype by monitoring the
date of apex emergence, because bop1 bop2mutants initiate leaves at a reduced rate
(Norberg et al., 2005). Seeds were germinated directly on soil under LDs. All
phenotypic analyses were performed at least twice under independent growth
conditions with similar results.

In Situ Hybridization and Localization of GUS Activity

Plants for analysis were grown under SDs for 3 weeks followed by 15 d in
continuous light before harvesting tissue. We used in situ hybridization to
monitor gene expression, because control sequences for expression of KNAT2:
GUS and KNAT6:GUS reporters in IMs are missing (Khan et al., 2012b). Tissue
fixation, embedding, and sectioning were carried out as described (Nikovics
et al., 2006) with minor changes. Hybridization was performed overnight using
the following buffer: 50% (v/v) formamide, 10% (w/v) dextran sulfate, 13
Denhardts, 0.3 MNaCl, 10mMTrisHCl, pH 8, 1mMEDTA, and 5mgmL21 transfer
RNA. Primers used to make KNAT6, KNAT2, BOP2, and ATH1 antisense probes
are as listed in Supplemental Table S2.

Tissues were analyzed for BOP1:GUS activity as described (Sieburth and
Meyerowitz, 1997) with minor changes. Stained tissues were embedded in
Paraplast Plus (Sigma) processed using tert-butanol instead of xylenes. Sections
(10 mm) were cut from embedded tissue, affixed to glass slides, and dewaxed
with tert-butanol before imaging.

Construction of D35S:BOP1-GR, BOP1p-BOP1-GR, D35S:
ATH1, and ATH1p:GUS Transgenic Lines

A translational fusion of BOP1 to the steroid-binding domain of the rat
glucocorticoid receptor was generated. Treatment with DEX leads to translo-
cation of the GR fusion protein from the cytoplasm to the nucleus as a way of
controlling transcription factor activity (Lloyd et al., 1994). The BOP1 coding
sequence lacking a stop codon was fused in frame to the GR fragment using
overlap extension mutagenesis (Heckman and Pease, 2007). The resulting
product was cloned into pCR-BluntII-TOPO (Invitrogen) to create B359. For all
cloning steps involving amplification by PCR, iProof was used as the poly-
merase (BioRad), and cloned inserts were sequenced to ensure fidelity.

To create D35S:BOP1-GR, the BOP1-GR fusion gene present in B359 was am-
plified by PCR using CDS-BOP1-F andGR-R as the primers. The resulting product
was modified to contain dATP overhangs and transferred to the Gateway-
compatible entry vector pCR8/GW/TOPO (Invitrogen). LR clonase (Invitrogen)
was used to move the insert to a pSM-3-based destination vector containing a
double 35SCauliflowermosaic virus (CaMV) promoter (D35S) andNos terminator
(pBAR, gift of C. Douglas). Wild-type plants were transformed by floral dipping
(Clough and Bent, 1998) using the Agrobacterium spp. strain C58C1 pGV3101
pMP90 (Koncz and Schell, 1986). Hygromycin-resistant primary transformants
were selected on agar plates containing 10mmof DEX. After transfer to soil, plants
were sprayeddailywith 10mmofDEX to inducenuclear localization of theBOP1-GR
fusion protein. Homozygous progeny from one DEX-induced D35S:BOP1-GR
line with a dwarf phenotype (line 9) was used for all subsequent experiments.

The D35S:BOP1-GR transgene failed to complement bop1 bop2 plants, pre-
sumably because the 35S CaMV promoter fails to provide the correct range of
tissue expression. To confirm activity of the fusion protein and for use in ChIP
experiments, the BOP1-GR fusion gene was expressed under control of the
BOP1 native promoter in bop1 bop2 plants. The transgene was created in two
steps. The BOP1 promoter present in pBOP1:GUS (McKim et al., 2008) was
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amplified by PCR using primers 4H-4kb-EcoR1-F1 and 4H-4kb-XmaI-R1 that in-
corporated restriction sites at their 59 ends. The resultingproductwasdigestedwith
EcoR1 andXmaI and cloned into the corresponding sites of the binary vector pBAR
(gift from laboratory of J. Dangl) to create B149. The BOP1-GR fusion gene present
in B359was amplified by PCRusing primersXmaI-BOP1-F and BOP1-XmaI-R. The
resultingproductwas digestedwithXmaI and cloned into the corresponding site of
B149 to create pBAR/BOP1prom:BOP1-GR. The transgene was introduced into
bop1 bop2 plants by floral dipping. Primary transformants resistant to glufosinate-
ammonium were selected on soil using the herbicide FINALE (Farnam Compa-
nies). Three independent lines were used to assess complementation of bop1 bop2
mutant phenotypes. T2 seeds were sown on agar plates containing phosphino-
thricin with or without 5 mm of DEX. Plants were transferred to soil and sprayed
daily with mock or DEX solution until maturity. Complementation of leaf, floral
patterning, and floral organ abscission was observed in all DEX-treated lines
(Supplemental Fig. S7).

To make the D35S:ATH1 transgene, the ATH1 coding sequence was amplified
by PCR from cloned complementary DNA (cDNA) template using ATH1-CDS-F1
and ATH1-CDS-F1 as the primers. The resulting fragment was cloned into the
entry vector pCR8/GW/TOPO and transferred into the pSM-3-based destination
vector as described above. Wild-type plants were transformed by floral dipping.
Transformants were selected on agar plates containing hygromycin. Phenotypes
were scored in the T1 generation.

To createATH1 promoter fusions to a GUS reporter gene, fragments containing
3.3 or 2 kb of sequence upstream of the ATH1 translation start site were amplified
byPCR fromgenomicDNA template (BACMSD21) and fused to the coding region
of the beta-glucuronidase (uidA or GUS) gene. Primers incorporating BamHI and
NcoI restriction sites at their 59 ends facilitated directional cloning. Products were
cloned into pCR-BluntII-TOPO for propagation. Inserts were released by digestion
with BamHI and NcoI and ligated into the corresponding sites of pGCO:GUS
(Hepworth et al., 2002). Agrobacterium spp. was cotransformed with pSOUP
(Hellens et al., 2000). Wild-type plants were transformed by floral dipping, and
glufosinate-ammonium-resistant primary transformants were selected on soil.
Cloning primers are listed in Supplemental Table S2.

ChIP Experiments

ChIP was performed as described (Chakravarthy et al., 2003) using an anti-GR
antibody (catalog no. 1002; Santa Cruz Biotechnology) and mock- or DEX-treated
BOP1p:BOP1-GR bop1 bop2 plants grown under LDs. Seedswere germinated on agar
plates containing phosphinothricin with or without 10 mm of DEX. After transfer to
soil, plants were sprayed daily with mock (0.04% ethanol) or DEX solutions. Leaf
tissue was collected from 4-week-old flowering plants for analysis. Quantification of
immunoprecipitated DNA by qRT-PCR was performed as previously described
(Boyle et al., 2009). Primers were as listed in Supplemental Table S3.

Microarray Experimental Design, Hybridization,
and Analysis

Tissue for profiling was harvested from the first expanded internodes of wild-
type and bop1-6D flowering plants grown under continuous light. RNA was
extracted from four biological replicates per genotype using an RNeasy Plant Mini
Kit (Qiagen). The mRNAwas amplified according to the protocol described in the
MessageAmp aRNA Kit (catalog no. 1750; Ambion). To produce incorporated
antisense mRNA, aminoallyl-UTP was incorporated into the newly synthesized
RNA; 3mL of aminoallyl-UTP (50mM) plus 2 mL of UTP (75 mM) instead of 4mL of
UTP were added during the aRNA amplification. Labeling, hybridization, and
scanning were performed as described (Xiang et al., 2011). To normalize for bias in
dye labeling, twobiological replicateswere labeledwith [59-32P] cytosine-39-P (Cy3),
and two were labeled with Cy5. Experiments were carried out using Arabidopsis
70-mer oligo microarray slides (http://ag.arizona.edu/microarray). Two-color
microarray data were preprocessed with the marray package (version 1.42.0)
implemented in R/BioConductor (R Development Core Team; Gentleman et al.,
2004; https://www.bioconductor.org) using the background correction method
normexp (offset 5 50) and normalize within arrays method loess. Differentially
expressed genes were identified by P values, fold changes, and contrasts using
linear models for microarrays (Smyth, 2005) and included a dye effect assessment
implemented in R/BioConductor.

qRT-PCR

Total RNA was isolated using Trizol Reagent (Invitrogen) from dissected
apices of thewild type andmutants. Plants grown under SDswere harvested on

day 25 (SD)or transferred toLDs to induceflowering andharvested after 12 d (LD).
Dissected apices were ,0.5 cm tall, with the majority of surrounding leaves .0.2
cm removed. Tissues were collected in the subjective afternoon for all samples
(after 9–12 h of light in a 16-h cycle). cDNAwas generated using 1mg of RNAas the
template under following conditions: step 1: 70°C for 5min; step 2: 50°C for 60min;
and step 3: 70°C for 15 min. qRT-PCR was carried out as described (Khan et al.,
2012b)with the following changes. Reactions in triplicate containing 2mLof 10-fold
diluted cDNA, except for LFY and AP1 reactions, which required 4 mL of diluted
cDNA, gene-specific primers (Supplemental Table S3), and POWER SYBR Green
PCR Mastermix (Invitrogen) were carried out using a StepOnePlus Thermocycler
(Applied Biosystems).GLYCERALDE-3-PHOSPHATEDEHYDROGENASECwas
used as a normalization control. Quantification of miR156mRNA was performed
as described (Porri et al., 2012). Data shown are the average of three biological
replicates conducted using separate growth trials and independently isolated RNA
samples. Error bars indicate SEM.

For DEX induction experiments, total RNAwas prepared from internodes of
4-week-old flowering plants expressing the D35S:BOP1-GR transgene. Inter-
nodes were harvested from primary and secondary inflorescences of five to six
plants starting at the bottom above the first silique and going all of the way up
to where internodes were too small to collect. Tissue was excised with a new
razor blade on parafilm, frozen in liquid nitrogen, and stored at 280°C until
further analysis. Plants were treated continuously with mock (0.12% ethanol),
30 mm of DEX, 50 mm of CHX, or 30 mm of DEX and 50 mm of CHX for 2, 4, or
24 h by inverting inflorescences into containers of solution. For long-term
treatments, seedlings were germinated on agar plates containing 10 mm of
DEX. After transplanting to soil, plants were sprayed daily with a solution of
mock (0.04% ethanol) or DEX for 4 weeks until tissue was harvested for RNA
extraction. Values were normalized to EUKARYOTIC TRANSLATION
INITIATION FACTOR 4A1 transcript (At3g13920), the mock control for
DEX treatments, and the CHX control for DEX and CHX treatments to
correct for negative effects of CHX on the transcription of BOP1 target
genes (Jun et al., 2010; Nakamichi et al., 2010). Data shown are the average
of three biological replicates conducted using independently isolated RNA
samples. Error bars indicate SEM.

Hormone Treatments

To analyze the effect of GA on growth, 10-d-old seedlings grown under
continuous light were sprayed daily with GA (100 mm of GA3 and 0.02%
Silwett L-77) or a mock (0.02% Silwett L-77) solution until maturity (Hay et al.,
2002). To examine the effect of JA on growth, 7-d-old seedlings grown under
LDs were sprayed daily with MeJA (100 mm of MeJA and 0.02% Silwett L-77)
or a mock (0.02% Silwett L-77) solution until maturity (Canet et al., 2012).
MeJA-treated plants were covered with a plastic dome for 1 h after treatments,
and solutions were made fresh once a week. Flowering time was determined
by scoring the date of apex emergence. At least 24 plants per genotype were
monitored.

JA Measurements

For measurement of JA, wild-type, bop1 bop2, and bop1-6D plants were grown
for 6 to 7 weeks under LDs. Pools of 30 apices (buds and internodes) were used for
each replicate (100mg of freshmaterial).Wild-type and pny pnfplants were grown
for 4 weeks under SDs. Pools of 30 apices (90 mg of fresh material) were used for
each replicate. Three biological replicates were collected for each condition. Tissues
were directly harvested in liquid nitrogen. Tissues were ground in liquid nitrogen
and lyophilized. For each sample, 10mgof freeze-driedpowderwas extractedwith
0.8 mL of acetone:water:acetic acid (80:19:1, v/v/v) containing 2 ng of [5-2H] JA
(CDN Isotopes CIL Cluzeau; Le Roux et al., 2014). The extract was vigorously
shaken for 1 min, sonicated for 1 min at 25 Hz, shaken for 10 min at 4°C in a
Thermomixer (Eppendorf), and then centrifuged (8,000g at 4°C for 10 min). The
supernatants were collected, and the pellets were reextracted twice with 0.4 mL of
the same extraction solution; then, they were vigorously shaken (1 min) and son-
icated (1min; 25Hz). After the centrifugations, the three supernatants were pooled
and dried (final volume of 1.6 mL). Each dry extract was dissolved in 140 mL of
acetonitrile:water (50:50, v/v), filtered, and analyzed using aWaters AcquityUltra
Performance Liquid Chromatograph coupled to aWaters Xevo Triple Quadrupole
Mass Spectrometer TQS. The compounds were separated on a reverse-phase col-
umn (100 mm 3 2.1 mm 3 3 mm particle size; Uptisphere C18 UP3HDO; Inter-
chim) using a flow rate of 0.4 mL min21 and a binary gradient: 0.1% (v/v) acetic
acid in water and acetonitrile with 0.1% acetic acid. For JA, the following binary
gradient (0.1% [v/v] acetic acid in water) was used: 0 min, 98%; 3 min, 70%;
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7.5 min, 50%; 8.5 min, 5%; 9.6 min, 0%; 13.2 min, 98%; and 15.7 min, 98%. Mass
spectrometry was conducted in electrospray and multiple reaction monitoring
scanning mode in negative ion mode. Relevant instrumental parameters were set
as follows: capillary, 1.5 kV (negative mode); source block and desolvation gas
temperatures, 130°C and 500°C, respectively. Nitrogen was used to assist the cone
and desolvation (150 and 800 L h21, respectively). Argon was used as the collision
gas at a flow of 0.18 mL min21. The parameters used for multiple reaction
monitoring quantification of JA are described in Le Roux et al., 2014. Samples
were reconstituted in 140 mL of 50:50 (v/v) acetonitrile:water per 1 mL of
injected volume. The JA limit of detection and limit of quantification were
extrapolated from calibration curves and samples using the Quantify module
of MassLynx software (version 4.1). The amount of JAwas expressed as a ratio
of peak areas (209 . 62/214 . 62) per dry weight because of impurities
contained in the D5 JA standard.

Sequence data from this article can be found in the EMBL/GenBank data
libraries under accession numbers At1g70510 (KNAT2), At1g23380 (KNAT6),
At5g02030 (PNY), At2g27990 (PNF), At3g57130 (BOP1), At2g41370 (BOP2),
and At4g32980 (ATH1).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Ectopic expression of KNAT6 and ATH1 mimics
pny and pny pnf/+ phenotype.

Supplemental Figure S2. ATH1 map and characterization of mutant al-
leles.

Supplemental Figure S3. Phenotypes of other mutant combinations.

Supplemental Figure S4. Quantitative phenotypic analyses of bop1 bop2
pny pnf, ath1 pny pnf, and knat6 pny pnf mutants.

Supplemental Figure S5. BOP1:GUS expression in Col-0 and pny pnf apices.

Supplemental Figure S6. BOP2, ATH1, KNAT2, and KNAT6 expression in
pny and pnf apices.

Supplemental Figure S7. Complementation of bop1 bop2 mutant by
BOP1p::BOP1-GR construct.

Supplemental Table S1. GO classification of differentially expressed genes
in bop1-6D versus Col-0 internode microarrays.

Supplemental Table S2. List of general primers.

Supplemental Table S3. List of primers for qRT-PCR.
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