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Combining quantitative genetics studies with metabolomics/metabolic profiling platforms, genomics, and transcriptomics is
creating significant progress in identifying the causal genes controlling natural variation in metabolite accumulations and
profiles. In this review, we discuss key mechanistic and evolutionary insights that are arising from these studies. This includes
the potential role of transport and other processes in leading to a separation of the site of mechanistic causation and metabolic
consequence. A reilluminated observation is the potential for genomic variation in the organelle to alter phenotypic variation
alone and in epistatic interaction with the nuclear genetic variation. These studies are also highlighting new aspects of metabolic
pleiotropy both in terms of the breadth of loci altering metabolic variation as well as the potential for broader effects on plant
defense regulation of the metabolic variation than has previously been predicted. We also illustrate caveats that can be
overlooked when translating quantitative genetics descriptors such as heritability and per-locus r2 to mechanistic or evolutionary
interpretations.

The study of quantitative genetics and ecology and
evolution in plants has a long history of reliance on the
natural variation of metabolic traits. One of the first
identified quantitative trait loci (QTLs) in any organism
was for the metabolic control of seed color in Phaseolus
vulgaris (Sax, 1923). This analysis helped to develop and
empirically test some of the foundations of quantita-
tive genetics. Similarly, a significant fraction of ecology
and evolutionary theory has focused on the pressures
leading to the diversification of plant metabolism and
the contravening costs on these defenses (Ehrlich and
Raven, 1964; Karban and Baldwin, 1997). These studies
have used measurements of metabolite variation to
make significant conceptual progress in understanding
the underlying pressures without access to the under-
lying causal genes (Strauss andAgrawal, 1999; Agrawal,
2011; Cook-Patton et al., 2011).

Recent advances in genomics andmetabolic profiling
have opened new opportunities to study the natural
variation of metabolic traits. These include the advent
of rapid metabolomic platforms allowing the quantifi-
cation of hundreds to thousands of metabolites in as
many different genotypes (Fiehn, 2001; Meyer et al.,
2007; Fiehn et al., 2008). In combination with the ability
to sequence and measure the transcriptome of all of

these same lines, there is a massive influx of studies
reporting on the identification of causal genes control-
ling the variation in metabolites in numerous species,
from crop plants like maize (Zea mays), rice (Oryza
sativa), and tomato (Solanum lycopersicum) to models
like Arabidopsis (Arabidopsis thaliana) and ecological
models like Boechera stricta and Nicotiana attenuata (Fu
and Xue, 2010; Hartings et al., 2011; Li et al., 2011, 2015;
Kausch et al., 2012; Prasad et al., 2012; Matsuba et al.,
2013; Chang et al., 2015; Yan et al., 2015). These studies
provide new insights into the mechanistic and evolu-
tionary structures that influence how plant metabolism
functions within a broader context. Other reviews have
focused on the specific genes being cloned that control
metabolite variation and the approaches utilized (Saito
et al., 2008; Kliebenstein, 2009, 2012; Kusano et al., 2015;
Luo, 2015; Omranian et al., 2015). As such, this review
will focus on the broader insights being provided by
these new studies into the genetic, mechanistic, and
evolutionary processes shaping plant metabolism.

GENETIC ARCHITECTURE OF
METABOLOMIC VARIATION

Quantitative genetic studies typically report several
descriptors of the measured phenotypes and the can-
didate loci. These include the heritability of the phe-
notype, often as broad-sense heritability, a measure of
genotypic reproducibility, and the r2 of the individual
locus linked to a given phenotype, often called the effect
size (Lynch and Walsh, 1998). These values are often
linked to general conclusions, such as metabolites have
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high heritability or secondary metabolite loci have
higher r2 than do primary metabolite loci. However,
these values have significant caveats that need to be
considered when interpreting the results, which may
confuse any ability to make conclusions.

Heritability

Most plant metabolomics studies that focus on nat-
ural variation report broad-sense heritability, which is a
measure of the phenotype reproducibility within a set
of genotypes (Lynch and Walsh, 1998). These studies
have shown that the heritability of metabolomic traits
displays a wide range in any given population (Fig. 1).
In general, however, the heritability of maize metabolic
traits appears to be higher than that for rice, with ap-
parently lower Arabidopsis heritabilities (Keurentjes
et al., 2006; Rowe et al., 2008; Chan et al., 2010a, 2010b;
Yang et al., 2010; Riedelsheimer et al., 2012; Gong et al.,
2013; Joseph et al., 2013a, 2013b, 2015; Li et al., 2013;
Lipka et al., 2013; Chen et al., 2014; Alseekh et al., 2015;
Zhang et al., 2015). These results are similar when using
either structured populations like nested association
mapping, recombinant inbred line (RIL), or introgres-
sion line populations or unstructured genome-wide
association (GWA) populations within the same spe-
cies. While it is tempting to argue that different domes-
tication and selection processes may be influencing the
difference in heritability across species, the estimation
of heritability is not an absolute value and is influenced
by numerous experimental, technical, and quantitative
factors (Lynch and Walsh, 1998). For example, the rice
analyses exclude residual error variance in the calcula-
tion of heritability, while two of the Arabidopsis studies
include residual error variance. Recalculating the vari-
ance in these two Arabidopsis studies shows that they

actually have a highly similar distribution of metabolite
heritabilities (Fig. 1). In addition to the calculation
choices, there are also biological and experimental dif-
ferences among the experiments that complicate the
comparison. Among three studies in rice, the growth
conditions, age at harvest, and metabolite quantification
methods all differed (Gong et al., 2013; Chen et al., 2014;
Matsuda et al., 2015). Experimental designs range from
randomized complete block design (Keurentjes et al.,
2008; Chan et al., 2011; Chen et al., 2014; Alseekh et al.,
2015) to a-lattice incomplete block design (Riedelsheimer
et al., 2012). Thus, it is currently unclear if comparisons
of heritability among these studies provide biological
insight or simply reflect the technical and experimental
differences. Future experiments wherein all technical
and experimental differences are controlled would be
required to assess if there is any biological difference in
heritability among the species, potentially driven by
domestication.

A series of experiments did estimate the heritability
of metabolic, transcriptomic, and physiological traits
using the same experimental design, genotypes, and
calculations to allow for direct comparison across mech-
anistic levels. This showed that the heritability of meta-
bolic phenotypes is intermediate between the higher
heritability of transcripts and the lower heritability of
integrative traits like growth (Keurentjes et al., 2006,
2007, 2008; West et al., 2007; Rowe et al., 2008; Fu et al.,
2009; Chan et al., 2010a, 2010b; Joseph et al., 2013a,
2013b, 2015). This could suggest that metabolic genetic
variance is, in fact, intermediate between transcripts
and integrative traits or that the integrative traits are
more responsive to environmental variation leading to
lower heritability. A related explanation that combines
these options is that vastly more quantitative loci con-
trol integrative traits like growth of which the loci for

Figure 1. Distribution of broad-sense her-
itability estimates of metabolic traits across
species and methods. Red shows studies
involving S. lycopersicum 3 S. pennellii,
green shows studies using Arabidopsis,
blue is for maize studies, and peach is
for studies involving rice. All maize and
Arabidopsis comparisons are intraspecific.
Rice studies are intraspecific (Gong et al.,
2013) and across subspecies (Chen et al.,
2014; Matsuda et al., 2015). Heritability in
the Rowe et al. (2008) and Joseph et al.
(2014) data sets is shown in their original
form, and heritability has been recalcu-
lated using solely environmental and ge-
netic variance as in the other studies; the
new results are indicated by asterisks.
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specific metabolic traits are a subset, which would lead
to diminishing heritability estimates. This model agrees
with work on growth and metabolite traits that found
that focusing solely on the growth QTL underesti-
mated the link between metabolic and growth variation
(Joseph et al., 2013a, 2013b). Additional studies are re-
quired to understand why mechanistically linked traits
have varying heritability in the same population.

Effect Size

While heritability is a trait-level descriptor, most
studies also provide the estimated effect size of indi-
vidual loci. This is usually provided as r2 or the fraction
of total phenotypic variance in ametabolite that is linked
to a specific locus. This shows a wide spectrum of effect
sizes, where metabolites can be under the control of few
loci of large effect or numerous loci of small effect. Across
Arabidopsis, rice, and maize, each locus explained on
average 15% to 25% ofmetabolite variation (Fig. 2; Rowe
et al., 2008; Ying et al., 2012; Gong et al., 2013; Chen et al.,
2014; Dong et al., 2015; Matsuda et al., 2015). These av-
erages, however, hide a wide range of individual locus
variation. For example, individual rice loci have been
found to explain 35%ormore of an individualmetabolite’s
variation up to nearly 90% (Ying et al., 2012; Chen et al.,
2014; Dong et al., 2015; Matsuda et al., 2015). In intra-
specific studies, a single locus explained at most over
90% of metabolite variation in Arabidopsis (Rowe et al.,
2008) and in rice (Gong et al., 2013) but at most only
62% in maize (Riedelsheimer et al., 2012; Fig. 2). In
contrast, most loci found to control carbon and nitrogen
metabolism were of small effect size in maize (Zhang
et al., 2015). These studies show a wide range of effect
sizes for loci linked to variation in metabolic traits.

The equivalence of r2 effects per locus-to-locus effect,
as commonly interpreted by mechanistic or molecular
biology studies, is not straightforward. The r2 of a locus
is the variance attributed to that locus divided by the
total variance. As such, the calculation of per-locus
r2 depends on factors that can affect the numerator
(number of loci across which the variance is divided,
missing loci, overestimates, etc.) as well the denomin-
ator (total variance, errors in total variance estimation,
etc.). Thus, it is possible to have large-effect loci as de-
fined by r2 that have additive effects of 10% or less in
metabolite accumulation when comparing the two al-
leles (Fig. 3). Similarly, if the metabolite shows a large
range of variation, it is possible to have small-effect loci
per r2 that have additive effects of 100% difference
in metabolite accumulation between the two alleles
(Fig. 3). This leads to a value that is, at best, relative and of
use only in that population and that can vary from dif-
ferences in the number of loci identified (Beavis, 1994).
The number of loci found per metabolite shows a wide
range of variation across experiments and populations
due to replication and statistical methods. In rice, studies
have found a range of three to nine loci per metabolite,
while in maize, this has ranged from five to 18 (Gong
et al., 2013; Li et al., 2013; Chen et al., 2014; Dong et al.,
2015; Matsuda et al., 2015; Zhang et al., 2015). While this
difference will mathematically lead to the maize loci
having smaller r2, because there are more loci per me-
tabolite to share the variance, it is not clear if this is a re-
flection of the biological reality of the genetics controlling
metabolite variation in the two species or if there are
significant differences in the false-negative error rates
leading to fewer detected loci in rice (Joseph et al., 2014).
Thus, while r2 is a useful quantitative descriptor, it should
be handled with care when making mechanistic argu-
ments, as it does not directly scale to additive effects.

Figure 2. Estimates of r 2 of loci controlling
metabolic variation compared across spe-
cies and methods. Green shows studies
using Arabidopsis, blue is for maize stud-
ies, and peach is for studies involving rice.
All maize and Arabidopsis comparisons
are intraspecific. The rice comparisons are
intraspecific (Ying et al., 2012; Gong et al.,
2013; Dong et al., 2015) and across sub-
species (Chen et al., 2014).
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Clustering of Metabolite Loci

To summarize the identified loci, these studies fre-
quently search for genomic hotspots that alter variation
in more metabolites than expected by random chance.
Every study identifies hotspots no matter what the
species or population utilized, but the number and
position of the hotspots can vary across tissues within a
specific population, as found in rice (Gong et al., 2013).
The position of hotspots can also differ depending upon
the metabolite class being measured (Schauer et al.,
2006, 2008; Riedelsheimer et al., 2013; Alseekh et al.,
2015). The position and frequency of hotspots vary
when using different populations from specific rice
subspecies; in indica, hotspots were detected on chro-
mosomes 2, 6, and 12, while japonica had hotspots on
chromosomes 4 and 12 (Chen et al., 2014). Efforts to use
these results to make mechanistic or evolutionary con-
clusions about the differences, such as arguing that the
genetic architecture of metabolic variation is unique
between the two rice subspecies, should proceed carefully
for a couple of reasons. Different populations within
Arabidopsis give different hotspots, which is likely solely
associated with the different genes varying in that pop-
ulation regardless of whether the variation alters adap-
tation (Keurentjes et al., 2006; Rowe et al., 2008; Joseph
et al., 2013a, 2013b). Using near-isogenic lines to assess the
impact of a nonhotspot region in Arabidopsis showed
that variation in this region affected more metabolites
than any hotspot found using the associated RILs (Rowe
et al., 2008). Thus, the difference between hotspot and
nonhotspot regions could be driven by statistical rather
than biological issues. As such, while hotspots may gen-
erate intriguing lines of research, any broad conclusions
should wait for the cloning and characterization of the
underlying causal gene(s).

Network Structure

Measuring metabolites across a set of natural geno-
types allows investigations into metabolic network
properties prior to conducting any locus-specific anal-
ysis. This can be done by correlating the variation in
average metabolite abundance across the genotypes to
look for genetic correlations. A key use of this correla-
tion approach is to help address the significant difficulty
presented by the fact that most metabolites measured
have no known structure. Significant progress in iden-
tifying the structure of unknown metabolites is being
made by querying for groups ofmetabolites that show a
high genetic correlation under the assumption that they
are chemically related. This approach has been used to
identify sets of metabolites produced by the same bio-
synthetic pathway as found in rice, where using metab-
olite coaccumulation and structural similarity generated
putative biosynthetic networks for amino acids and
flavone-O-hexosides (Matsuda et al., 2012, 2015).

These approaches have been extended to other me-
tabolites in both rice and maize to link previously un-
known metabolites to each other and to new biosynthetic
genes (Gong et al., 2013; Chen et al., 2014; Dong et al.,
2014, 2015;Hu et al., 2014;Wen et al., 2014;Hashemi et al.,
2015; Kusano et al., 2015; Luo, 2015). Similar approaches
have been used to identify and expand pathways for
unknown metabolite classes within nonmodel systems
like N. attenuata, Barbarea vulgaris, and Capsicum spp.
(Dalby-Brown et al., 2011; Wahyuni et al., 2014; Agerbirk
et al., 2015; Li et al., 2015). While this approach is very
powerful at identifying both new compound structures
and new enzymes, it is solely reliant on the presence of
genetic variation in the genes controlling the accumula-
tion of these unknown compounds. As such, compounds
with low or no genetic variation in their underlying genes

Figure 3. Low correlation between r 2 and
additive effect size estimates for metabolic
loci. Intraspecific analysis of nontargeted
metabolites in Arabidopsis is indicated by
black open circles (r 2 = 0.006, P = 0.011),
genetics of flavonoid abundance in a rice
intraspecific comparison is indicated by
gray circles (r 2 = 0.38, P , 2.2e216), and
lipid genetics studied across rice subspe-
cies (japonica and indica) is indicated by
black open triangles (r 2 = 0.43,P=7.19e206).
The inset shows a closer look at loci with low
effect size (,0.5) and low r 2 (,0.25).
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will not be amenable to this approach. Fortunately, me-
tabolites that play key roles in adaptation to biotic and
abiotic stress are, by default, highly likely to be naturally
variable due to both fluctuating and local variation in
these selective pressures (Hancock et al., 2011; Züst et al.,
2012; Brachi et al., 2015; Kerwin et al., 2015). As such, this
approach may be uniquely powerful to identify and
classify new metabolic pathways that play key roles in
fitness in the wild.

In addition to classifying chemical pathways, it is
also possible to use this approach to link metabolic
traits with other yield or physiological traits (Lisec et al.,
2008; Sulpice et al., 2009; Carreno-Quintero et al., 2012;
Shen et al., 2013; Hill et al., 2015). Correlational analyses
clustered metabolic traits into large modules, with a
strong tendency toward positive correlations among met-
abolic and yield-associated traits in Solanum pennellii 3
S. lycopersicum introgression lines (Schauer et al., 2006).
This grouping subdivided into three major modules:
one containing whole-plant traits and metabolic inter-
mediates, one containing all amino acids, and one in-
cluding sugars and organic acids that was consistent
across multiple years (Schauer et al., 2006, 2008). Simi-
lar networks were found using other tomato species
(Do et al., 2010; Sauvage et al., 2014). This correlational
structure was suggested to indicate network-level com-
petition for photoassimilates that is consistent across
tomato species (Schauer et al., 2006). The correlational
approach has also been used to rapidly link metabolite
variation to insect resistance in nonmodel systems
(Kuzina et al., 2011). Thus, the use of genetic correla-
tions has the ability to convey phenotypic insight about
metabolite roles in planta.

It is also possible to use this approach to query for
factors that alter metabolic network structure. For ex-
ample, the correlational structure of metabolites in rice
was significantly different when comparing the indica
versus japonica subspecies, suggesting that the meta-
bolic networks in these two subspecies are dissimilar,
potentially in response to unique selective pressures
during their separate domestication histories (Hu et al.,
2014). In addition to network structure changing in
response to long-term selective processes, the structure
can change in response to short-term environmental
perturbations. In Arabidopsis, the correlational struc-
ture shifted when the same population was harvested
at different times of day (Chan et al., 2010a). In that
case, there were more connections between metabolites
at the dawn sampling than at the dusk sampling (Chan
et al., 2010a). Thus, it is possible to learn general concepts
about the structure of the metabolome using genetic
correlations between metabolites even prior to mapping
specific loci.

CONDITIONALITY IN METABOLIC VARIATION

The ability to make broad conclusions or identify
causal genes using quantitative studies of metabolic
variation is greatly influenced by the fact that metabolic

abundances measured in these studies are highly con-
ditioned on the environmental, developmental, and
genetic variations present within the experiment. While
most studies are conducted in a single tissue, a single
environment, and without an assessment of depen-
dency on the genetic background, insights are emerging
into how these factors effect metabolic variation.

Tissue Specificity

Many metabolites display tissue or ontogenic speci-
ficity in their accumulation or synthesis (Moco et al.,
2007; Kliebenstein, 2013; Moussaieff et al., 2013; Dong
et al., 2015). This developmental specificity limits the
feasibility of developing a simple complete picture of
the genetic variation in a plant’s metabolome that can
be extrapolated across tissues and developmental
stages, as each tissue or stage may have completely
different genetics. Within rice, only 31% of the metab-
olites detected in seeds and 15% of the metabolites
detected in leaves were shared across both tissues (100
shared metabolites total; Gong et al., 2013). Similarly,
there was a large effect of tissue specificity in tomato
metabolite QTLs when comparing leaf and fruit loci
(Schauer et al., 2006, 2008; Fernie and Schauer, 2009).
This complicates the ability to infer when or where a
genemay beworking to influence a plant’smetabolism.

The tissue specificity of metabolism is partially at-
tributable to differential transcriptional control for the
underlying enzyme genes. Transcriptome analysis of
tomato fruit tissues found strong spatial variation for
the expression of central metabolism and secondary
metabolism genes (Matas et al., 2011). Similar results
were found in Arabidopsis, with tissue-specific ex-
pression of metabolic enzyme genes (Brady et al., 2007;
Dinneny et al., 2008). Work with Arabidopsis glucosi-
nolates has shown that ontogenic variation in glucosi-
nolate hydrolysis products maps to the enzymatic loci
that produce these products, suggesting that tran-
scriptional variation in these genes controls the onto-
genic variation (Wentzell et al., 2008; Wentzell and
Kliebenstein, 2008). This has also been shown for the
accumulation of tissue-specific metabolites in tomato
and rice (Tsai et al., 2012; Gong et al., 2013). This sug-
gests that cis-variation in the promoters of specific en-
zymatic loci that alters their expression may be one
source for tissue specificity in metabolomic variation.

In addition to tissue-specific expression of the en-
zymes, transporters also play a key role in controlling
when or where metabolites may accumulate, allowing
the sites of synthesis and accumulation to be separated
(Chen et al., 2012; Nour-Eldin et al., 2012; Andersen
et al., 2013). A QTL modulating primary metabolism
within Arabidopsis was cloned that displayed the po-
tential for metabolite transport, confounding QTL in-
terpretation with regard to tissue specificity (Li and
Kliebenstein, 2014). In that study, an AT-HOOK was
shown to be the basis of quantitative variation in the
tricarboxylic acid cycle. Intriguingly, however, the causal
gene was expressed in tissues that were distinct
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from where the metabolites were measured (Li and
Kliebenstein, 2014). Because plant metabolism is highly
interconnected across tissues by metabolite transport, it
is possible for a gene with a highly localized effect to
altermetabolite accumulation in awider range of tissues.
It remains to be seen how frequently cause and effect
may be separated across tissues in plant metabolic
variation.

Genotype 3 Environment Interaction

Environmental effects strongly influence metabolism,
often interacting with genetic variation. This interaction
limits the apparent repeatability of metabolomic varia-
tion but is a fundamental property of their biological
function. For example, the induction of maize volatiles is
highly specific to the attacking herbivore (McCormick
et al., 2012). As such, the interaction of genotypic varia-
tion with environmental variation should instead be
considered fundamental to understanding metabolic
variation, and loci that vary across environments are
likely important for specific environments and should be
studied intensively.
Environmental effects have been studied intensively

in tomato. In an interspecific cross between S. pennellii
and S. lycopersicum (Eshed and Zamir, 1995), 889 metab-
olite QTLs were identified through gas chromatography-
mass spectrometry of the fruit pericarp using three
different years of harvest at a single farm site (Schauer
et al., 2006). However, only 5% of the 889 metabolite
QTLs were consistently identified across all three to-
mato harvests (Schauer et al., 2008). In volatile profiling
of these same lines, significant season 3 line interac-
tions were present for nine of the 23metabolites studied
in comparisons of spring and autumn harvests (Tieman
et al., 2006). Furthermore, in a GWA analysis of diverse
S. lycopersicum and Solanum pimpinellifolium accessions,
only 47% of primarymetabolic traits studiedwere stable
across 2 years of field cultivation (Sauvage et al., 2014).
Similar environment 3 genotype interactions have

been observed in other systems for metabolite accu-
mulation. In rice, analysis of an indica 3 japonica cross
indicated that only eight out of 29 QTLs associatedwith
fatty acid abundance were consistently identified across
two generations in two field trials (Ying et al., 2012). In
maize GWA studies, only 17% of the metabolite-locus
associations were consistently detectable across at least
two of three concurrent field trials (Wen et al., 2014). A
study of a high-oil maize RIL population over 2 years
of field experiments showed that year and the year 3
genotype interactions contributed significantly to
phenotypic variance (Yang et al., 2010). Identifying
environment 3 genotype interactions does not require
conducting field trials, as Arabidopsis GWA studies
showed that most identified metabolite-locus associa-
tions varied across the time of day of the sampling
within a single environment (Chan et al., 2010). Similarly,
QTLmapping in the presence or absence of jasmonic acid
and GWA studies in the presence or absence of different

abiotic stresses identified different metabolic QTLs in
Arabidopsis (Kliebenstein et al., 2002; Chan et al., 2011).

Thus, there is a strong interaction of environment
with genetics in defining variation within the plant
metabolome. One alternative is to analyze QTLs asso-
ciated with relatively stable ratios between metabolites
rather than single compounds (Morreel et al., 2006).
Most often, the QTLs or associations that are consistent
across environments are the loci followed up for study.
However, given that plants evolved to adapt to con-
stantly changing environments, it is likely that the loci
that are only found in specific environments may be
playing a key role in adaptation to those environments
(Kerwin et al., 2015). As such, it is important to move
beyond the stable loci and begin to clone and under-
stand the mechanistic basis of environmentally condi-
tional loci.

Epistasis: Genotype 3 Genotype and Genome 3
Genome Interactions

Another conditionality that influences the study of
metabolite variation is the epistatic interaction of spe-
cific loci with the genetic background. In this article, we
define epistasis as the interaction of genetic variation at
two or more loci that creates a nonadditive or unpre-
dictable change in the trait being studied. Molecular
studies often consider epistasis to be evidence for a
mechanistic interaction between two genes, but this is
not an absolute requirement, as epistasis can also occur
between genes in different pathways or even within
duplicated genes in a gene family (Segrè et al., 2005;
Roguev et al., 2008). In a study of the rice metabolome,
241 metabolites (53% of the total examined) exhibited
3,351 significant pairwise interactions between loci
(Chen et al., 2014), and in a study of 16 phenolamides,
eight significant pairwise interactions were detected
between loci (Dong et al., 2015). In multiple single-
nucleotide polymorphism (SNP) models of the loblolly
pine (Pinus taeda) metabolome, more SNP effects were
identified as dominance effects than as additive effects
(Eckert et al., 2012). Twenty-four pairs of epistatic QTLs
were detected in the study of high-oil maize RILs, but
they accounted for 16% or less of the variance in indi-
vidual oil phenotypes (Yang et al., 2010). Similarly,
there are extensive epistatic interactions found for
metabolomic variation in Arabidopsis in both primary
and secondary metabolism (Wentzell et al., 2007; Rowe
et al., 2008; Joseph et al., 2013a, 2013b; Kerwin et al.,
2015). In Arabidopsis, this epistasis is largely higher
order, involving the interaction of three or more loci
rather than simple interactions of two loci (Wentzell
et al., 2007; Rowe et al., 2008; Joseph et al., 2013a, 2013b;
Kerwin et al., 2015). Cloning of the underlying loci
shows that the epistatic interactions include the inter-
action of transcription factors with each other and with
variation in enzymatic genes (Wentzell et al., 2007;
Sønderby et al., 2010). It remains to be seen if higher
order epistasis can be detected in other species.
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Most studies on natural variation in plants limit their
analysis to genetic variationwithin the nuclear genome.
However, there is extensive evidence for genetic vari-
ation in the organelles altering adaptive phenotypes
and interacting with nuclear loci (Greiner and Bock,
2013). Recent populations have been developed that are
allowing quantitative assessment of the role of genetic
variation in the organelle in quantitative phenotypes
(McKay et al., 2008; Lovell et al., 2015). Analyzing
metabolomic variation in the Arabidopsis Kas 3 Tsu
population showed that genomic variation within the
organelle altered the accumulation of nearly all me-
tabolites (Joseph et al., 2013a, 2013b, 2015). This anal-
ysis also showed that there are extensive epistatic
interactions between genetic variation in the organellar
and nuclear genomes (Joseph et al., 2013a, 2013b, 2015).
It remains to be tested how extensive this may be across
different plant species.

Not all studies identify evidence of epistasis. A study
of 342 rice metabolites found little evidence for epistasis
in a comparison of metabolite abundance between
parent accessions and offspring (Matsuda et al., 2015).
Similarly, no significant epistatic interactions were de-
tected in a pairwise analysis of genes associated with
oil accumulation traits in maize (Li et al., 2013). It re-
mains to be determined what differs between studies
that identify epistasis in metabolic variation and those
that do not. The differences could be the germplasm
being used, the statistical methodologies, the environ-
ment, or some blend of these factors. Further studies
will be required to quantify the extent of epistasis in
plant metabolomic variation.

CAUSAL LOCI CONTROLLING
METABOLIC VARIATION

A major goal of all quantitative metabolomic studies
is to clone the underlying genes to understand the
mechanistic basis of this variation. Recent reports have
described the protocols to clone these loci, such as
comparing transcriptomic and metabolic variation
(Saito et al., 2008; Chan et al., 2011; Kliebenstein, 2012,
2014; Atwell andKliebenstein, 2013). These correlational/
colocalization approaches are greatly speeding up pro-
gress in cloning the causal genes, including a broad array
of new enzymes, transcription factors, and other genes.
This ever-increasing list of cloned loci is vastly beyond
any single article’s ability to summarize. As such, we will
focus on instances in which the cloned genes are illumi-
nating new and unexpected mechanistic aspects of plant
biology.

Interplay of Physiological and Metabolic Variation

A complexity in understanding plant metabolism is
defining when one trait ends and another begins. Re-
cent studies are beginning to show that metabolic var-
iation is highly responsive to physiological variation,
such as in resource availability and partitioning. A set

of 126 maize SNPs associated with major carbon and
nitrogen metabolic traits was overrepresented with
genes linked to C4 photosynthesis and the regulation of
carbon sink-source relationships (Zhang et al., 2015).
Whole-plant morphology and growth conditions are
also large contributors to tomato metabolic variation
relative to the genetics studied (Do et al., 2010). Harvest
index, a measure of fruit yield relative to biomass, was
identified as the pleiotropic hub of the S. pennellii 3
S. lycopersicum metabolomic network linked to 46% of
the metabolites (Schauer et al., 2006). Similar results
were found in other tomato crosses (Prudent et al., 2009;
Do et al., 2010). Overall, these results indicate that the
interaction between genetics and source-sink dynamics
plays a major role in defining central metabolism. Thus,
metabolomic variation may often identify key physio-
logical regulators that are important control nodes for
the metabolome with pleiotropic effects.

In support of this are recent studies that cloned major
metabolic variation QTLs within Arabidopsis. In one of
these studies, most metabolic variation was linked to
variation in the circadian clock (Kerwin et al., 2011). A
key locus controlling this variation is natural variation
in the EARLY FLOWERING3 gene that has been linked
to altering flowering time, shade avoidance, hypocotyl
elongation, circadian clock oscillation, and metabolic
variation (Coluccio et al., 2011; Jimenez-Gomez et al.,
2011; Kerwin et al., 2011; Undurraga et al., 2012; Anwer
et al., 2014; Nieto et al., 2015). In tomato, the tran-
scription factor APETALA2a that controls physiological
pathways by regulating hormone synthesis to con-
trol fruit ripening also has impacts on phenylpropanoid
and carotenoid metabolite accumulation (Karlova et al.,
2011). Also in tomato, the ethylene receptor Never-Ripe
controls variation in ascorbate and carotenoids but also
strongly influences fruit ripening and seed production
(Alba et al., 2005). In rice, the transcription factor Rc
regulates flavonoid biosynthesis through abscisic acid
signaling, with pleiotropic effects on seed dormancy
and seed weight (Gu et al., 2011). This raises the ques-
tion of whether these loci are specific metabolic regu-
lators or are better interpreted as general regulators of
physiology whose effect can be measured using meta-
bolic variation. However, it will require analyzing the
metabolic consequences of variation in other key phys-
iological genes to tweeze apart the direct and indirect
consequences on metabolite accumulation (Fukushima
et al., 2009; Li and Kliebenstein, 2014).

Interplay of Metabolic and Defense Variation

The previous results suggest a pleiotropic link
wherein variation in physiological or growth regulators
influences metabolic traits. The cloning of genes un-
derlying metabolic QTLs is beginning to highlight
instances where variation in metabolic genes leads to
unexpected effects, particularly on plant defense regu-
lation. A major-effect QTL for aphid susceptibility
in maize due to decreased levels of a benzoxazinoid,
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2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one gluco-
side (HDMBOA-Glc), accumulation was caused by
natural variation in transposon inactivation of a meth-
yltransferase enzyme (Meihls et al., 2013). Inactivation
of this enzyme also altered callose deposition in re-
sponse to aphid infestation, suggesting a regulatory
link between benzoxazinoid accumulation and callose
induction (Meihls et al., 2013). A link between defense
metabolite accumulation and callose regulation has
been found for other methoxylated indolic metabolites
with natural variation in their enzyme-encoding genes
(Clay et al., 2009; Pfalz et al., 2009).
Supporting the potential for metabolic variation to

influence defense regulation was a reanalysis of natural
variation in a 2-oxoacid-dependent dioxygenase (AOP2)
that controls the production of alkenyl glucosinolates in
Arabidopsis and Brassica spp. (Kliebenstein et al., 2001;
Li and Quiros, 2003). The presence or absence of this
gene was found to alter the periodicity of the circadian
clock aswell asflowering time in both the laboratory and
the field (Kerwin et al., 2011, 2015). A transcriptomic
survey of genotypes with or without this enzyme
showed that lines with a functional AOP2 enzyme had
altered expression of both the biosynthetic and regula-
tory genes in the jasmonate signaling cascade, leading to
decreased jasmonate sensitivity (Burow et al., 2015). As
such, detailed studies of the benzoxazinoid and gluco-
sinolate causal genes is beginning to show thatmetabolic
loci, even enzyme-encoding ones, can have unexpected
effects on other pathways, indicating potential regula-
tory influences for these metabolites in planta.

Diversifying Selection and Major-Effect Polymorphisms at
Large-Effect Loci

A common conclusion of cloning studies is that sec-
ondary metabolite loci are controlled by large-effect
presence/absence polymorphisms at the causal loci.
This observation has been supported by a number of
cloning studies in Arabidopsis, Brassica spp., rice, and
maize (de Quiros et al., 2000; Kliebenstein et al., 2001; Li
and Quiros, 2003; Hansen et al., 2008; Pfalz et al., 2009;
Leckie et al., 2012; Meihls et al., 2013). However, there
are also primary metabolite loci with presence/absence
polymorphisms. In maize, seed starch and carotenoid
contents are both controlled by large-effect polymor-
phisms in the causal genes (Thévenot et al., 2005;
Vignesh et al., 2012; Lipka et al., 2013; Owens et al.,
2014). As such, it is not accurate to make a primary
versus secondary metabolism split when discussing
large-effect or presence/absence polymorphisms in
causal loci. Instead, it is more likely the shape of selec-
tion on the trait that is critical. In this case, all of these
examples are in traits that are under either diversifying
or fluctuating selection. In the case of the glucosinolates
for Arabidopsis and Brassica spp., the defense traits are
responding to fluctuating herbivore populations that
create diversifying or balancing selective pressures that
likely maintain and possibly even drive the variation

(Prasad et al., 2012; Züst et al., 2012; Brachi et al., 2015;
Kerwin et al., 2015). In the case of maize, carotenoid
color is driven by diversified cultural preferences for
white or yellow corn, and starch content is driven by
diversifying selection on field corn versus popcorn.
Similar to the herbivore pressure in wild Arabidopsis,
the diversifying selection applied by human breeders
for extremely divergent morphs of maize likely lead to
the selection of large-effect presence/absence causal
polymorphisms (Springer et al., 2009; Hufford et al.,
2012). Thus, before classifying the type of causal poly-
morphisms expected when working with a metabolic
trait, it is probably more important to understand the
selective pressure on themetabolite rather than the type
of metabolite.

What Genes Alter Variation in Metabolism?

A common question in all natural variation studies,
including those on metabolism, is what are the genes
that typically cause the phenotypic variation? A read-
ing of the current literature suggests that we have an
answer to this question in that we have to assume that if
a gene has genetic variation that causes phenotypic
variation in a trait, there will be a measurable shift in
metabolism. The current set of naturally variable genes
validated to impact natural variation include repre-
sentatives from nearly all types of genes, from enzymes
to transcription factors (Thévenot et al., 2005; Vignesh
et al., 2012; Angelovici et al., 2013; Lipka et al., 2013;
Meihls et al., 2013; Owens et al., 2014). As shown above,
these genes can directly influence the metabolite or
have potential indirect influences on the metabolite
accumulation. As such, it is probably more appropriate
to move beyond the question of what type of genes
causemetabolic variation in natural populations and on
to the more critical question of how these genes influ-
ence metabolite variation. Are they direct regulators
that have immediatemolecular impacts on the pathway
regulation or biosynthetic potential? Or, alternatively,
do these genes have more distant (sometimes thought
of as indirect pleiotropic effects) links to the metabolic
pathway whose output is being measured, and if so,
how distant are these effects? Association mapping
and other systems biology studies of glucosinolates in
Arabidopsis have shown that there are dozens to hun-
dreds of genes that can alter accumulation to a level that
likely alters fitness (Chan et al., 2011; Li et al., 2014;
Brachi et al., 2015; Kerwin et al., 2015). Yet, it is highly
unlikely that all of these genes directly interact with the
pathway in a molecular context. This generates a sys-
tem whereby a metabolite’s natural variation can be
altered by potentially hundreds of candidate genes, and
each gene can conversely alter an array of metabolites
(Angelovici et al., 2013). Within this system, the ques-
tion arises of how selection can identify the proper
combination of alleles to optimize fitness at the meta-
bolic level. This mechanistic question is a key topic for
the field to begin querying to understand how the
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metabolic system functions within an individual or
species.

STATISTICAL INFLUENCES AND CHOICES

There is a large body of literature and reviews about
the technical, statistical, experimental design, and pop-
ulation choices that are required to accomplish a
quantitative analysis of natural variation in metabolism
(Lynch and Walsh, 1998; Fiehn et al., 2008; Myles et al.,
2009; Atwell and Kliebenstein, 2013; Luo, 2015). Thus,
we will not provide a detailed step-by-step approach,
as this has been done better. Instead, we will work to
convey that every step has different options and there is
no best choice. Rather, each option/choice introduces a
different bias, and it is critical to understand what that
bias is to properly interpret the results. This may be best
conveyed in the choices of mapping populations avail-
able to conduct metabolomics analysis.

A highly popular approach that is gaining momen-
tum is the use of GWA populations that are collections
of random wild genotypes (Atwell et al., 2010). This
population has the benefit of containing a sampling
of the allelic diversity in the species. However, these
populations contain significant population structures
and, with even hundreds of accessions, have limited
capacity to find epistasis or the effect of rare alleles, thus
generating an unrecognized false-negative error rate
(Chan et al., 2010a, 2010b; Long et al., 2013; Brachi et al.,
2015). In contrast, the classical RIL population derived
from two parents has the flaw of only having two alleles
per gene, but this limitation also provides this popula-
tion the greatest power to identify epistasis and small-
effect loci (Falconer and Mackay, 1996; Mackay, 2014).
The nested association mapping population was de-
vised to alleviate the issue of allelic diversity in the RIL
design and the rare allele issue in the GWA design. To
accomplish this, it combines a set of recursive RIL
populations involving multiple parents into a single
combined population (Buckler et al., 2009). The true
strength of this population lies in its ability to identify
moderate-effect additive loci. A similar approach is the
multiparent advanced generation intercross (MAGIC)
population design, whereinmultiple parents are admixed
to create a single population (Kover et al., 2009). This
population design also works well for moderate-effect,
moderate-frequency additive loci, but like a GWA de-
sign, it struggleswith complex epistasis or small-effect loci
(Falconer and Mackay, 1996; Mackay, 2014). Thus, there
is not a single population design that is suitable for all
studies; instead, the population must be carefully chosen
to match the strengths and weaknesses to the goal of the
study.

After choosing the population, the next choice is to
determine the number of lines and associated bio-
replicates. This is then followed by choosing the sta-
tistical approach to link genotype with phenotype.
However, these choices are highly linked. The rapid
explosion of new statistical approaches for quantitative

genetics is not a reflection of the flaws in the original
approaches but instead a reflection of the mere fact that
most experiments do not have sufficient numbers of
genotypes to even fractionally sample the complete
genotype-to-phenotype matrix. For example, it was
recently estimated that a single RIL population would
need at least 1,000 to 1,200 independent lines before it
could even be determined how many more lines were
needed to identify all the possible QTLs (Joseph et al.,
2014). This is in a situation when most available RIL
populations are maximally 200 or so lines. As such, the
newer approaches, like Bayesian, multitrait, or other
approaches, are simply trying to maximize the informa-
tion obtained from significantly underpowered popula-
tions. Thus, rather than focusing on the optimal statistical
approach, it is better to focus on maximizing the number
of lines and replicates used to generate the data input
into the statistical algorithms. Maximizing the power of
the data will go a longer way toward optimizing the
output than any particular statistical algorithm.

CONCLUSION

Plant biology over the past decades has focused
largely on the qualitative assessment of small collec-
tions of genotypes within limited environments to as-
sess the mechanistic function of one or a few genes. The
future, however, will require the quantitative analysis
of systematic genotype collections within a range of
environments and tissues to understand the functions
of entire systems. Metabolomic analysis of natural
variation is well positioned to enable these very types of
experiments and begin to assess questions that, until
now, have been largely overlooked or inaccessible.
What is the level of cell or tissue autonomy in metab-
olism? How many different mechanisms coordinate
genetic variation in the organellar and nuclear ge-
nomes? What types of selection alter natural genetic
variation in the field? All of these questions require the
rapid and cheap quantitative ability that metabolomics
provides in addition to the large body of enzymatic
knowledge about the system. In combination, metab-
olomics analysis of natural variation should be a key
component of future plant studies working to under-
stand how a plant species functions in the wild or the
field.
Received July 14, 2015; accepted August 12, 2015; published August 13, 2015.
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