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In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical
reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or
patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization
approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are
discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the
importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also
discuss methodologies to exploit ’omic data sets for the construction of tissue-specific metabolic network models and to constrain the
range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of
metabolic network flux phenotyping.

The metabolic systems of plants utilize a continual
energy stream (i.e. light in the case of photosynthetic
tissues and chemical energy in the case of heterotrophic
tissues) to drive a complex network of hundreds of
chemical reactions away from equilibrium. Ultimately,
this leads to the catalyzed biosynthesis of the ordered
polymeric biomolecules that make up the biomass of
the cells in each tissue and underpins the growth and
development of the plant (Smith and Stitt, 2007). To
operate on a time scale relevant for life, the system is
dependent upon the acceleration of its chemistry by
enzymes. Additionally, because of the highly com-
partmented nature of plant cells, transporter proteins
are required to permit themovement of metabolites (i.e.
the substrates and products of biochemical reactions)
between subcellular compartments. Transporter pro-
teins are also required to bring substrates into cells and
to allow the excretion of waste products and other
metabolites such as defense compounds. The sum total
of expressed genes encoding enzymes and metabolite
transporters determines the metabolic capabilities of a
cell. In a growing tissue, the net output of this metab-
olism is anabolic (i.e. leading to the biosynthesis of
biomass constituents such as starch, fructans, cell wall,
lipid, and protein), but catabolic metabolism is also
required. Most importantly, catabolism generates uni-
versal energy currencies such as ATP and NAD(P)H,
whose turnover is used to provide the energetic driving
force for anabolism. Catabolism is also important to
allow the turnover of cellular components for regula-
tory and repair purposes (Linster et al., 2013; Ishihara
et al., 2015). The turnover and resynthesis of cellular
components, along with the maintenance of electro-
chemical potentials across membranes, are important

facets of metabolism that need to be considered along-
side the biosynthesis of macromolecules for growth
(Stitt, 2013; Sweetlove et al., 2013).

Metabolism, then, is the entirety of chemical reac-
tions occurring in a biological system. The rate, or flux,
of these reactions is dependent upon the activity of the
enzymes and transporters present, which in turn is
dependent on both the amount of the proteins and the
regulatory modifications of their catalytic or transport
properties. The concentrations of reactants are also
important, affecting the rate and direction of reactions
due to enzyme-kinetic and thermodynamic consider-
ations, respectively. As the product of one reaction is
the substrate of one or more other reactions, an inter-
connected network of biochemical pathways is formed
inwhich the reaction rates aremutually dependent. The
emergent system-level property of this network as a
result of the combined effect of enzyme/transporter
amounts, regulation, kinetics, and thermodynamics is a
coordinated metabolic steady state in which the con-
centrations of all metabolites in the system are invariant
with time. Thus, to understand the functioning of me-
tabolism, it is necessary to know the fluxes of every
active biochemical reaction at a given steady state. This
information provides a precise quantification of the
metabolic state as an integrated cellular phenotype
(Ratcliffe and Shachar-Hill, 2005). More specifically, it
allows us to identify which metabolic pathways are
active, how active they are, and how their activity is
coordinated with other metabolic pathways to form a
balanced network. The fluxes can be compared under
different states, allowing, for example, the effect of
genotype or environment on the metabolic system to be
characterized. The resulting integrated view also allows
access to important aspects of metabolism, such as en-
ergy and redox balancing, that are properties of the
system as a whole (Kramer and Evans, 2011; Cheung
et al., 2015). Finally, knowledge of system-wide
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metabolic fluxes is an invaluable tool for guiding efforts
to engineer the plant metabolic system, allowing pre-
dictions of the ideal network configuration and fluxes
for the overproduction of desirable end products (Farré
et al., 2014).

In this Update, we will explain the basic principles of
estimating and predicting fluxes in metabolic networks.
We will also review the progress that has been made in
implementing these techniques for the investigation of
plant metabolism and the insights that have been
obtained. In addition, we will consider a number of areas
in which the field is still in a state of development. These
include the use of transcriptomic, proteomic, and
metabolomic data to develop context-specific models of
the metabolic system and approaches to investigate the
relationship between fluxes and metabolite levels. We
will finish by discussing some key challenges, both ex-
perimental andmethodological, that need to be addressed
in the future if metabolic flux analysis and modeling in
plants are to fulfill their considerable potential.

GENERAL PRINCIPLES OF INFERENCE AND THE
PREDICTION OF METABOLIC FLUXES

Estimating Flux from Isotopic Labeling Experiments

Metabolic flux analysis (MFA) aims to make simul-
taneous estimations of the fluxes of multiple reactions
in the metabolic network, usually with a focus on a
subset of interconnected reactions such as the pathways
of central carbon and nitrogen metabolism (Allen et al.,
2009a; Kruger and Ratcliffe, 2015). The approach is
based upon feeding tissues with stable isotope (usually
13C)-labeled substrates and measuring the labeling of
intracellular metabolites. One might imagine that the
conceptually simplest way to infer fluxes from labeling
data is via the rate at whichmetabolite pools are labeled
over time. However, a number of factors considerably
complicate the apparently simple relationship between
labeling rate and flux. More explicitly, the rate of
labeling of a metabolite pool is dependent upon the
following: (1) the extent of labeling of the precursor
substrate molecule(s) as label propagates through the
system; (2) the size of the metabolite pool (a large pool
will take longer to become fully labeled than a small one);
and (3) the rate of conversion of precursor substrate(s)
into the metabolite (the desired flux parameter). In the
simple case of an irreversible monomolecular reaction, it
is possible to estimate the flux by fitting the reactant la-
beling profiles to the solution of a single differential
equation that describes these relationships, in an ap-
proach known as kinetic flux profiling (Yuan et al., 2006,
2008). However, in most cases, the complexity of the
network increases the number of parameters thatmust be
considered and the equations are no longer analytically
solvable. For example, most reactions involve more than
one substrate and form more than one product. Many
reactions are reversible in vivo, which complicates the
labeling patterns. And the interconnected nature of the
network means that there are multiple sources of influx

of label into a metabolite pool. The situation is further
complicated in plants by the duplication of reactions and
metabolite pools in different subcellular compartments.

Given these complexities, most MFA approaches are
not based on the analytical solution of equations but
rather use numerical approaches to fit fluxes as pa-
rameters, to obtain a statistically good match between
the modeled and measured labeling patterns for the
relevant metabolites. When the rate of labelling is being
considered, this is known as isotopically nonstationary
metabolic flux analysis (INST-MFA;Wiechert and Nöh,
2013) in recognition of the fact that labeling time cour-
ses are used and labeling does not proceed to isotopic
steady state. Note that although the system is not at
isotopic steady state, it is assumed to remain at meta-
bolic steady state (i.e. the labeling of metabolites
changes over time, but the concentrations of the me-
tabolites remain constant). In this way, the reach of the
kinetic flux profiling approach can be extended to es-
timate fluxes in a more complex set of reactions such as
the Calvin-Benson cycle (Szecowka et al., 2013; Heise
et al., 2014). The labeling information used in these
analyses considered only the unlabeled fraction of each
metabolite during a labeling pulse chase, but additional
constraints on the fluxes can be gained by considering
the labeling of fragments of metabolites (using mass
spectrometry) or of specific carbon atoms (using NMR).
Given labeling time courses of all isotopomers, it is
possible to estimate the ratios of fluxes at network
branch points of larger metabolic networks (Hörl et al.,
2013). More usefully, given quantitative data about the
inputs and outputs of the metabolic network (i.e. the
rate of substrate utilization and the rates of synthesis of
biomass components), it is possible to estimate absolute
fluxes of the metabolic network under consideration.
Recently, the technique has been implemented suc-
cessfully in Arabidopsis (Arabidopsis thaliana), a tech-
nical and computational tour de force that allowed the
quantification of 54 fluxes in illuminated leaves labeled
with 13CO2 (Ma et al., 2014). The availability of spe-
cialized software, INCA (Young, 2014) and Open-
MeBius (Kajihata et al., 2014), will greatly facilitate the
implementation of INST-MFA by automatically gener-
ating the system of ordinary differential equations that
describes the metabolic network under consideration
(defined by the user and including information about
the carbon transitions between metabolites) and esti-
mating metabolic fluxes by nonlinear optimization of
the parameter fit to the labeling time course of the
measured isotopomers. The inclusion of metabolite
pool size data may improve the accuracy of flux esti-
mates, especially at branch points (Heise et al., 2015).

INST-MFA represents the current state of the art and is
the only way to estimate metabolic network fluxes in
leaves where 13CO2 is the only physiologically mean-
ingful route for carbon labeling. However, for hetero-
trophic tissues, it is possible to infer fluxes from the
pattern of labeling at isotopic steady state after feed-
ingwith positionally 13C-labeled substrates such as sugars
and amino acids. Fluxes can be accessed from patterns

1444 Plant Physiol. Vol. 169, 2015

Nikoloski et al.



rather than rates of labeling, because the distribution of
label from input substrates in which only specific carbon
atoms are labeled provides diagnostic information about
relative fluxes at branch points in the network. The focus
on the pattern of labeling dramatically simplifies the ex-
perimentalwork load (labeling of isotopomers needs to be
measured only at a single time point rather than across a
time course) and computational burden. The approach is
known as steady-state MFA and, like INST-MFA, uses
nonlinear fitting of labeling data (in this case to sets of
equations describing the carbon transitions between
metabolites) and measured input and output fluxes to
scale and constrain the fluxes (O’Grady et al., 2012). The
main limitation of the technique is that it is restricted
to cultured heterotrophic systems in which isotopic
steady state can be achieved. That said, steady-state
MFA is a mature technique and has been used exten-
sively to analyze flux distributions of seed embryo
cultures and heterotrophic cell suspension cultures.

Predicting Flux from Stoichiometric
Constraints-Based Modeling

Despite considerable methodological and computa-
tional advances, MFA, and particularly INST-MFA,
remain low- to medium-throughput techniques (Junker,
2014). Therefore, researchers have increasingly turned
to modeling approaches that allow fluxes to be pre-
dicted without the requirement for labor-intensive ac-
quisition of isotope labeling data. Arguably the most
powerful computational models of metabolic pathways
are kinetic models that are based on numerical analysis
of differential equations describing changes in metab-
olite concentrations in terms of rate equations that in-
corporate the kinetic properties of the relevant enzymes
(Rohwer, 2012). However, obtaining reliable values for
the enzyme-kinetic parameters (e.g. Vmax and Km) for
large numbers of enzymes from the same tissue/cell
type is just as experimentally labor intensive as MFA;
consequently, kinetic models are usually restricted to
relatively small metabolic networks. Instead, for larger
networks, a method known as flux balance analysis
(FBA) has become widely used. FBA was initially de-
veloped for microbial metabolism and allows flux
predictions to be made without knowledge of enzyme-
kinetic parameters. The central premise of FBA is that
natural or artificial selection has imposed optimization
drivers on the efficiency or productivity of metabolic
networks and, thus, it is possible to predict metabolic
behavior (flux) using optimization principles.
To explain how FBA works, we need to first intro-

duce some basic concepts about the modeling of bio-
chemical reactions andmetabolic pools. Each (bio)chemical
reaction can be mathematically represented by a matrix
capturing the stoichiometric coefficients for each
metabolite on the right (producing) and left (consum-
ing) side of the reaction (Fig. 1). The resultant
stoichiometric matrix, N, is an accurate representation
of the metabolic network, the rows of the stoichiometric

matrix corresponding to metabolites and the columns
denoting the reactions (Fig. 1).

To use this information to predict metabolic behav-
ior, reaction fluxes need to be introduced. This can be
done, as with kinetic modeling, by constructing differ-
ential equations that relate changes in metabolite con-
centrations to reaction flux (Fig. 1). To arrive at a
steady-state flux distribution, one has to solve the sys-
tem of equations, N 3 v = 0, where v is a vector of re-
action fluxes. Since the number of reactions is typically
larger than the number of metabolites, the system of
linear equations is underdetermined. Such systems
usually have infinitely many solutions. However, bio-
logical systems operate under additional constraints,
aside from the steady state, and these can be used to
restrict the feasible space of flux distributions. For in-
stance, some reactions are irreversible; in addition, all
reactions are assumed to operate between some (ge-
neric) upper and lower flux boundaries. As inMFA, the
inputs and outputs of the metabolic system will also be
(experimentally) defined (Fig. 1). To further constrain
the solution space, one assumes that the biological
system optimizes an objective, expressed as a linear
combination of the reaction fluxes (Fig. 1). Common
objective functions include the maximization of bio-
mass produced per unit of input substrate (Feist and
Palsson, 2010) and the minimization of the sum of
fluxes, a proxy for the cost of the enzymatic machinery
(Sweetlove and Ratcliffe, 2011).

Even with the assumption of optimality, a unique
steady-state flux distribution is not usually obtained
(Fig. 1). Therefore, the space of flux distributions that
result in the optimal value of the assumed objective is
explored by means of flux variability analysis, which
reveals the range of flux values that a reaction can carry
in the optimum. Note that not every combination of
values in the range resulting from flux variability anal-
ysis is feasible, which implies that not every value may
be equally likely to appear in a steady-state flux distri-
bution. In addition, subsequent optimizations for other
objectives, such as minimum uptake of substrates and
minimum ATP consumption, can be used to further re-
duce the space of possible distributions (Fig. 1). Another
way to reduce the space of feasibleflux distributions is to
fix some ratio of fluxes to values obtained from mea-
surements (Cheung et al., 2013) or based on insights
from other modeling approaches.

The formulation given above indicates that FBA is a
linear programming problem. Within the linear pro-
gramming framework, one can readily investigate the
concept of shadow price for a constraint, which essen-
tially quantifies how much change in the objective value
results from changing the constraint by one unit. Deter-
mining the shadow price for a steady-state constraint for
metabolite X then amounts to determining how the im-
balance of that metabolite affects the objective. This has
recently been termed flux imbalance analysis (Reznik
et al., 2013). Therefore, extensions of FBA allow insights
to be made as to the effect of changes in metabolite pools
on the performance of the biological system.

Plant Physiol. Vol. 169, 2015 1445

Metabolic Network Fluxes



As indicated above, due to the steady-state assump-
tion and the flux-centered focus, FBA amounts to
solving a set of linear equations for the reaction fluxes.
However, actual fluxes are integrated outcomes of the
activity of available enzymes, their posttranscriptional
and allosteric regulation, as well as metabolite levels.
Mathematically, each reaction flux vi is, in fact, de-
scribed as a nonlinear function of the aforementioned
parameters, here denoted by the function vi(x, p), where
p is a set of parameters and x denotes the concentration
of metabolites (and enzymes). Each steady-state flux
distribution is accompanied by a steady state of me-
tabolite concentrations. The latter can be obtained by
solving the system of equations N 3 v(x, p) = 0, which
are often nonlinear for x. Therefore, while the results
from FBA are independent of enzyme-kinetic parame-
ters, any predictions about metabolite concentrations in
a steady state necessitate the inclusion of specific kinetic
rate equations. Despite this, it is still possible to inte-
grate metabolite concentrations into FBA as constraints
that further reduce the space of feasible steady-state
flux distributions, and this reduction is dependent
on the kinetic law used. In addition, this is the
principle difference between FBA and kinetic mod-
eling, which integrates the system of differential

equations dX/dt = N 3 v(x, p) to a steady state given
initial conditions of metabolite concentrations.

BIOLOGICAL INSIGHTS FROM FLUX ANALYSIS

There is now a substantial body ofwork inwhich flux
measurements and flux predictions have been made for
variety of tissues in a variety of plant species and under
a variety of conditions. The studies have mainly fo-
cused on the central metabolic network of carbon and
nitrogen metabolism as relates to the synthesis of the
main biomass components of growing tissues. Recent
reviews have provided a comprehensive overview of
the findings from such studies (Baghalian et al., 2014;
Kruger and Ratcliffe, 2015). Here, we will focus on
specific examples that have provided the most signifi-
cant new insights into metabolic behavior and function.

Metabolic Pathways and Networks

Perhaps the single most important thing that flux
studies have demonstrated is that metabolism cannot
be fully understood by considering traditional path-
ways such as glycolysis and the tricarboxylic acid cycle
in isolation. Rather, these pathwaysmust be considered

Figure 1. Principles and approaches of FBA. The top part illustrates the mathematical encoding of the structure of a metabolic
network in the form of a stoichiometry matrix (S) and the activity of the network as a vector of fluxes (v). The bottom part illustrates
constraints-based optimization approaches to predict flux distributions in the network by solving the linear set of equations S 3
v = 0. The unconstrained n-dimensional solution space (shown at left) can be reduced by adding upper and lower bounds for each
flux, and a set of solutions that lie within this constrained space can be found that also satisfy an optimization objective (shown in
the middle). To reduce this multiple set of feasible flux distributions, additional constraints derived from transcriptomic, pro-
teomic, and metabolomic data can be applied as well as secondary objective functions (shown at right). This allows a smaller set
of biologically relevant flux distributions to be obtained.
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as part of a wider network, and it may be necessary to
consider the network in its entirety to gain a full under-
standing of the metabolic state (Marashi et al., 2012). The
coordination of the activity of these pathways with the
wider network and multiple points of connection via
branch points from different intermediates within the
pathways means that different sections of the pathways
often carry differentflux. Thus, it is incorrect to refer to the
activity of the tricarboxylic acid cycle or glycolytic flux,
since different parts of these pathways are not operating
at the same rate. The tricarboxylic acid cycle, for example,
can be radically reconfigured into a number of different
flux modes, not all of which are cyclic, and this depends
on the wider network context (Sweetlove et al., 2010) and
environmental conditions (Poolman et al., 2013).

Integrated Metabolic Network Responses

The question, then, is: how does the integrated met-
abolic system respond to changes in the demands
placed upon it? In many cases, the metabolic steady
state has proven to be remarkably robust: fluxes in
heterotrophic tissues measured by MFA are often in-
variant under different environmental conditions
(Spielbauer et al., 2006;Williams et al., 2008). Naturally,
this depends on the nature and magnitude of the al-
tered demand. Small changes in demand, such as an
engineered increase in the biosynthesis of secondary
metabolites, have no detectable effect on fluxes through
central metabolism (Masakapalli et al., 2014). In con-
trast, changes in the demand for synthesis of the major
biomass polymers has been shown to lead to a sub-
stantial redistribution of fluxes (Iyer et al., 2008;
Schwender and Hay, 2012; Sweetlove et al., 2014).
Changes on the supply side are also significant: alter-
ation of the carbon-nitrogen ratio supplied to cultured
soybean (Glycine max) embryos led to corresponding
changes in the accumulation of oil and protein that were
supported by alterations in fluxes of reactions in car-
boxylic acid metabolism in mitochondria and plastids
(Allen and Young, 2013). Nevertheless, in most of these
examples, the changes in flux were relatively modest,
reflecting the flexibility of the central metabolic network.
This also leads to the conclusion that if one is attempting
to engineer the biomass composition of crops (e.g. to in-
crease the energy density of bioenergy crops; Vanhercke
et al., 2014), a rather more subtle and coordinated engi-
neering of central metabolism may be required than is
usually achievedwith the sledgehammer of transgenic or
mutagenic interventions. Ultimately, it may be preferable
to attempt to directlymanipulate the controls on biomass
demand (Morandini, 2013) and to rely on the inherent
plasticity and flexibility of centralmetabolism tomeet the
altered demand.

Accounting for the Costs of Metabolism

Whichever way the engineering of biomass is ach-
ieved, it will have substantial implications for the energy

balance of the engineered system. The computation of
detailed metabolic network flux maps has allowed the
quantification of energy budgets in plant cells, account-
ing for all the reactions that produce ATP and those that
consume it. Recent FBA models of Arabidopsis that in-
corporate the energetic costs of all relevant metabolite
transport across the plasma membrane and intracellular
membranes provide the most complete energy budget
calculations (Cheung et al., 2013; Arnold and Nikoloski,
2014). These calculations provide a new perspective on
the costs of running a cell. For example, in a heterotrophic
Arabidopsis cell, the uptake and metabolic transforma-
tion of carbon and nitrogen nutrients to biomass poly-
mers accounts for two-thirds of the ATP budget, the
remaining one-third being required for cell maintenance
processes. Maintenance processes also consume half of
the total NADPH budget. These calculations highlight
the substantial expense associatedwith cell maintenance.
It was also shown that a correct accounting for these
maintenance costs (in terms of both ATP and NADPH
usage) is required for accurate predictions of metabolic
fluxes in the catabolic energy transduction pathways
(Cheung et al., 2013). Nevertheless, along with recycling
of misfire metabolites (Linster et al., 2013), these main-
tenance processes are something of a black box in mod-
eling terms (Sweetlove et al., 2013). Although new
labeling methodologies are being established that would
allow some of these turnover parameters to be experi-
mentally constrained (Nelson et al., 2014; Ishihara et al.,
2015), a more mechanistic accounting of maintenance
in FBA would lead to models with greater predictive
power. The calculations of costs can also be extended
to account for the costs of synthesizing the enzymatic
machinery, something that has been ignored in most flux
models. Calculations based on a recent FBA model of
Arabidopsis leaf metabolism in the light revealed that
the cost of synthesizing and maintaining the pool of
Rubisco enzyme is considerable at approximately 0.2
ATP per carboxylation/oxygenation reaction (Arnold
and Nikoloski, 2014).

Energy Metabolism in Photosynthetic Tissues

The influx of light energy and its transduction into
chemical energy carriers, NADPH and ATP, by the re-
actions of photosynthesis obviously has a dramatic
impact on the energy economy of a plant cell. The
benefits of this energy source are seen not just in leaves
but can also be observed in the metabolism of green
seeds (Chen and Shachar-Hill, 2012). Specifically, the
additional NADPH allows the refixation of metabolic
CO2 by Rubisco (Schwender et al., 2004), resulting in
spectacularly high carbon conversion efficiencies for
green oilseeds in the light (Allen et al., 2009b) in com-
parison with nongreen oilseeds (Alonso et al., 2007,
2011) or green oilseeds in the dark (Schwender et al.,
2006). In photosynthetic tissues, a major challenge is
presented by natural variations in light conditions,
which lead to variable rates of photosynthetic NADPH
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andATP production. This variable energy flux has to be
matched to a rather constant energy demand for bio-
synthesis, maintenance, and metabolite transport.
Moreover, even without this variation in light intensity,
it is apparent that leaves require mechanisms to reba-
lanceNADPHandATP, because the ratio of NADPH to
ATP produced by photosynthesis does not match the
requirements of the Calvin-Benson cycle (Allen, 2003).
One mechanism of rebalancing this ratio occurs within
the photosynthetic electron transport chain itself: the
flow of electrons can be reconfigured from a linear
pathway between PSII and PSI to cyclic electron flow
around PSI (Allen, 2003; Kramer and Evans, 2011). But
there are multiple other mechanisms for NADPH-ATP
rebalancing, including the water-water cycle (Miyake,
2010), the conversion of NAD(P)H to ATP by the mi-
tochondrial respiratory chain (Taniguchi and Miyake,

2012), and a variety of other metabolic sinks for ATP/
NADPH (Fig. 2). An FBA analysis of photosynthetic
cyanobacterial metabolism was recently used to ex-
plore some of these alternative pathways (Nogales
et al., 2012). It was confirmed that NADPH/ATP re-
balancing is required to match the energy demand of
the metabolic system as a whole, not just the Calvin-
Benson cycle, and the importance of these alternative
pathways increased with increasing light intensity.
Nine alternative pathways were analyzed (one at a
time) and were found to be nonequivalent in terms
of quantum yield. Interestingly, photorespiration was
found to contribute to energy rebalancing at high light
intensities by acting as an ATP sink. Similarly, photo-
respiration was found to be spontaneously activated at
high light in a genome-scale model of rice (Oryza sativa)
metabolism (Poolman et al., 2013). These FBA studies

Figure 2. Metabolic pathways for ATP and NAD(P) rebalancing and dissipation in an illuminated leaf. Linear photosynthetic
electron flow in the thylakoid (A) generates a fixed stoichiometry of NADPH and ATP that does not match the requirement of the
cell’s anabolic metabolism (shown in the middle). Anabolic demands will vary, for example by assimilating ammonium rather
than nitrate or depending on the growth phase (cell division or cell expansion). The ratio of NADPH and ATP produced can be
adjusted by utilizing cyclic electron flow around PSI, which reduces the production of NADPH relative to ATP (B). Alternatively,
the conversion of photorespiratory NADH to ATP by the mitochondrial electron transport chain (C) can be adjusted by the en-
gagement of uncoupling pathways such as the alternative NADH dehydrogenases (ND), the alternative oxidase (AOX), and
uncoupling protein (UCP). At high light, there is an excess of energy and both ATPand NADPH must be dissipated. NADPH can
be dissipated by thewater-water cycle (D) and by pigment cycles such as the xanthophyll cycle (E), while ATP can be dissipated by
ATP-consuming futile cycles (F). Flows of electrons and protons are indicated by yellow and cyan lines, respectively. CBB, Calvin-
Benson-Bassham; Fd, ferredoxin; FNR, ferredoxin-NADPH oxidoreductase; FQR, ferredoxin-quinone oxidoreductase; LHC,
light-harvesting complex; NDH, chloroplast NAD(P)H dehydrogenase; PC, plastocyanin; PQ, plastoquinone; PS, photosystem.
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suggest that photorespiration is not simply a carbon
salvage pathway but also functions as an important
energy sink when the plant receives excess light. This
FBA prediction was recently confirmed in an INST-
MFA analysis of Arabidopsis plants acclimated to high
light (Ma et al., 2014). The energy-dissipating role
of photorespiration has implications for attempts to
transfer C4 photosynthesis to C3 plants (Hibberd et al.,
2008): for the engineered plants to function properly in
high light, it will be essential that alternative energy-
dissipating systems have sufficient capacity to replace
the role played previously by photorespiration.
One of the difficulties of analyzing alternative path-

ways with FBA is that fluxes are predicted using opti-
mization algorithms that, when faced with equivalent
alternative pathways, will select a single pathway that
best satisfies the optimality criterion. This can be mis-
leading because multiple alternative pathways will
often operate simultaneously in planta. A recent me-
thodology that uses reaction weighting factors to ac-
count for the differing costs of the enzymatic machinery
provides a potential solution (Cheung et al., 2015).
Using this approach, the flux space was analyzed in
thousands of simulations using different sets of weight-
ing factors for the fluxes, and the averaged results show
operation of alternative pathways. By analyzing the
flux distributions obtained at different light intensities,
it was demonstrated that the roles of alternative path-
ways varied with light. The importance of mitochon-
dria for energy rebalancing (Taniguchi and Miyake,
2012) was confirmed, with the alternative respiratory
pathway becoming more important as light intensity
increased. The analysis also highlighted the impor-
tance of chloroplastic energy-rebalancing mechanisms
at high light in addition to the well-recognized cyclic
electron flux and water-water cycle. These include
xanthophyll and chlorophyll pigment cycles to dissi-
pate excess NADPH and ATP-consuming futile cycles
to dissipate excess ATP (Fig. 2).

BUILDING AND ANALYZING CONTEXT-SPECIFIC
METABOLIC MODELS

Genome-scale metabolic networks characterize the
entirety of biochemical reactions occurring in a bio-
logical system. There is ample evidence that biological
systems adapt their metabolism to the conditions in
which they operate (e.g. developmental stage, cell type
in multicellular organisms, and different environmen-
tal conditions). These conditions result in different
metabolic contexts in which, typically, only a subset
of reactions are active. Therefore, to provide more ac-
curate and more biologically meaningful insights, there
is a need to construct context-specific models. This is of
particular importance when investigating questions of
plant physiology, since context-specific models repre-
sent not only the means to understand tissue- and cell-
specific metabolism but also the first step in creating
interconnected models of metabolism (Bordbar et al.,
2011; de Oliveira Dal’Molin et al., 2015).

The existing methods for constructing context-
specific models have been classified into three main
groups (Robaina Estévez andNikoloski, 2015) and have
been comprehensively compared on a common data set
(Machado and Herrgård, 2014). The main aim of these
methods is to determine the set of active reactions (i.e.
reactions carrying flux) based on the integration of
high-throughput data (e.g. transcriptomics, proteo-
mics, and metabolomics) given a genome-scale meta-
bolic network. GIMME (Becker and Palsson, 2008) and
GIM3E (Schmidt et al., 2013), from the first group, ini-
tially use conventional FBA to optimize for an objective
function but then implement a second linear optimi-
zation to determine a flux distribution that minimizes
the discrepancy to the high-throughput data while
maintaining the optimal value from the first step. The
second optimization step works by the imposition of
user-defined threshold values for the data used to de-
fine active reactions and then penalizing reactions
whose associated data are under the threshold. The
second group of methods, comprising iMAT (Zur et al.,
2010) and INIT (Agren et al., 2012), use a mixed integer
linear program for the optimization. The binary varia-
bles in this formulation select the reaction states (i.e.
active or inactive) that are most concordant with the
associated data. While iMAT uses data to preclassify
reactions of the genome-scale metabolic network into
groups of active or inactive reactions, INIT integrates
data as a weighting factor for the binary variable. In an
extended version, tINIT (Agren et al., 2014), a set of
metabolic tasks (i.e. biochemical pathways) that must
carry nonzero flux can be added as further constraints.
The third group, composed of MBA (Jerby et al., 2010),
mCADRE (Wang et al., 2012), and FastCORE (Vlassis
et al., 2014), first define a core set of reactions, classified
as active in a given context according to experimental
data, and then find the minimum set of reactions out-
side the core required to satisfy the model consistency
condition (i.e. all reactions in the model must be able to
carry a nonzero flux in at least one of the allowed
steady-state distributions). Unlike the methods in the
previous two groups, these only extract a context-
specific model and do not provide a respective flux
distribution.

Thefirst group belongs to the so-called biasedmethods
(within the constraint-based analysis), since the achieved
solution depends on the definition of a metabolic objec-
tive function to be optimized. In contrast, the second and
third groups consist of unbiased methods, since they are
independent of objective function (Lewis et al., 2012). The
choice of unbiased methods is of particular importance
when the metabolic functions to be optimized under a
given context may be difficult to obtain and justify; for
instance, this is the case when dealing with multicellular
organisms, where multiple cell types coexist (cooperate
and/or compete) while performing a variety of special-
ized metabolic functions instead of optimizing a single
general function.

Recently, Robaina Estévez and Nikoloski (2015)
proposed and tested a fully automated procedure for
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model extraction and flux prediction without using a
priori knowledge of a context-specific function and
without any preclassification of reactions in the process
of data integration. This is of particular importance
when a large number of context-specific models are to
be extracted; it is an evenmore pressing issue for poorly
studied organisms or cell types for which no informa-
tion regarding the context specificity of reactions or
metabolic function may be available in the existing
databases or from detailed physiological studies.

All of these methods largely depend on integrat-
ing transcriptomics and proteomics data to establish
bounds on fluxes and, consequently, to reduce the flux
space (Fig. 1). The inclusion of flux bounds based on
transcript and protein levels has proved to be a useful
tool to assess and interpret metabolic behavior between
conditions (Töpfer et al., 2013). However, the coordi-
nation of several regulatory levels between gene tran-
scription and reaction rates may not result in a direct
correspondence between gene expression and fluxes,
and this can affect the usefulness of these methods
(Machado and Herrgård, 2014). The correspondence
between changes in flux and changes in transcript
levels in plant tissues was recently investigated
(Schwender et al., 2014). 13C-MFA flux ratios from two
Brassica napus (oilseed rape) accessions were used to
constrain fluxes in a larger genome-scale model. The
authors then investigated the correspondence between
the changes in flux and the changes in transcript levels
for the corresponding reactions. They found very little
correspondence between these changes, which is in
stark contrast to the excellent agreement (coefficient of
determination of 0.87 and 0.96 at 75% and 85% of op-
timal biomass) found in Saccharomyces cerevisiae (Lee
et al., 2012). The reason for the low correspondence in
the plant study may be due to the fact that the com-
parison was between fluxes determined under the
steady-state assumption, and transcript levels, which,
when used directly as proxies for fluxes, may violate
the steady-state assumption. A more valid comparison
would be between the flux ratios from 13C-MFA and the
flux ratios from flux distributions satisfying the same
set of constraints (e.g. steady state) closest to the tran-
script levels (or their ratios). Clearly, further methodo-
logical developments are needed to effectively reduce
the feasible flux space and arrive at physiologically
relevant findings.

CONTEXT-SPECIFIC MODELS IN PLANTS

In this section, we review insights obtained from
context-specific models in plants. It is notable that the
majority of these models have not been assembled fol-
lowing the aforementioned systematic methods for
context-specific model extraction but, rather, rely on
expert knowledge in selecting the active reactions. In
many cases, context specificity has been established
using the full genome-scale reaction set, but applying
context-specific constraints, and this can be justified for

the core reactions of primary metabolism that show
little cell- or tissue-type variations in terms of the
presence or absence of reactions.

For instance, development-driven changes in bio-
mass composition were considered in modeling of
Synechocystis sp. PCC 6803 (Knoop et al., 2013). Simi-
larly, FBA models of Chlamydomonas reinhardtii (Boyle
andMorgan, 2009; Chang et al., 2011) included biomass
functions for both photoautotrophic and mixotrophic
growth. A recently assembled Arabidopsis FBA model
includes condition-specific biomass reactions for
optimal (light-limited), nitrogen-limited, and carbon-
limited conditions (Arnold and Nikoloski, 2014). A
similar approach was taken in a multiscale model of
barley (Hordeum vulgare) in which models of leaf, stem,
seed, and root were interconnected via the phloem and
environment to investigate sink-source relationships
(Grafahrend-Belau et al., 2013). Time-specific biomass
compositions in combination with minimization of the
uptake of resources (e.g. CO2) and minimization of the
total flux was used to simulate whole-plant behavior
and to obtain tissue-specific steady-state flux distribu-
tions followed by FBA. Finally, biomass reactions spe-
cific for nine stages of tomato (Solanum lycopersicum)
fruit development in combination with the minimiza-
tion of total flux were used to investigate the temporal
redistribution of fluxes in the central metabolism of
tomato fruits (Colombié et al., 2015).

In addition, a model used for the exploration of het-
erotrophic growth of Arabidopsis was updated to a diel
metabolic model by dividing the day/night cycle into
two phases (day and night), both operating in a steady
state (Cheung et al., 2014). The diel model is essentially
composed of two copies of the original model with the
addition of dummy reactions for the transfer of storage
molecules between the two phases as well as enforcing
certain values for selected fluxes (e.g. carboxylation-to-
oxygenation ratio and photon influx). The model was
successful in predicting the carbon and nitrogen storage
molecules that accumulate over the day/night cycle
and in establishing differences between day and night
flux distributions.

Duplicates of a model connected with exchanges
of particularmetabolites are the usual strategy followed
in the field of modeling C4 metabolism (e.g. maize
[Zea mays]; de Oliveira Dal’Molin et al., 2010; Saha et al.,
2011) and the transition between C3 and C4 metabolism
(Mallmann et al., 2014). For instance, C4GEM (deOliveira
Dal’Molin et al., 2010) includes two copies of the same
model, with expert-guided alterations to capture the
bundle sheath and mesophyll cells, respectively, which
exchange molecules through the plasmodesmata. A sim-
ilar approach is taken in the strategy of Mallmann et al.
(2014), where the addition of the photorespiratory CO2-
concentrating mechanismwas shown to be a prerequisite
for the evolution of C4 plants (under the constraints on
minimizing exchange through the plasmodesmata and
fixing additional fluxes from external information).

The approach of Simons et al. (2014) is closer to the
methods discussed earlier: transcriptomics data were
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used to obtain cell type-specific models and combine
them in an integrated model of maize that includes
pathways fromboth primary and secondarymetabolism.
By using the differential behavior from high-throughput
data, reactions are switched on/off to investigate flux
redistribution between optimal and limiting nitrogen
conditions. In addition, flux sums (the total flux passing
through a metabolic pool) under the different conditions
in combination with appropriate variability analysis are
related to the pool sizes assessed experimentally (see
“Linking Fluxes to Metabolites” below). Following the
MBA method and based on tissue-specific protein ex-
pression data from juvenile leaves, open flowers, flower
buds, 10-d roots, 23-d roots, siliques, seeds, and cotyle-
dons, as well as cell cultures grown in light and in dark,
Mintz-Oron et al. (2012) extracted a model specific for
these contexts. The presence of selected metabolites (i.e.
three isoprenoid compounds) in different tissues was
validated by metabolomics technologies, but no assess-
ment of the correspondence between flux distributions
and protein abundance was carried out. Finally, Seaver
et al. (2015) extracted an organ-specific model for the
maize leaf and tissue-specific models for embryo and
endosperm cells by including (similarly to iMAT) a
minimal set of reactions required to fill gaps in the net-
work while maximizing the number of flux-carrying re-
actions associated with highly expressed genes. The
models are accompanied by biomass reactions based on
measurements under the same conditions, and their va-
lidity was tested by comparing the predicted fluxes with
those coming from MFA.
While the transcriptome and proteome will continue

to be pursued in the context-specific modeling of plant
metabolism, largely due to their broad coverage, a
drastic reduction in the flux space is more likely to be
achieved from the consideration and inclusion of data
on metabolite levels.

LINKING FLUXES TO METABOLITES

As stated previously, steady-statefluxdistributions are
obtained by solving a (usually underdetermined) system
of linear equations under a set of additional biochemi-
cally meaningful constraints. Moreover, in a biological
system, a flux distribution is the integrated outcome of
the transcription and translationmachinery aswell as the
metabolite pools used as substrates in the reactions.
Therefore, a biochemically meaningful flux distribution
should correspond to a set of protein abundances (to-
gether with adequate active part of the protein pool) and
metabolite levels. In other words, the fact that every op-
timal steady-state flux distribution obtained from FBA
and its extensions satisfies the imposed constraints does
not necessarily imply that the flux distribution can be
associated with biochemically meaningful values for the
levels of the other system components. It is due to this
requirement, that flux distributions should map to cor-
responding protein and metabolite levels, that the space
of feasiblefluxdistributions can be further constrained by
considering respective data sets.

Metabolite levels have been integrated into constraint-
based methods with the aim of (1) extraction of context-
specific models (e.g. GIM3E); (2) identification of
turnover rates and limiting metabolites; (3) prediction
of fluxes compatible with a particular kinetic law and
thermodynamic principles (Hoppe et al., 2007; Yizhak
et al., 2010; Tepper et al., 2013); and (4) prediction of time-
resolved flux distributions. The integration of metabolite
levels in constraint-based methods and their applica-
tions in plant research have already been systematically
reviewed elsewhere (Töpfer et al., 2015). Here, we only
focus on the most recent plant-related applications of
purely structural approaches, namely flux-sum analy-
sis, flux imbalance analysis, and time-resolved expres-
sion and metabolite-based (TREM)-flux, which do not
require kinetic laws and, thus, maintain the simplicity
of FBA.

Flux-sum analysis (Chung and Lee, 2009) determines
the flux sum for each metabolite by summing the in-
coming or outgoing fluxes of the reactions in which the
metabolite participates as a product or a substrate, re-
spectively. At steady state, the influx into a metabolite
pool equals the efflux from it. However, the steady state
does not resolve the magnitude of the total efflux and
influx, which can be quantified by the flux-sum ap-
proach. Therefore, the flux sum can be used as a de-
scriptor of the turnover rate of a metabolite, with a high
flux sum indicating high turnover. Flux sums are used
by calculating a basal flux sum for each metabolite
based on a flux distribution that maximizes a specific
objective, determining the maximum flux sum of indi-
vidual metabolites irrespective of an objective and us-
ing the calculated bounds tomanipulate the behavior of
flux sums of individual metabolites to investigate their
influence on the objective. Simons et al. (2014) recently
applied this approach to determine the directional
changes of the flux sums of individual metabolites be-
tween two different nitrogen conditions in a wild-type
maize leaf. These changes were then qualitatively com-
pared with the directional changes in the experimentally
measured metabolite levels. Therefore, this study uses
the flux sum as a proxy for the metabolic pool size rather
than its turnover. Since the flux sum can vary in alter-
native optima, the authors only considered those me-
tabolites whose ranges for flux sums (normalized by the
biomass rate) did not overlap between the compared
scenarios.

Flux imbalance analysis explores the sensitivity of
metabolic optima to violations of the steady-state con-
straints (Reznik et al., 2013). The method does not di-
rectly integrate metabolite levels but can be used to
elucidate the processes that control intracellular me-
tabolites in the cell. The approach is based on the con-
cept of shadow price (see above), which captures the
influence of the metabolite’s accumulation or depletion
on the optimum of the FBA objective. Thereby, a neg-
ative shadow price is considered to imply that the
corresponding metabolite is growth limiting. By using
data from S. cerevisiae under different nutrient-limiting
conditions, the authors showed that the determined
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shadow prices are negatively associated with the
growth limitation of the respective measured intracel-
lular metabolites. Moreover, based on these findings,
the authors argued that growth-limiting metabolites
cannot exhibit large fluctuations in an uncontrolled
manner. Using time-resolved metabolomics data from
the metabolic response of Escherichia coli to carbon and
nitrogen perturbations, they further demonstrated that
metabolites associated with a negative shadow price
indeed showed lower temporal variation in comparison
with metabolites with zero shadow prices in a per-
turbed system.

In TREM-flux (Kleessen et al., 2015), the steady-state
assumption of the FBA approach is replaced with the
requirement that the changes in flux distribution must
coincide with the difference of the measured metabo-
lite levels between two consecutive time points while
matching global physiological parameters. Therefore, the
approach relies on integratingmetabolite time-series data
with transcriptomics data (using a dynamic variant of the
E-flux method). In a genome-scale model reconstruc-
tion of C. reinhardtii, TREM-flux was used to predict the
metabolic response to rapamycin treatment. The obtained
flux distributions over time showed differences in the
metabolic responses under varying growth conditions
between control and treatment, in line with the findings
from closely related organisms. The study showed that
the integration of time-resolved unlabeled metabolomics
data results in differences in predicted fluxes compared
with that obtained under the steady-state assumption
and the integration of only transcriptomics data. In ad-
dition, the changes in the metabolic pools could not be
explained by the reactions predicted not to carry flux in
any steady-state assumption, demonstrating the need for
the time-resolved variant.

FUTURE DIRECTIONS AND CHALLENGES

The majority of flux studies to date have analyzed
fluxes in the metabolic networks of single cell types or
single tissues, mainly leaves and usually with reference
to a snapshot of developmental time. Clearly, the next
step for the field is to integrate metabolic network
fluxes into frameworks that connect multiple tissues
together in a representation of whole-plant processes
and to account for growth and development over time.
In principle, this could be done using existing MFA
or FBA tissue models, as was recently shown for
Arabidopsis (de Oliveira Dal’Molin et al., 2015). How-
ever, it is important to realize that most tissuemetabolic
models are based on the use of average whole-tissue
experimental measurements as constraints, such as
isotopic label redistribution and biomass composition.
Clearly, this will only generate average metabolic flux
maps and not the flux maps of the individual cell types.
In fact, in the case of MFA, where the labeling patterns
are not linearly related to fluxes, the resulting flux map
may not even be an accurate average (Kruger and
Ratcliffe, 2015). In any case, it would be preferable to

have separate flux maps of the different cell types, not
averages, so that the tissue structure and varying met-
abolic demands can be accounted for (Borisjuk et al.,
2013).

This is particularly relevant in plant organs because
growth is biphasic at the cellular level, with cell division
being followed by cell expansion. Cell division and cell
expansion impose completely different sets of demands
upon the metabolic network and so can be expected to
lead to completely different flux maps. In fact, this can
be seen in the FBA-predicted network fluxes in tomato
fruit at different stages of development, in which net-
work fluxes in fruit at 8 DPA (still in the phase of cell
division) are dramatically different from those at later
stages of development dominated by cell expansion
(Colombié et al., 2015). Tomato fruit are a good system
in which to study cell division and cell expansion be-
cause the temporal demarcations between them are
well established and, also, because sufficient tissue
mass accumulates during the cell division phase to
make biochemical measurements feasible. This is not
the case in organs such as leaves, which are still ex-
tremely small when the cell division phase has ended.
This means that FBA studies of dicot leaves that use
biomass composition as the main constraint on the
outputs of the metabolic network are, in fact, only
considering this very early stage in development and
do not account for themain visible phase of leaf growth,
which is driven primarily by cell expansion.

Clearly, more than one temporal phase of leaf de-
velopment will need to be accounted for. FBAmodeling
techniques have been developed that can handle mul-
tiple time points, including dynamic FBA, in which
each time step is solved separately, with the outputs of
one time step forming the inputs of the next (Knoop
et al., 2013; Kleessen et al., 2015), as well as global
methods, in which the different phases are handled si-
multaneously by the model optimization algorithms
(Cheung et al., 2014; de Oliveira Dal’Molin et al., 2015).
Accounting for the expansion phase of cell growth will
require a consideration of the appropriate experimental
measures that can be used as constraints. Given that
expansion requires only limited synthesis of new bio-
mass and is instead driven largely by osmotic uptake of
water into the vacuole, these will center on the rates of
vacuolar transport of ions andmetabolites as the source
of the osmotic driving force (Lobit et al., 2006). Methods
have also been proposed that would allow the deter-
mination of isotopic label redistribution in specific cell
types to support cell type-specific MFA (Kruger and
Ratcliffe, 2015), although the low mass of dividing cells
in organs such as roots and leaves would present a
considerable sensitivity challenge for this cell type.

It is likely that a large number of metabolic network
models will need to be integrated to account for the
different populations of cells within tissues and their
changingmetabolic behavior during time, both at the diel
scale and over a longer developmental scale. Fortunately,
the optimization algorithms at the heart of FBA are
computationally efficient, and such a proliferation of
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models can be analyzed with standard computer hard-
ware. It is also possible to envisage embedding meta-
bolic network models into multiscale whole-plant
models (Baldazzi et al., 2012; Chew et al., 2014), as il-
lustrated by the successful integration of FBA models
with an ecophysiological whole-plant model of barley
(Grafahrend-Belau et al., 2013). This approach will allow
the intracellular behavior of the metabolic network in
different tissues and with developmental time to be de-
scribed in detail. In the barley work, mass balancing
demonstrated the requirement for the mobilization of
stem carbohydrate stores during grain filling due to the
decline of leaf function during senescence. Although this
important study represents the first serious attempt to
embed FBA metabolic models into a whole-plant model,
the definitive parameters with respect to the stem car-
bohydrate result lie outside of the FBAmodel. Rather, the
prediction was based on calculations of carbon input
rates (from a photosynthesis model that includes bio-
physical representations of gas exchange) and a carbon
allocation model based on the growth-maintenance par-
adigm (Amthor, 2000). The FBA model takes these pa-
rameters as input-output constraints and predicts the
metabolic network fluxes between them.
It could be argued that it would bemore useful in this

whole-plant context if FBA models were able to predict
the outputs of the metabolic network rather than be-
ing constrained by them. A recent FBA model of E. coli
shows that it is possible to lift some of the biomass
constraints and move toward a more mechanistic form
of FBA (O’Brien et al., 2013). In this model, it was as-
sumed that the bacterium requires the biosynthesis of
DNA and cell wall in certain proportions in order to
grow, but other biomass components such as proteins
were not constrained. Instead, the proteome required to
support growth was predicted by the model based on
the catalytic capacity and protein turnover of the en-
zymes of the metabolic network. Ultimately, if the
remaining biomass demands for cell membranes and
cell wall could be coupled to cell geometry and bio-
physics (Karr et al., 2012), then tissue morphometric
considerations would be linked to the metabolic state,
and this would allow the full and predictive integration
ofmetabolismwith structure-functionmodels of plants.
Finally, methodological advances are necessary to test

alternative solutions of constraint-based models, partic-
ularly in the case of data integration. This will help fur-
ther elucidate the relationships between fluxes and other
cellular levels on which they depend, including tran-
scription and translation, as well as the levels of the
metabolites. In 13C-MFA studies, Monte-Carlo sampling
is a well-established way to examine the identifiability of
flux distribution and to test the statistical differences of
fluxes between different cellular scenarios. While some
attempts have beenmade to implement this technique for
FBA-based models (Kleessen et al., 2012; Recht et al.,
2014), further advances are needed. This is particularly
the case for selecting appropriate context-specific models
(from themultitude thatmaymatch the high-throughput
data) that will become more prominent due to the

investigation of interconnected cell type-specificmodels.
Ultimately, analogous to the analysis of other cellular
phenotypes, these methodological advances will allow
statistical testing of the differential behavior of fluxes
predicted from modeling attempts.
Received July 10, 2015; accepted September 6, 2015; published September 21,
2015.
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