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Sequencing of RNA (RNA-Seq) was invented approximately 1 decade ago and has since revolutionized biological research. This
update provides a brief historic perspective on the development of RNA-Seq and then focuses on the application of RNA-Seq in
qualitative and quantitative analyses of transcriptomes. Particular emphasis is given to aspects of data analysis. Since the wet-lab
and data analysis aspects of RNA-Seq are still rapidly evolving and novel applications are continuously reported, a printed
review will be rapidly outdated and can only serve to provide some examples and general guidelines for planning and
conducting RNA-Seq studies. Hence, selected references to frequently update online resources are given.

Sequencing of RNA (RNA-Seq) is a recent technique
that emerged shortly after next-generation sequencing
(NGS) was invented approximately 10 years ago and
since has revolutionized biological research in the 21st
century. The major advance and basis of NGS is the
application of sequencing-by-synthesis technology,
which entails real-time monitoring of de novo DNA
biosynthesis by imaging methods and reading out the
sequence of newly synthesized DNA molecules upon
iterative addition of the four different nucleotides. This
is in contrast to sequencing after synthesis, which is
based on the physical separation of differently sized
DNA molecules generated by the chain termination
inhibitor method in polyacrylamide gels or by capil-
lary electrophoresis after completion of the sequencing
reaction (Sanger et al., 1977).

Most of the current sequencing-by-synthesis tech-
nologies are based on the immobilization of a dena-
tured, single-stranded sequencing template on a
surface, either a glass slide or nano beads. Immobili-
zation on a surface allows for repeated cycles of reagent
delivery to the immobilized DNA molecule, which
permits solid-phase oligonucleotide primer-initiated
synthesis of a new DNA strand, using repetitive and
iterative cycles of addition of the nucleotides A, C, G,
and T. High-resolution imaging is used to detect the
incorporation of the nucleotide, either during or after
nucleotide incorporation, followed by iterative addi-
tional rounds of nucleotide incorporation. The se-
quence is then eventually deduced from the imaging
data.

The first successful NGS approach that gained wide
acceptance by the community was 454 sequencing, a
massively parallel pyrosequencing approach (Margulies
et al., 2005). 454 Sequencing is based on the detection of

pyrophosphate released during de novo synthesis of a
new DNA strand by DNA polymerase, which allows
real-time measurements of DNA biosynthesis (Ronaghi
et al., 1998). Pyrophosphate released during DNA syn-
thesis is converted to ATP by the action of sulfurylase,
followed by generation of a luminescent light signal
from ATP, using firefly luciferase. The major advance in
454 technology was combining pyrosequencing with
immobilization of the DNA template to nano beads to
allow for solid-phase DNA pyrosequencing. The immo-
bilizedDNA template is amplified by emulsion PCR and
then combined with beads carrying immobilized sul-
furylase and firefly luciferase enzymes, followed by
loading into picotiter glass plates that are subsequently
inserted into the sequencingmachine. A reagent delivery
system then iteratively floods the plates with nucleo-
tides, DNA polymerase, and oxyluciferin. Inorganic
pyrophosphate released during incorporation of a nu-
cleotide into a newly synthesized DNA strand is con-
verted into a light signal via sulfurylase/luciferase,
which is recorded by a high-resolution and very sensi-
tive camera system. Remaining inorganic pyrophos-
phate is destroyed by a wash cycle with apyrase, then a
new round of nucleotide incorporation occurs. Initially,
this method delivered approximately 250,000 reads with
approximately 100-nucleotide (nt) read length, which
was a massive progress in throughput over established
Sanger sequencing methods. Later versions of this
technology provided long reads of 400-nt lengths and
over 1 million reads per run. Initial applications of the
new sequencing technology included the sequencing of
ancient genomic DNA, for example, from Neanderthals
(Green et al., 2006; Noonan et al., 2006) and the wooly
mammoth (Poinar et al., 2006).

In the meantime, 454 pyrosequencing has been
mainly superseded by Illumina sequencing, which
combined chain termination technology with immobi-
lization of the sequencing template on a glass surface,
an extension of in situ fluorescence sequencing (Mitra
et al., 2003; Shendure et al., 2005). In this technology,
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DNA molecules immobilized on a glass surface are
amplified by bridge amplification, followed by syn-
thesis of new DNA strands using four differently col-
ored fluorescently labeled chain terminators (Mardis,
2008). After each cycle of DNA synthesis, the newly
incorporated nucleotides are detected by fluorescence
color imaging, followed by removal of the fluorophore
and the blocked 39 terminus of the terminal nucleotide.
Then follow iterative new rounds of nucleotide incor-
poration, imaging, fluorophore removal, and 39 end
deblocking. Initially, this method allowed for read
lengths of 25 nt, whereas the most recent versions of the
technology enable read lengths of 300 nt on MiSeq
machines and 150 nt on the HiSeq instruments (Illu-
mina Inc.). One cycle on an HiSeq instrument delivers
up to 5 billion reads, which is sufficient for approxi-
mately 500 RNA-Seq reactions, assuming 10 million
reads are required per sample to achieve saturating
coverage. Due to its enormous throughput, as of Sep-
tember 2015, Illumina is currently the dominant tech-
nology in the RNA sequencing market.
Although single-molecule direct sequencing of DNA

molecules was demonstrated more than 10 years ago
(Braslavsky et al., 2003) and was later applied in a
proof-of-concept study to the quantification of the yeast
(Saccharomyces cerevisiae) transcriptome by single-
molecule RNA sequencing (Lipson et al., 2009), the at-
tempt to commercially introduce this technology by
Helicos was unsuccessful. Pacific Biosciences (PacBio)
has developed a commercially successful platform for
single-molecule real-time sequencing that provides
very long read length, but currently does not pro-
vide sufficient read numbers for quantitative tran-
scriptomics. It has to be mentioned, though, that the
PacBio single-molecule long-read technology is ex-
tremely helpful for the de novo generation of reference
transcriptomes.
In the absence of a commercially viable direct RNA-

Seqmethod, to date, sequencing of RNA is based on the
conversion of RNA into DNA molecules by reverse
transcription, followed by amplification of the DNA
template using liquid- and/or solid-phase PCR methods.
That is, when we speak of RNA-Seq, we really mean
sequencing of reverse-transcribed RNA, which is an
important difference since the process of reverse tran-
scription and amplification might introduce bias into
the analysis, such as suppression of sequences having a
higher G/C contents or containing long homopolymer
stretches. That said, RNA-Seq has now mostly super-
seded previous technologies for transcriptome analysis,
such as serial analysis of gene expression and micro-
arrays, for a number of reasons:

(1) RNA-Seq is not dependent on prior sequence
knowledge (i.e. it can be applied to any system
from which RNA can be isolated in sufficient qual-
ity and quantity). In contrast, the design of micro-
arrays depends on prior sequence information,

be it from genome sequencing or sequencing of
expressed-sequence tags.

(2) RNA-Seq provides a direct measure of RNA abun-
dance in contrast to microarrays, which provide
relative fluorescence intensities. Hence, it is rather
difficult to compare the results of microarrays be-
tween laboratories, whereas this is more straight-
forward with RNA-Seq data.

(3) RNA-Seq enables simultaneous sequence discov-
ery and quantitation.

(4) RNA-Seq provides a dynamic range at least 2 orders
of magnitude larger than microarrays, which allows
for the quantitation of low-abundance transcripts in
the presence of highly abundant transcripts, given
sufficient depth of sequencing.

(5) RNA-Seq allows for the detection of sequence var-
iants, which enables analysis of allele-specific expres-
sion in heterozygous individuals and the detection
of sequence variants between individuals.

(6) Recent instruments enable highly multiplexed se-
quencing of hundreds of bar-coded RNA-Seq sam-
ples in a single run, which makes RNA-Seq
relatively economic.

According to an ISI Web of Science search in July
2015, the first publications containing the keyword
RNA-sequencing appeared in 2008, and since then,
close to 7,000 manuscripts containing this keyword
have been published. However, the first manuscripts
on RNA-Seq not yet using this term had been published
before, for example, the pioneering manuscripts on the
transcriptomes of prostate cancer cell lines (Bainbridge
et al., 2006), Medicago truncatula (Cheung et al., 2006),
maize (Zea mays; Emrich et al., 2007), and Arabidopsis
(Arabidopsis thaliana; Weber et al., 2007). The two latter
studies benchmarked RNA-Seq data against previous
expressed-sequence tag and microarray work and con-
cluded that transcriptome analysis by sequencing meth-
ods will soon replace these previous methods.

APPLICATIONS OF RNA-SEQ

As outlined above, RNA-Seq almost always involves
the conversion of RNA to DNA by reverse transcription
before sequencing. This sets the frame and require-
ments for RNA-Seq: pretty much any RNA sample that
can be isolated with sufficient quality and purity to al-
low for subsequent reverse transcription to DNA is
suitable for analysis by RNA-Seq. For most steps in
preparing RNA-Seq libraries, commercial kits and re-
agent sets with detailed and reliable protocols are
available, and the actual sequencing reactions are fre-
quently conducted by central facilities or commercial
suppliers. Hence, this update will mostly focus on steps
preceding RNA-Seq library preparation and on post-
sequencing analysis. For a detailed primer on differ-
ential gene expression analysis by RNA-Seq covering
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aspects of experimental planning, library preparation,
and details of data analysis, the reader is referred to the
recent reviews by Külahoglu and Bräutigam (2014) and
Griffith et al. (2015).

QUALITATIVE ANALYSIS OF RNA-SEQ DATA:
ASSEMBLY OF TRANSCRIPTOMES FROM
RNA-SEQ READS

In general, twomajor types of analyses are conducted
on RNA-Seq data: assembly of reads into contiguous
sequences (contigs) andmapping of reads to a reference
either to obtain an account of transcript amounts or to
verify/modify gene models or discover splice or se-
quence variants.

Of these two types of analyses, the assembly of RNA-
Seq data into contigs, in particular, de novo assembly
from short reads without a guiding reference, is still
problematic (Schliesky et al., 2012). In principle, two
different assembly strategies exist: overlap-based as-
semblers such as CAP3 (Huang and Madan, 1999) and
De Bruijn graph-based assemblers, such as Velvet/
Oases and Trinity. In our experience, overlap-based
assemblers tend to produce good assemblies and a
relatively low number of high-quality contigs. How-
ever, overlap-based assemblers are computationally
expensive and not applicable to large numbers of short
reads. De Bruijn graph-based assemblers are compu-
tationally efficient but tend to produce inflated num-
bers of contigs from short-read sequence data, in
particular for highly expressed transcripts (Bräutigam
et al., 2011b; Schliesky et al., 2012). A large number of
studies comparing different assembly strategies have
been published, and it is difficult to distill a straight-
forward recommendation on which algorithm to use
for short-read assemblies. As a first try, established
tools such as Trinity (Grabherr et al., 2011; Haas et al.,
2013) and Velvet/Oases (Schulz et al., 2012) will pro-
vide a good start, in particular given the very good
tutorials and manuals available for these assemblers.
Perhapsmore critical than the algorithm for assembly is
the experimental design: here, less data might be better
than more. That is, instead of trying to de novo as-
semble a reference transcriptome from multiple repli-
cated short-read samples, it is highly recommended to
generate a separate long-read paired-end sequencing
run on a library consisting of RNAs isolated from a
broad range of different cell types or tissues. That is, the
quality and coverage of the reference transcriptome is
improved by generating a mixed library including a
balanced amount of RNAs from tissues with different
functions, such as leaves, stems, roots, flower organs,
and developing seeds. In the case of Illumina sequenc-
ing, best assemblies are obtained from long paired-end
reads, for example, 23 300-nt reads on a MiSeq in-
strument. The recently developed full-length transcript
sequencing method by PacBio in principle circum-
vents the assembly step since it provides full-length
sequences of single complementary DNA molecules,

albeit with low sequence accuracy. Either sufficient se-
quencing depth for error correction or error correction
using short reads obtained with other sequencing tech-
nologies is needed to generate the accurate sequence of
the full-length transcript (Sharon et al., 2013; Tilgner
et al., 2014). Assembly of reference transcriptomes from
short reads is hampered by sequence variants (as
expected from heterozygous individuals and allopoly-
ploids), which is not the case with single-molecule full-
length sequencing. Hence, it is recommended that this
technology be taken into consideration when planning
RNA-Seq experiments on species without a sequenced
reference genome. It is likely that the extra cost for
generation of additional libraries and sequencing runs
will be amortized by more straightforward down-
stream data analysis and lower bioinformatics costs.

QUANTITATIVE ANALYSIS OF RNA-SEQ DATA:
ESTIMATING TRANSCRIPT AMOUNTS FROM
RNA-SEQ READS

Quantifying transcript amounts using RNA-Seq data
requires aligning of the RNA-Seq reads to a reference
(genome or reference transcriptome), counting the
reads per feature, followed by differential gene ex-
pression analysis. Again, as for contig assembly from
RNA-Seq reads, multiple programs and algorithms are
available for these tasks. For RNA-Seq data coming
from a species with a sequenced genome, the choice of
the reference for read mapping is straightforward.
However, in nonmodel species without sequenced ge-
nomes, several choices are available. Either the reads
are mapped to a reference transcriptome generated
from this species or they are mapped to the genome (or
reference transcriptome) from a related species. Neither
approach is perfect since a reference transcriptome
might be incomplete, and hence a number of reads
might not be mappable. A related genome refer-
ence might lack genes that are present in species of choice,
which are hence not detected in the mapping, and the
mapping efficiency might be low due to sequence di-
vergence. A further complication comes into play if
transcript amounts are to be compared between species
(and not between cell types, tissues, etc. of a single
species). Gene family sizes might differ between the
compared species, and possible bias in mapping effi-
ciencies might exist for individual genes. Also, the issue
of calling true orthologs makes cross-species compari-
sons more complicated. Informatics methods using
machine learning approaches have been developed to
overcome these issues, for example, to compare gene
expression data across a broad data set spanning more
than 140 million years of evolutionary separation
(Aubry et al., 2014a). This method makes use of a
unique method for orthology assignments, thereby
improving the abundance estimates for de novo as-
sembled transcripts, even across large evolutionary
distances. An alternative approach (which is frequently
used in our lab) is cross-species mapping of reads to a
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common reference genome, for example, Arabidopsis
(Bräutigam et al., 2011a, 2014; Gowik et al., 2011;
Külahoglu et al., 2014; Mallmann et al., 2014). In this
approach, reads are mapped in the protein space (i.e.
after translation of read sequences into all six reading
frames and then mapping them to a protein database,
such as the Arabidopsis proteome, using the BLAT tool;
Kent, 2002). Mapping in protein space enablesmapping
of reads to a relatively distant reference proteome since
protein sequences show lower rates of divergence than
nucleotide sequences and the BLAST-like alignment
tool BLAT allows for more mismatches than NGS
mapping tools such as Bowtie or Tophat. The main
caveats of this approach are that genes that are not
present in the mapping reference will not be called, and
that a mapping bias might exist if one of the mapped
species is closer to the reference than the other. On the
upside, downstream data analysis, such as functional
assignments, is facilitated by making use of a well-
annotated reference, such as the Arabidopsis genome.
Once a decision on the mapping reference has been

made, the next steps are trimming and quality control
of reads (for example, using the FASTX toolkit), map-
ping of reads to the reference, followed by calling of
differentially expressed genes. A large number of pro-
tocols, manuals, and tutorials are available for this;
hence the details are not discussed here. Instead, a few
good starting points are listed in Table I. Following the
Bioconductor rnaseqGene example or the iPlant Col-
laborative RNA-Seq tutorial, which within the Discov-
ery Environment is using Tophat for mapping of reads
to the reference and CuffLinks/CuffDiff for calling
differentially expressed genes (see Table I for Web
links) will provide sufficiently detailed instructions to
enable independent analysis of own data sets. RobiNA
(see Table I for link) provides a user-friendly graphical
interface to the R/Bioconductor packages typically
used in the analysis of RNA-Seq data and enables
straightforward downstream functional analysis of
differentially expressed genes using the MapMan tool
(Usadel et al., 2009; Lohse et al., 2012). It is emphasized

that it is crucial to understand the differences between
various methods for aligning reads and calling differ-
entially expressed genes, such as edgeR, DESeq, or
CuffDiff. Using different algorithms will lead to dif-
ferent lists of differentially expressed genes; scientific
reasoning is required to interpret these differences and
make the right choice for analysis of own data sets.
When performing large numbers of statistical tests, as is
the case in differential expression analysis, correction
for false-discovery rates must be performed, which
depending on the method used will influence the
power to detect true positives and the number of false
positives. It is hence important to understand the con-
cepts of the correction methods used to interpret the
outcome and to choose themost appropriate method. A
helpful and brief discussion of this aspect is given in
Krzywinski and Altman (2014). The Web provides
comprehensive information and documentation, as
well as helpful blogs and tutorials. The SEQanswers
wiki (see Table I) is recommended as a starting point for
more information (Li et al., 2012).

GENE EXPRESSION ANALYSIS BY RNA-SEQ: A
PROXY FOR TRANSCRIPTIONAL ACTIVITY AND
PROTEIN AMOUNTS?

RNA-Seq is most frequently used to quantify RNA
steady-state amounts. The goal of this type of analysis is
obtaining a quantitative account of transcript amounts
in organisms, organs, tissues, or specific cell types,
frequently comparing transcript amounts between dif-
ferent samples, such as cell types, mutants and wild
type, or response to certain treatments. Typically in
these studies, total RNA is extracted from the sample of
choice, either enriched for poly-adenylated mRNAs or
depleted from ribosomal RNA, and then subjected to
sequencing. Although this approach is highly success-
ful in quantifying transcript amounts and in identifying
differentially expressed genes, a valid point of critique
is that high transcript amounts do not necessarily reflect
the rate of gene expression or protein amounts. Both

Table I. Useful resources for RNA-Seq

Collection of frequently updated online resources and starting points for experimental protocols and tutorials for data analysis.

Web Site URL Description

RNA-seqlopedia http://rnaseq.uoregon.edu Comprehensive overview on all aspects of
RNA-Seq, from experimental design to data analysis

SEQanswers http://seqanswers.com/forums/ Online community on all aspects of NGS
RNA-Seq bioinformatics

tools wiki
https://en.wikipedia.org/wiki/
List_of_RNA-Seq_bioinformatics_tools

Comprehensive, frequently updated, and
annotated collection of RNA-Seq bioinformatics tools

FASTX Toolkit http://hannonlab.cshl.edu/fastx_toolkit/ Collection of tools for preprocessing of FASTX/FASTQ files
RobiNA http://mapman.gabipd.org/web/guest/robin User-friendly open source graphical interface to

RNA-Seq data analysis
RNA-Seq Tutorial https://pods.iplantcollaborative.org/wiki/

pages/viewpage.action?pageId=10659468
RNA-Seq tutorial by the iPlant collaborative wiki

RNA-Seq analysis
in the Cloud

https://github.com/griffithlab/rnaseq_tutorial/wiki Comprehensive tutorial on RNA-Seq in the Cloud,
with step-by-step instructions (Griffith et al., 2015)

Bioconductor rnaseqGene http://www.bioconductor.org/help/workflows/
rnaseqGene/

A detailed workflow for differential gene expression
analysis using DESeq2
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points of critique can be addressed by variations of the
RNA-Seq theme: gene expression rates can be estimated
by native elongating transcript sequencing, which is
based on immunoprecipitation of RNA polymerase II,
followed by RNA-Seq of the 39-end of RNA protected
by the active site of polymerase II (Mayer et al., 2015). In
addition, this approach also provides insights into the
regulation of transcriptional activity at the level of
polymerase II posttranslational modification by phos-
phorylation (Nojima et al., 2015). An alternative strat-
egy to assess transcriptional and posttranscriptional
regulation is exon-intron split analysis, which exploits
the deep sequence coverage to detect intronic reads that
can be used as proxy for nascent transcript amounts. A
recent study showed that changes in intronic read
counts directly measure changes in transcriptional ac-
tivities (Gaidatzis et al., 2015). By using this approach
across a range of different experimental conditions, it
becomes possible to distinguish transcriptional and
posttranscriptional effects on steady-state RNA levels
directly from RNA-Seq data. It has to be noted that
appropriate quality controls are required to distinguish
true intronic reads coming from premRNAs from reads
resulting from contamination with genomic DNA. In
addition, reference gene models defining intron-exon
borders are required.

Approximations on translation of transcripts to pro-
teins can be obtained by translating ribosome affinity
purification in combination with RNA-Seq (Reynoso
et al., 2015). By affinity purification of 80S ribosomes,
mRNAs associated with the ribosome are pulled down
and can then be quantified by RNA-Seq, providing a
snapshot of mRNAs that are likely to be actively
translated. Using cell-specific promoters to drive the
expression of ribosomal subunits enables insights into
cell-specific translatomes (Zanetti et al., 2005; Mustroph
et al., 2009). For example, driving bundle sheath-
specific expression of a FLAG-tagged ribosomal pro-
tein L18 in Arabidopsis showed that this cell type in C3
plants plays a specific role in sulfur metabolism and
transport as well as in the biosynthesis of glucosinolates
and in trehalose metabolism (Aubry et al., 2014b).

Importantly, though, at least for maize leaves, a good
correlation between transcript and protein abundance
was found (Ponnala et al., 2014). Although control
mechanisms such as protein and transcript stability as
well as translational control were found to have sig-
nificant effects, the mRNA amount was shown to be the
major factor influencing protein abundance (Ponnala
et al., 2014). Hence, as a first approximation, quantifi-
cation of mRNA does provide an estimate of relative
protein abundance, with high mRNA amounts corre-
lating with high protein amounts. It is also worth
mentioning that, despite massive progress in mass
spectrometric analysis of proteomes, quantification of
mRNAs can be conducted with higher throughput and
sensitivity at lower cost than measuring protein
amounts by mass spectrometry. For species with un-
known genomes, RNA-Seq actually is a prerequisite for
proteomic analyses since high-throughput proteomics

depends on sequence databases for peptide identifica-
tion (Bräutigam et al., 2008a, 2008b; Schulze et al., 2012).
In the long term, concerted measurements of RNA
transcription and decay rates, rates of protein transla-
tion and degradation, as well as transcription factor
binding and chromatin state will be needed to obtain a
comprehensive picture of the intricate interplay of mul-
tiple factors involved in regulating transcript and pro-
tein abundance.

RNA-SEQ AS ENABLING TOOL IN
NONMODEL SPECIES

Although long-read sequencing technologies such as
PacBio’s SMRT technology are now facilitating genome
sequencing and assembly, large and complex plant
genomes are still difficult to sequence and assemble.
RNA-Seq provides a relatively fast and economic tool
for gene discovery and for gene expression quantifica-
tion in species without a sequenced genome, which
enables exciting new insights into plant metabolism,
crop domestication, and development. This strategy
has been particularly successful in the discovery of
unknown enzymes and regulators in metabolic path-
ways, for example, in plant-specialized metabolism,
such as medicinally relevant monoterpene indole al-
kaloids from Asterids (Góngora-Castillo et al., 2012)
or sesquiterpenes in tomato (Solanum lycopersicum;
Schilmiller et al., 2010). Novel components of xyloglucan
biosynthesis have been discovered by conducting an
RNA-Seq time series of seed development in Tropaeolum
majus (Jensen et al., 2012), and comparative time-
resolved RNA-Seq of seed development in four differ-
ent plant species revealed communalities and specifics
of glycerolipid biosynthesis in oil seeds (Troncoso-
Ponce et al., 2011). Identification of genes relevant to
the function of C4 photosynthesis was achieved by
comparative RNA-Seq of related C3 and C4 species
(Bräutigam et al., 2011a, 2014; Gowik et al., 2011; Aubry
et al., 2014a; Külahoglu et al., 2014;Wang et al., 2014), of
developmental time series within one species (Li et al.,
2010; Wang et al., 2013), and comparative analysis
of cell-specific expression patterns between species
(Aubry et al., 2014b; John et al., 2014). For example,
comparative RNA-Seq of mature leaves of C3 and C4
plant species has led to the discovery of the gene en-
coding the plastidial sodium:pyruvate transporter that
is required for the biosynthesis of phosphoenolpyruvate
in the stroma of mesophyll cell chloroplasts (Furumoto
et al., 2011). The above-mentioned studies also pro-
vided a large number of candidate genes that might be
involved in controlling metabolic or anatomical aspects
of the C4 trait. As an example for the latter, comparison
of leaf developmental time series between non-Kranz
husk leaves and Kranz-type foliar leaves of maize
revealed a regulatory network containing the tran-
scriptional regulators SCARECROW and SHORTROOT
that is involved in patterning Kranz anatomy (Wang
et al., 2013; Fouracre et al., 2014).
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RNA-Seq can also be applied to better understand the
molecular mechanisms and genetic consequences of
crop plant domestication and breeding and thereby
provide novel leads for crop improvement and the
design of breeding and prebreeding programs. For ex-
ample, it was shown that during the domestication of
common bean in Mesoamerica, drastic changes in the
pattern and structure of gene expression occurred, with
overall lower diversity of gene expression patterns and
a general down-regulation of gene expression levels in
the domesticated variants as compared with the an-
cestral species. In this case, the loss of genetic diversity
during domestication was directly associated with a
reduced diversity of gene expression patterns (Bellucci
et al., 2014). Comparative analysis of gene expression
during cotton fiber development in four wild and five
cultivated accessions of cotton revealed, among other
important findings, that human selection during do-
mestication has led to a prolonged duration of fiber
elongation. Also, the wild accessions allocate a larger
part of their transcriptional investment to stress-
response pathways, whereas the domesticated species
allocate more to growth-related processes (Yoo and
Wendel, 2014). Again, comparison of wild ancestors
with cultivated accessions showed a dramatic and
wide-ranging rewiring of the transcriptome as a con-
sequence of domestication (Yoo and Wendel, 2014).
Transcriptomic comparison of wild and cultivated to-
mato accessions identified hundreds of thousands of
polymorphic positions between ancestral and domes-
ticated variants. By including in these comparisons
wild ancestors adapted to a highly diverse range of
habitats, including the desert-adapted Solanum pennellii,
it became possible to distinguish effects of natural
and artificial selection at a genomic scale (Koenig et al.,
2013). Comparing the transcriptome of the grapevine
(Vitis vinifera) ‘Tannat’ cultivar with that of the cv Pinot
Noir reference identified close to 2,000 unique genes
that are not present in the cv Pinot Noir reference ge-
nome. Functional annotation of these genes revealed an
expansion of genes encoding enzymes involved in
polyphenol biosynthesis (Da Silva et al., 2013). Berries
of cv Tannat produce unusually high amounts of
polyphenolic compounds, some of which have been
associated with longevity and promotion of vascular
health in humans (Corder et al., 2006). Quantitative
gene expression analysis during berry development
showed that the cv Tannat-specific polyphenol bio-
synthesis genes contributed strongest to the overall
transcriptional investment into polyphenol biosynthe-
sis, indicating that the specific and potentially health-
promoting properties of the cv Tannat berries are a
consequence of a unique gene set in this cultivar (Da
Silva et al., 2013).
Key to the success of these and other studies is the

selection of species or cultivar, tissues, developmental
stage, or cell types to compare as well as the procedures
for (statistical) data analysis used to extract the relevant
information from the large data sets obtained by RNA-
Seq. That is, the more prior knowledge is available on

the system of choice, the better the experimental de-
sign and eventually the outcome of the RNA-Seq ex-
periment will be. In addition, the RNA-Seq data were
frequently contextualized with anatomical data (for
example, microscopy of developing leaves), metabolic
and enzymatic data, or proteomic data. Meta-analyses
of RNA-Seq data with other data domains facilitate
the discovery of genes of interest by correlative
approaches, such as weighted gene correlation net-
work analysis ((Langfelder and Horvath, 2008, 2012)
or linear models (Brady et al., 2015). Therefore, as
outlined above, exploring and understanding the pro-
cedures for data analysis before designing an RNA-
Seq experiment is highly recommended because the
requirements of the data analysis routines will influ-
ence the range of parameters to be measured in the
experiment. In most cases it will be very difficult, if not
impossible, to obtain the relevant data after the RNA-
Seq experiment is conducted, so good planning is key
to success.

CAVEATS IN RNA-SEQ

As with any experimental approach, the quality and
reliability of data obtained in RNA-Seq experiments
are influenced by a large number of variables that need
to be controlled to avoid erroneous results. Recent
large-scale studies on RNA-Seq (Kratz and Carninci,
2014; SEQC/MAQC-III Consortium, 2014) have shown
that substantial variation of resulting data exists when
identical samples are run in different laboratories or on
different instruments, and the procedures of library
preparation and sample processing influence the out-
come. It is thus important to implement good experi-
mental practice, such as randomized-block design of
experiments, randomization of samples during pro-
cessing, andminimizing the number of hands involved
in each step of sample preparation as well as running
all samples in the same facility on the same instrument,
ideally in a single run to avoid between-run variations.
RNA is very sensitive to degradation, and differential
degradation of the RNA samples will severely affect
the outcome. Hence, controlling for RNA quality (pu-
rity and intactness) at all steps of the procedure is es-
sential. Another common source of error is remaining
genomic DNA in the sample, whichwill lead to skewed
results. Again, samples need to be carefully controlled
for DNA contamination and repeatedly treated with
DNase to remove the contamination, if needed. Al-
though not yet commonly used, particularly in com-
plex experiments with large numbers of samples, it is
advisable to include spiked internal references to con-
trol for variations in sample processing and sequencing
and to facilitate data postprocessing, such as normali-
zation. Once data have been obtained, clustering by
sample and principle component analysis should be
used to verify that samples cluster by treatments, not
by experimenter or other unintended experimental
variables.
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PERSPECTIVES

The last decade has seen a decline in the costs of DNA
sequencing by at least 5 orders of magnitude, and it is
expected that costs will decline even further. Also, new
protocols have been developed that dramatically re-
duce the cost of the preparation of sequencing libraries
(Hou et al., 2015). These reductions in costs make
larger-scale experiments possible, for example, gener-
ating quantitative transcriptomes of hundreds or
thousands of genetically diverse individuals of one
species, such as Arabidopsis ecotypes or structured
mapping populations. This will allow for establishing
associations between genetic variation and variation in
transcript amounts and the identification of cis- and
trans-factors determining transcript amounts through
quantitative genetics. RNA-Seq enables molecular anal-
yses that were previously precluded by a lack of
sequence information, for example, proteomic analyses
of inner and outer chloroplast envelope membranes
that to date can only be isolated from species without
sequenced genomes, such as spinach (Spinacia oleracea)
and pea (Pisum sativum; Gutierrez-Carbonell et al.,
2014). Bottlenecks exist in data processing, storage, and
analysis, the latter part frequently being the slowest in
RNA-Seq projects. It is thus crucial that, in addition to
training in wet-bench skills, instruction in large-scale
data analysis becomes an integral part of undergradu-
ate and graduate training curricula (Wingreen and
Botstein, 2006).
Received August 13, 2015; accepted September 9, 2015; published September 9,
2015.
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