
ARTICLE

Received 5 Feb 2015 | Accepted 31 Aug 2015 | Published 14 Oct 2015

Notch signal strength controls cell fate in the
haemogenic endothelium
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Acquisition of the arterial and haemogenic endothelium fates concurrently occur in the

aorta–gonad–mesonephros (AGM) region prior to haematopoietic stem cell (HSC)

generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC

on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different

programmes in response to particular ligands is poorly understood. By using two Notch1

activation trap mouse models with different sensitivity, here we show that arterial endothelial

cells and HSCs originate from distinct precursors, characterized by different Notch1 signal

strengths. Microarray analysis on AGM subpopulations demonstrates that the Jag1 ligand

stimulates low Notch strength, inhibits the endothelial programme and is permissive for HSC

specification. In the absence of Jag1, endothelial cells experience high Dll4-induced

Notch activity and select the endothelial programme, thus precluding HSC formation. Inter-

ference with the Dll4 signal by ligand-specific blocking antibodies is sufficient to inhibit the

endothelial programme and favour specification of the haematopoietic lineage.
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H
aematopoietic stem cells (HSCs) are generated during
embryonic life in the aorta–gonad–mesonephro (AGM)
region1. This process requires gain of haematopoietic

competence from cells displaying endothelial traits located in the
embryonic aorta (also known as endothelial-to-haematopoietic
transition (EHT)2–4) Recently, it has been demonstrated that the
first molecular event in the EHT process requires the silencing of
the endothelial programme5; however, the molecular signals
governing the sequence of events to obtain a functional HSC are
mainly unknown.

Notch1 signalling is indispensable for the specification of the
arterial programme and the generation of HSCs6–11. Ligand
specificity for each process has been suggested since deletion of
Delta-like 4 (Dll4) results in strong arterial defects12,13, while
Jagged1 (Jag1) deletion impairs definitive haematopoiesis7. The main
structural difference between both types of ligands resides in the
number of epidermal growth factor (EGF)-like repeats (6–8 for
Delta and 16 for Jagged) and in the presence of C-rich domain in
Jag1; however, ligand-mediated cleavage is thought to be a ’no
memory’ process in relation to the identity of the ligand involved14.
Glycosylation of Notch by the fringe family of glycosyl-transferases15

was found to favour the association of Notch1 to Delta instead of
Jagged ligands16, likely affecting Notch signal strength.

We have recently developed two mouse lines that trace cells
that activate the Notch pathway and their descendants.
Importantly, N1IP::CreLO is a low-sensitivity line that only traps
cells experiencing high levels of Notch1 activation17, whereas
N1IP::CreHI is high sensitive and traps cells experiencing both low
and high levels of Notch activation18 (HI and LO designations
reflect the differential sensitivity of these reporters defined here as
the number of Notch intracellular domain (NICD) molecules
released)19. We here demonstrate that, whereas N1IP::CreHI

labels both haematopoietic and arterial cells, N1IP::CreLO

specifically labels the arterial population, indicating that arterial
and haematopoietic cells originate from different Notch-traceable
populations. In addition, Jag1 restricts Notch activation in the
haemogenic endothelium, which results in reduced expression of
the endothelial gene programme and increased haematopoietic-
specific transcription. Together, these results indicate that Jag1 is
required to maintain the low Notch signal that is required for
haematopoietic specification, whereas Dll4 secures the high
Notch activity and the success of the arterial programme.

Results
Different Notch1 activity specifies haematopoietic and
arterial fate. Genetic studies have demonstrated that Notch1 is
required for both haematopoietic and arterial specification6,10,11.
Previously, we generated a genetic sensor of the Notch activation
history by replacing the intracellular domain of mouse Notch1
with the site-specific Cre-recombinase17 (Fig. 1a) and crossing
these mice with the ROSAeYFP reporters. In the double transgenic
embryos (N1IP::CreLO; ROSAeYFP), arterial endothelium
including the dorsal aorta of the AGM region was detected as
early as E10.5 at the time of HSC formation (Supplementary
Fig. 1) and was more clear and intense after E11, when full
arteries but no veins were labelled17. However, YFPþ cells
among the haematopoietic lineages were barely detected in these
mice (Fig. 1b) despite the fact that haematopoietic stem cell
(HSC) development from the AGM endothelium also requires
Notch1 signalling. These results indicated that YFPþ endothelial
cells of the N1IP::CreLO AGM region are not the precursors of the
definitive HSCs (YFP� ) and strongly suggested that Notch
activation in the haematopoietic lineage was insufficient to
accumulate enough Cre molecules to rearrange the YFP reporter
(as demonstrated in ref. 19).

To further investigate this possibility, we pursue for a strategy
to trap cell lineages experiencing low levels of Notch activity. We
found that removal of the tag from the Cre recombinase
improved Cre activity, and consequently labelling efficiency
(we refer to this transgene as N1IP::CreHI)19. In contrast to that
observed in the haematopoietic lineages of the N1IP::CreLO mice,
we found a consistent YFPþ staining in the different haemato-
poietic organs and cell lineages of the N1IP::CreHI;ROSAeYFP mice
(Fig. 1b,c). Comparative analysis of E10.5 N1IP::CreHI

and N1IP::CreLO embryos using whole-mount immunostaining
demonstrated that both lines contained YFPþ cells in the aortic
endothelium (Supplementary Fig. 1), but only the N1IP::CreHI

haematopoietic cluster cells (Kitþ ) were YFPþ (Fig. 1d). In
addition, YFPþ cells isolated from the fetal liver or bone marrow
of the N1IP::CreHI;ROSAeYFP reconstituted the haematopoietic
system of lethally irradiated hosts (Fig. 1e,f). Thus, the
N1IP::CreHI and N1IP::CreLO lines both labelled cell lineages
that experience high levels of Notch activation (such as the
arterial cells), but they differ in their capacity to label cells with a
history of low Notch1 activity such is the case of the
haematopoietic lineage. Moreover, these results indicate that
definitive HSCs originate from endothelial precursors that have
not experienced high Notch signal. Because Jag1 and Dll4 ligands
are specifically required to promote the haematopoietic7 and the
arterial12,13 fates, respectively, and different Notch signalling
strength has previously been assigned to each ligand20, we
propose that low (haematopoietic) and high (arterial) Notch
activity observed in the embryonic AGM might be achieved by
the differential use of either ligand.

Jag1 and Dll4 distribution in the embryonic aortic cells. Both
Dll4 and Jag1 ligands were strongly and homogeneously dis-
tributed along the rostral-caudal and dorsoventral axis of the
aortic endothelium by E10.5 (Fig. 2a and Supplementary Fig. 2a).
Interestingly, Kitþ cluster structures showed variable patterns of
ligand distribution, most frequently being the positive signal for
Dll4 (Supplementary Fig. 2b). However, the majority of sorted
Kit� endothelial cells (89%) co-expressed the Jag1 and Dll4
ligands, and only a few cells expressed either Jag1 (3.8%) or Dll4
(4.6%) or were negative for both (2.5%; Supplementary Fig. 2d).
At the transcriptional level, lower levels of ligand mRNA were
detected in the Kitþ population (cluster cells) compared with the
endothelial (Kit� ) population (Supplementary Fig. 2e).

Jag1 inhibits the endothelial programme in AGM cells. The
ligand distribution observed in the aortic endothelium of the
AGM suggests the existence of a functional interplay between
Jag1 and Dll4. Thus, we aimed to investigate the relative con-
tribution of each ligand in the process of haematopoietic and
endothelial production from AGM endothelial progenitor cells.
With this purpose, we dissected E10.5 and E11.5 AGM tissues
and sorted the cells based on CD31 positivity (excluding
Ter119þ and CD45þ cells). We then incubated the CD31þ
AGM cells for 7 days in the presence of OP9 stroma over-
expressing either Jag1 (OP9-Jag1) or Dll4 (OP9-Dll4) ligands
(Supplementary Fig. 3c) and analysed the cultures for the pre-
sence of cells expressing the haematopoietic markers Kit and
CD45, as a measure of haematopoietic cell production. Genera-
tion of haematopoietic cells (CD45þ ) and haematopoietic pro-
genitors (KitþCD45þ ) from E10.5 and E11.5 AGM cells was
increased both in percentage (eightfold increase; Supplementary
Fig. 3d) and in total cell number (Fig. 2c) when comparing OP9-
Jag1 with OP9-Dll4 cultures. To investigate whether Jag1 and
Dll4 affect the haematopoietic cell production by regulating the
EHT process, we performed a similar experiment; however, in
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this case the sorted CD31þCD45� E11.5 AGM cells were
incubated on OP9-Jag1 or OP9-Dll4 for 2 h, resorted according to
Kit expression and processed for transcriptome analysis using
Affymetrix arrays. Of note that the final analysis included four
populations generated in the experiment (Kit� and Kitþ after
incubation with Jag1 (Kit� J and Kitþ J) or with Dll4 (Kit�D
and KitþD)) and two controls corresponding to the untreated

populations (CD31þKit�CD45� (Kit� ) and CD31þKitþ

CD45� (Kitþ )) that were directly sorted from freshly dissected
E11.5 AGMs (Fig. 2d). Independent triplicates of each sample
were obtained and processed using the Affymetrix gene chips.
Bioinformatic analysis detected global changes in gene expression
on ligand incubation, relative to the basal transcriptome of the
Kitþ and Kit� cell populations. Principal component analysis
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Figure 1 | Haematopoietic and arterial specification requires different levels of Notch1 activity. (a) Schematic representation of Notch activation

history mouse reporters by replacing the intracellular domain of mouse Notch1 with low sensitivity (N1IP::CreLO) and high sensitivity (N1IP::CreHI)

Cre-recombinase. Reporter activation of N1IP::CreLO requires a high threshold of Notch activity, while N1IP::CreHI is induced in response to low or high

Notch activity. (b) Flow cytometry analysis of peripheral blood of adult mice. Cells were stained with Lineage (lin) markers (CD3, B220, Gr1, Mac1 and

Ter119) gated on linþ cells. Numbers indicate the percentage of YPFþ cells. (c) Graph represents the percentage of YFPþ cells within haematopoietic

cell types in the bone marrow (BM), spleen and thymus of N1IP::CreLO (grey bars) and N1IP::CreHI (blue bars) as detected using flow cytometry.

(d) Representative confocal images of three-dimensional whole-mount immunostaining in N1IP::CreHI and N1IP::CreLO embryos (E10.5) detecting YFP

(green), c-Kit (cyan) and CD31 (red). General view of the dorsal aorta (left panel) and details of haematopoietic cluster (right panels). White arrows

indicate cluster structures. D, dorsal; DA, dorsal aorta, HC, haematopoietic cluster; V, ventral. Scale bars, 100mm for DA, 25mm for HC in N1IP::CreHI and

50mm in N1IP::CreLow. See also Supplementary Fig. 1. (e,f) Graphs show the percentage of reconstituted cells in animals transplanted with YFPþ and

YFP� fractions of E13-14 fetal liver and BM at 4-month post-transplantation (e). Representative dot plots from analysis (f). Donor CD45.2 N1IP::CreHI cell

fractions together with 500,000 supporting CD45.1 spleen cells were transplanted into CD45.1/CD45.2 chimeras.
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Figure 2 | Expression of Jag1 and Dll4 ligands in the embryonic dorsal aorta. (a) Representative confocal images of E10.5 embryo transverse section with

CD31 (red) and Jag1 (green, left) and Dll4 (green, right). Details of ventral part (lower panels) corresponding to boxed areas. Scale bars, 25 mm. Nuclear

staining with 4,6-diamidino-2-phenylindole is shown (D, dorsal; V, ventral). (b) Experimental design to test the effects of OP9-Jag1 and OP9-Dll4 on

purified CD31þCD45�Ter119� AGM cells after 7 days of culture. (c) Quantification of haematopoietic lineage generated from CD31þCD45�Ter119�

AGM cells on culture on OP9-Jag1 or OP9-Dll4. Bars represent the total number of cells on 7-day culture; n¼4 or more samples of at least two

independent experiments. s.e.m. is represented. P value for t-test is indicated. (d) Schematic representation for purification of E11.5 AGM

CD31þKit�CD45�Ter119� and CD31þKitþCD45�Ter119� (Kit� and Kitþ ). In parallel, CD31þCD45�Ter119� cells were incubated for 2 h in OP9-

Jag1 or OP9-Dll4. Cells were resorted on the basis of Kit expression (Kit� J and Kitþ J or Kit�D and KitþD). (e) Principal component analysis (PCA) of

global gene expression profiles of samples included in the study. Each dot of the same colour represents arrays from replicates of the same sample. Dotted

lines arbitrarily reunite replicates of a specific condition. (f) Unsupervised hierarchy clustering of transcriptional profiles from selected cell populations.

(g) Venn diagram displaying the number of genes differentially expressed in cluster-containing versus endothelial populations (Kitþ _Kit� ) and/or in

endothelial population after versus before incubation on OP9-Jag1 (Kit� J_Kit� ). Fold change expression levels from MicroArray analysis of 23

angiogenic-related genes are listed. Green-colour grade represents the range of fold change (FC) values on Kitþ or Kit� J populations compared with

Kit� cells. All FC values represent statistically significant differences on gene expression (P value-adjustedo0.05). Grey cells represent genes in which FC

is not statistically significant. (h) Biological process enrichment analysis of genes differentially expressed in Kit� J_Kit� and Kitþ _Kit� comparisons.

Only selected GO terms are presented, and all significant terms are given in Supplementary Tables 2 and 3. (e–h) Analysis performed on three independent

experiments; one Kit� J sample was excluded for technical reasons.
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(Fig. 2e) detected a high degree of similarity between replicates
and a clear intrasample segregation of the replicate clusters on
incubation with the ligands (Kit� J, Kitþ J, Kit�D and KitþD)
from untreated Kitþ and Kit� AGM cells. Two-dimensional
representation of principal component space shows a recogniz-
able distribution, in which Kit� and Kit�D samples segregate
not only from all Kitþ samples (Kitþ , Kitþ J and KitþD) but
also from the Kit� J. Similarly, unsupervised hierarchical clus-
tering algorithm identified the following two transcriptional
groups: (1) the untreated endothelial cells (Kit� ) clustered with
endothelial cells exposed to Dll4 (Kit�D) and (2) the haema-
topoietic precursor populations (Kitþ , KitþD and Kitþ J) that
clustered together with the Kit� cells exposed to Jag1 (Kit� J;
Fig. 2f). Together, these analyses strongly suggest that Jag1
imposes a haematopoietic-like signature to the Kit� population,
before the acquisition of detectable amounts of the Kit haema-
topoietic marker.

Next, we compared the expression profiles of the endothelial
population exposed to Jag1 (Kit� J), the haematopoietic
precursors (Kitþ ) and the endothelial population (Kit� ).
Unexpectedly, we did not identify a shared haematopoietic
signature in Kitþ and Kit� cells exposed to Jag1 (Kit� J).
Instead, exposure of the Kit� population to Jag1 was associated
with downregulation of several endothelial-related genes on the
Kit� population such as Flk1, Nrp1 and Cdh2 among others
(Fig. 2g and GSE59344). Accordingly, Gene Ontology (GO)
analysis of the data indicated that genes downregulated in the
Kit� cells by exposure to Jag1 fall into categories related to
specification and maintenance of endothelial cell identity
(including angiogenesis, regulation of cell migration and cell
adhesion), or are associated with the Notch and Wnt pathways
(Fig. 2h and Supplementary Tables 2 and 3).

To confirm that Jag1 imposes the downregulation of a pre-
existing endothelial signature in the Kfit� cells, we performed
reverse transcriptase–PCR (RT–PCR) analysis of genes identified
in our GO analysis (n¼ 39) from independent pools of cells
sorted and processed as detailed above. The 95% of all tested
genes were found to be downregulated in the different pools of
Kitþ cells when compared with Kit� AGM cells, as expected.
Importantly, in two independent experiments 62% of all tested
genes showed a reduction in their mRNA levels in the Kit� J
compared with the original endothelial population (Kit� ;
Fig. 3a). Comparable results were obtained from sorted
endothelial CD31þKit�CD45� cells grown on the OP9-Jag1
for 2 or 5 h (Supplementary Fig. 4a,b, respectively). These results
exclude the possibility that the observed transcriptional changes
are originated from Kitþ cells that lost the Kit marker during
Jag1 incubation. In addition, we detected a general decrease in
flk1 levels in the entire endothelial population after 5-h
incubation on Jag1 as determined using flow cytometry
(Supplementary Fig. 4c), suggesting that the effects of ectopic
Jag1 are not restricted to a minor haemogenic endothelial cell
population.

Altogether, the results strongly suggest that Jag1 counteracts a
transcriptional endothelial programme that is likely imposed by
Dll4 in the Kit� cell population.

Jag1 enhanced haematopoietic gene expression. The EHT
process involves the acquisition of a haematopoietic transcrip-
tional programme that was not detected as differentially regulated
in our microarray analysis. Thus, we specifically determined the
expression levels of particular haematopoietic genes in the Kit�
and Kitþ AGM cell populations, and in comparison with the
Jag1-incubated Kit� cells (Fig. 3b). We detected a remarkable
upregulation of Kit, CD41, Runx1 and Gata2 expression in E10.5

or E11.5 Kit� AGM cells exposed to Jag1 (Fig. 3b and
Supplementary Fig. 4b), expected from cells undergoing haema-
topoietic commitment. Taken together, our results suggest that
Jag1 promotes the EHT process through both the downregulation
of the endothelial signature and the activation of the haemato-
poietic-specific transcription.

Jag1 is required to inhibit the endothelial signature in EHT.
Jag1� /� embryos die around E11 with impaired definitive
haematopoietic development7. A detailed analysis of the
subpopulations present in the Jag1� /� AGM at E10.5
identified an increase in the number of endothelial-like cells
(CD31þKit�CD45� ), but also CD31þKitþCD45�

haematopoietic precursors, associated with a decline in the
number of CD45þ cells (Fig. 4a). Immunofluorescence analysis
of AGM sections confirmed the presence of Kitþ cells in the
Jag1� /� embryos; however, both the total number and the
morphology of these haematopoietic-like clusters were severely
affected (Fig. 4b–d). Specifically, Jag1-deficient Kitþ cells were
distributed as single cells along the aortic endothelium or
aggregate in clusters that do not evaginate into the aortic
lumen, thus invading the mesenchymal tissue underneath the
endothelial layer instead (Fig. 4b). To characterize the
haematopoietic defects in Jag1� /� embryos at the molecular
level, we sorted E10-5 AGM CD31þKit�CD45� (Kit� )
and CD31þKitþCD45� (Kitþ ) cells from Jag1þ /þ and
Jag1� /� embryos, obtained the total RNA from each
population and compared their gene transcriptional patterns
using qRT–PCR. Our results showed that Jag1� /� embryos
have a prominent upregulation of the endothelial-related
signature both in the Kitþ and Kit� populations compared
with Jag1þ /þ (Fig. 4e, Supplementary Fig. 5a). More
importantly, comparison of Kitþ and Kit� populations
demonstrated that Jag1� /� cells maintain a consistent
endothelial signature during the Kit� to Kitþ transition
(Fig. 4f). Further evidence for this endothelialization of the
Kitþ cell population in the Jag1� /� embryos is provided by
the observed decrease in the expression of C-Kit and Runx1 when
compared with Jag1þ /þ littermates (Supplementary Fig. 5b).

Because HSCs are known to reside inside the KitþCD45þ

population, which is still present in the Jag1� /� embryos (not
shown), we functionally measured the frequency of haematopoietic
progenitors (CFUs-S11) and HSCs in these mutant embryos
compared with Jag1þ /þ littermates. We established E10 AGM
explant cultures from Jag1þ /þ , Jag1þ /� and Jag1� /�
embryos and, after 72 h, cells were injected into lethally irradiated
mice. On day 11 post transplantation, we found that Jag1� /�
AGM-injected mice contained a very low number of colonies in
the spleen (colony-forming units in spleen, CFU-S11) that was
comparable to the non-injected/irradiated controls. The number of
these colonies was increased up to eightfold in the animals injected
with wild-type AGM explant cells (Fig. 4g). To determine the HSC
activity, b-actin-GFP;Jag1þ /þ , b-actin-GFP;Jag1þ /� or
b-actin-GFP;Jag1� /� AGM explants (from E10 to 10.5
embryos) and transplanted (together with 5� 105 spleen support-
ing cells) into lethally irradiated recipients. Donor engraftment was
analysed by the presence of GFP at 1 and 4 months after
transplantation. We found that 14 out of 23 Jag1 þ /þ or þ /�
embryos contained long-term multilineage reconstitution activity
(engraftment 41% GFPþ cells), whereas we did not detect any
HSC activity in the animals transplanted with the Jag1� /�
AGMs (Fig. 4h).

Jag1 outcompetes Dll4 signals between AGM cells. Indicating
that Jag1 was important to provide a low Notch signal activity in
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the embryonic haematopoietic precursors, we found that Hey2,
EfnB2 and Ccnd1 (well-known targets of Notch signalling) were
markedly downregulated in the Kit� cells exposed to the Jag1-
expressing stroma (Fig. 5a,b), while nonsignificant changes in the
transcription of these genes were detected in Kit� cells exposed
to Dll4 compared with the original kit� population (P40.05).
Because most Kit� cells expressed both Dll4 and Jag1, we
speculated that Jag1 presented by OP9 cells produces a low Notch
signal while outcompeting Dll4-mediated signalling originated
from adjacent Kit� cells. In agreement with this possibility, the
expression levels of several Notch-target genes were significantly
upregulated in the aortic endothelium of Jag1� /� embryos
(Fig. 5c) and we detected high Notch activity in multiple areas
around the AGM aorta of the Jag1� /� embryos, as determined
using immunofluorescence with the antibody recognizing the
active form of Notch (ICN1; Fig. 5d). To further investigate
whether Jag1 negatively regulates the endothelial programme by
competing with Dll4-mediated Notch1 signalling, we evaluated
the effect of anti-Dll4 and anti-Jag1-blocking antibodies on the
in vitro generation of haematopoietic cells from E10.5 AGMs
CD31þCD45� progenitors (Fig. 6a). After 7 days of culture,
anti-Dll4 treatment significantly increased the number of hae-
matopoietic CD31þKitþCD45� precursors and CD31þKitþ

CD45þ progenitors relative to the IgG control (Fig. 6b,c). Con-
versely, blocking Jag1 ligand had an inhibitory effect on the
generation of these same cell populations (Fig. 6b,c). We next
tested the capacity of in vitro-generated cells to form functional

haematopoietic precursors in the methylcellulose colony-forming
assay. We found that, whereas anti-Dll4 treatment increased the
number of colony-forming cells in these cultures, anti-Jag1
treatment significantly reduced their colony-forming activity,
relative to the controls (Fig. 6c). We therefore evaluated the
effects of a transient block of the Dll4 signal in the Kit�
population in vivo (CFU-S11 assay). We incubated Kit� sorted
cells for 5 h in the presence of the anti-Dll4 antibody or irrelevant
human Ig (as a control) and injected them to sublethally irra-
diated SCID-BEIJE mice (Fig. 6d). Analysis of the spleens 11 days
after injection revealed that animals transplanted with control-
treated Kit� cells contained a number of colonies comparable to
the uninjected, irradiated control mice. In contrast, we con-
sistently found an increase in the number of spleen colonies in the
animals injected with Kit� cells incubated with the anti-Dll4
antibody (Fig. 6e). Moreover, we detected a significant down-
regulation of the endothelial programme in the Kit� cells
incubated with anti-Dll4 for 5 h when compared with the control
Kit� cells (Fig. 6f; analogous to the effect observed in the AGM
cells incubated on OP9-Jag1, see Fig. 2e–g). These results are
consistent with the hypothesis that Jag1 outcompetes Dll4 for
binding to the receptor but elicits a weaker activation of Notch1
in the endothelial cells of the AGM.

Altogether, our results indicate that Dll4-induced Notch1
activity is required to specify the arterial programme, while Jag1-
induced Notch activity and the subsequent (or concomitant)
downregulation of the Dll4-mediated signalling are both required
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for generating HSC in the embryo. The N1IP::Cre mice data
indicate that endothelial and haematopoietic specification
associates with a differential Notch signal strength, and we

propose that regulation of the correct Notch1 signal strength
during embryonic development is achieved by the competition
between Dll4 and Jag1 ligands.
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Discussion
Understanding the complex regulatory signals that govern the
generation of HSC is clinically relevant for regenerative medicine
applications.

In the present study we particularly focused on the regulation
and contribution of the Notch pathway during HSC specification

in the mouse embryo. We had previously demonstrated that
Notch1 activation through the Jag1 ligand was required for the
expression of the haematopoietic programme21. However,
analysis of the Notch1 reporter N1IP::CreLO (ref. 17) indicated
that the haematopoietic lineage was not labelled, and therefore we
deduced that the aortic endothelial cells receiving high levels of
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Notch signal did not produce HSC. Our newly engineered
N1IP::CreHI reporter labelled cells in both the arterial and
haematopoietic systems, suggesting that in the dorsal aorta
endothelial cells with low Notch1 activity (labelled in the
N1IP::CreHI but not in the N1IP::CreLO) sort out from the ones
with high Notch activity (labelled in both lines) to become
haematopoietic precursors. Of note that the N1IP::CreHI activity
(as reported by YFP positivity) is detected earlier in development
and more intense in the dorsal aorta, and subsequently only the
N1IP::CreHI displays positive cells in the haematopoietic clusters.
Our explanation is that the haemogenic endothelium differs from
endothelial cells in the magnitude of Notch activity, which will
never reach the levels required to induce the N1IP::CreLO

reporter. Alternatively, there is a common precursor that is
specified to the arterial or haemogenic lineage during the period
in between N1IP::CreHI and N1IP::CreLO induction (as detected
by YFP).

Analysis of N1IP::CreHI HSC indicated that YFPþ cells
contain bona fide HSCs in fetal liver and bone marrow;
however, some long-term repopulating activity is also found in

the YFP� population that may have escaped recombination.
However, YFP� cells do not show secondary engraftment,
strongly suggesting that it correspond to a qualitatively different
type of HSCs.

It has been shown that Notch ligands can deliver different
Notch signal strengths20,22. Jag1 and Dll4 ligands are expressed in
the embryonic aorta and both can activate the Notch1 receptor.
Deletion of either ligand results in distinct endothelial/
haematopoietic phenotypes, highlighting a functional difference
between the ligands: Dll4 deletion results in an arterialization
defect10,12,13, whereas Jag1 deletion specifically affects the
establishment of definitive haematopoiesis (ref. 7 and this work).

We combine all available data with our analysis to propose how
the balance between Notch1-Dll4 and Notch1-Jag1 signalling
guarantees the correct establishment of the endothelial and
haematopoietic cell fates in the AGM. Our data indicate that the
lack of Jag1 ligand results in higher Notch activity in the aortic
endothelium of the AGM, which enhanced endothelial fates at the
expense of HSC formation. This observation supports existing
models in which Dll4-Notch1 signals maintain the endothelial/
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arterial programme. We hypothesize that precursor haemogenic
cells responding to Jag1 attenuate/inhibit the strong Dll4-Notch1
signal, replacing it with a productive low Notch1 signal
necessary and sufficient to activate haematopoietic genes, such
as Gata2 (ref. 21), but not to activate the endothelial programme.
In addition, we found that Jag1 induced the transcriptional
activation of several microRNAs (GSE59344) that may contribute
to the active repression of the endothelial programme, a
possibility that we are currently investigating. The requirement
of a Jag1-dependent productive Notch signal for haematopoietic
specification is further supported by the fact that treatment of
AGM cells with anti-Jag1-blocking antibody prevents production
of haematopoietic progeny similar to g-secretase inhibition7.
Finally, although our results obtained in the OP9-Jag1 co-culture
experiments are compatible with Jag1 delivering a proliferation
signal on the kitþ population, the fact that culture conditions are
optimized for haematopoietic cell growth precluded to obtain any
conclusion about target-cell specificity. Moreover, these effects of
Jag1 on cell proliferation are not supported by gene expression
analysis on the kitþ J population.

Antagonistic interactions between Jagged and Delta ligands to
attenuate Notch signalling have been previously proposed for
angiogenic sprouting23 or prosensory specification in the inner
ear22. In the vascular network of the retina, Jag1 antagonizes
strong Dll4-Notch1 signalling in a stalk cell to promote the tip
fate that requires a weak/no Notch1 signal. Fringe enhances the
ability of Notch1 to respond to Dll4 while lowering activation by
Jag1 in the tip and the developing inner ear22,24. Fringe is likely to
be involved in EHT; however, the specific role of fringe in HSC
development has not been addressed yet.

Lines of evidence in different organisms support the model
known as Cis-inhibition, in which activation of Notch by a
ligand expressed in a neighbouring cell (sending cell) is prevented
by the ligands that are co-expressed with Notch in the receiving
cell25–29. Our observation that endothelial genes in Kit� cells are
repressed by incubation with OP9-Jag1 (signal in trans) points
against a pure cis-inhibitory model, thus suggesting the existence
of a trans-inhibition mechanism.

The importance of Jag1 signal in the maintenance of the
haematopoietic identity was previously demonstrated in the
Jag1� /� mice7; however, a precise analysis of the haemogenic
and HSC subpopulations in these animals was lacking. We now
show that Kitþ cells are produced in Jag1-deficient aortas in a
similar frequency as the wild type; however, mutant cells fail to
downregulate the endothelial programme, are not properly
localized in the emerging clusters and show a subaortic
mesenchymal localization.

In summary, our study identifies a novel two-step process in
the specification of definitive HSC by Jag1 during mammalian
embryonic development. First, Jag1 must protect the progenitors
from Dll4 signals, which leads to downregulation of the
endothelial signature. Second, Jag1 signals are required for
endothelial-to-haematopoietic transition in the haemogenic
endothelium, and for the acquisition of the haematopoietic
phenotype. This knowledge has great importance for the future
design of protocols for in vitro generation of HSCs, which is a
relevant issue in regenerative medicine, in particular for
producing cells suitable for transplantation in patients without
compatible blood donors.

Methods
Animals. CD1, C57BL/6 J wild-type, B6.SJL-Ptprca Pep3b/BoyJ, SCID-Beige mice
(Charles River Laboratories), Jag1� /� (ref. 30), b-actin-GFP (ref. 31) and
ROSAeYFP (ref. 32) N1IP::CreLO (ref. 17) and N1IP::CreHI (ref. 19) strains were
used. Animals were kept under pathogen-free conditions, and all procedures were
approved by the Animal Care Committee of the Parc de Recerca Biomedica de

Barcelona (regulation of Generalitat de Catalunya). Embryos were obtained from
timed pregnant females and staged by somite counting: E10.5 (31–40 sp) E11.5
(43–48 sp). The detection of the vaginal plug was designated as day 0.5. Mice and
embryos were genotyped using PCR when justified.

OP9 cell culture and stromal-free culture of AGM-derived sorted cells.
OP9 stromal cell lines overexpressing Jag1 or Dll4 ligands33 were maintained in
a-minimum essential medium (Gibco, Life Technologies) supplemented with 20%
fetal bovine serum (FBS) and 1% penicillin/streptomycin and were incubated at
37 �C in a humidified atmosphere with 5% CO2. Cells were plated at 1.5� 104

cells cm� 2 24 h before experiment.
Sorted cells were plated in Iscoves medium (Gibco, Life Technologies)

supplemented with 10% inactivated FBS, 10 ng ml� 1 interleukin (IL)-3,
10 ng ml� 1 stem cell factor (SCF), 20 ng ml� 1 IL-6, 10 ng ml� 1 insulin-like
growth factor-1 (IGF-1), 10 ng ml� 1 fibroblast growth factor-basic (FGF-B),
10 ng ml� 1 vascular endothelial growth factor (VEGF), 2 U ml� 1 erythropoietin,
4.5� 10� 4 M monothioglycerol, 10mg ml� 1 Heparin and 50 ng ml� 1 bovine
pituitary extract.

Cells were incubated for 2, 5 h or 7 days depending on experiment. Incubation
with 1 mg ml� 1 of blocking anti-Jag1 N-17 (sc-34473, Santa Cruz Biotechnology),
5 mg ml� 1 of blocking anti-Dll4 (Genentech) or with the Ig mock controls at the
correspondent concentration (irrelevant Goat IgG, Sigma I9140 or Goat Anti-
Human Ig, Southern Biotech 2010-01, respectively).

Haematopoietic progenitor assay. On culture, AGM-derived cells were har-
vested and seeded in duplicates in Methocult M-3434 semi-solid medium (Stem
Cell Technologies). Cells were incubated at 37 �C with 5% CO2 and colony-forming
units were counted after 5 days.

CFU-S11. AGM-derived cells on culture were harvested and washed with PBS. Cells
were resuspended in 330ml per sample and injected intravenously into adult
sublethally irradiated (3 Gy) C57BL/6J wild-type or SCID-Beige recipients
(Figs 4 and 6, respectively). After 11 days, the animals were killed and the presence
of macroscopic haematopoietic colonies in the spleen was scored under a stereo-
scope (KL200 LED; Leica).

Single-cell suspensions and antibody staining. AGMs were dissected from
embryos at E10.5 or E11.5, incubated for 20 min at 37 �C in 0.12% collagenase
(Sigma-Aldrich) in PBSþ 10% FCS and dissociated by pipetting to single-cell
suspensions. Cultured cells or primary cells were washed with PBSþ 10% FBS
before antibody staining. Antibody staining was performed in PBS supplemented
with 10% FCS in the dark, at room temperature for 15 min, or carried out on ice for
30 min. The antibodies CD45-PeCy7, CD45-FITC, Ter119-PeCy7, CD31-PE and
Kit-APC were purchased from BD Biosciences. Dead cells were excluded using
Hoechst 33258 (Invitrogen) or 4,6-diamidino-2-phenylindole (DAPI; Invitrogen).

Flow cytometry and cell sorting. Flow cytometry analysis was performed on
FACSCalibur (BD Biosciences) or LSRII (BD Biosciences). Cell sorting was per-
formed on FACSVantage (70-mm nozzle), FACSAria (85-mm nozzle) or Influx
(100-mm nozzle; all BD Biosciences). The data were analysed with the FlowJo
software (Tree Star) or FACSDiva software (BD Biosciences). Sorted cells were
collected either in medium or Qiagen RLT buffer (for culture or mRNA extraction,
respectively). When possible, cells were analysed for sorting purity; neither Kitþ

nor CD45þ cell contamination was detected in Kit� population.

cDNA amplification and quantitative RT–PCR. Total RNA was extracted using
the RNeasy Mini Kit (Qiagen). cDNA was obtained with RT First Strand cDNA
Synthesis (GE Healthcare) according to the manufacturer’s instructions. cDNA was
pre-amplified before qRT–PCR reaction using TaqMan PreAmp Master Mix Kit
(Applied Biosystems) according to the manufacturer’s instructions. The primers
used for pre-amplification and qRT–PCR are listed in Supplementary Table 1.

Microarray analysis. For microarray study, AGM regions were obtained from
E11.5 mouse embryos, digested with 0.1% collagenase and single-cell suspension
stained with anti-Ter119, anti-CD45 and anti-CD31. The CD31þCD45�Ter119�

population was sorted in Iscoves-based medium and seeded on OP9-Jag1 or OP9-
Dll4 stromal cells for 2 h, as described above. After 2 h, cells from each of the
culture conditions were re-stained with anti-CD45, anti-CD31 and anti-Kit, and
CD31þKit�CD45� and CD31þKitþCD45� directly recovered in RLT buffer
(Qiagen). Total RNA from three independent sorting experiments was extracted
using RNeasy midi or mini Kit (Qiagen) and was assessed using Bioanalyzer 2100
(Agilent Technologies, Palo Alto, CA). Only samples with high integrity (RNA
integrity number47) were subsequently used in microarray experiments. Micro-
array expression profiles were obtained using the Affymetrix GeneChip Mouse
Gene 1.0 ST array (Affymetrix, Santa Clara, CA) and the GCS3000 Affymetrix
platform. Briefly, 4.8 ng of total RNA from each sample was amplified using the
Ovation Pico WTA System (NuGEN Technologies, San Carlos, CA) and sense
transcript cDNA (ST-cDNA) was generated using the WT-Ovation Exon Module
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(NuGEN Technologies). After, ST-cDNA was fragmented and labelled with the
FL-Ovation cDNA Biotin Module V2 (NuGEN Technologies), and the biotinylated
cDNA was hybridized to Affymetrix GeneChip Mouse Gene 1.0 ST arrays. Fol-
lowing hybridization, the array was washed and stained, and finally scanned to
generate CEL files for each array. Quality metrics on microarray data sets was
performed with QualityMetrics 3.14.0 under R version 2.15.2 (2012-10-26). Data
have been submitted to GEO (GSE59344; link for reviewers: http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?token=uhoneeaifnczpmn&acc=GSE59344). Micro-
array profiles of endothelial population CD31þKit�CD45�Ter119� and cluster-
containing population CD31þKitþCD45�Ter119� directly sorted from freshly
treated AGMSs were obtained elsewhere34 and data previously submitted as
GSE35395.

Computational analysis. Hierarchical clustering was performed using Euclidean
distance algorithm on median-centred expression value of the genes set that pass
the filter of s.d.Z1. Clustering, heatmap generation and calculation were per-
formed using the programme Genesis35. Principle component analysis was
performed using Bioconductor36 package arrayQualityMetrics37.

Immunostaining. For tissue-section immunostainings, embryos were fixed over-
night in 4% paraformaldehyde (Sigma-Aldrich) at 4 �C, included in paraffin or
Optimal Cutting Temperature (OCT) (Tissue-Tek, Sakura) and sectioned at 8 mm.
Primary antigen retrieval of paraffin-embedded embryos was performed in 10 mM
sodium citrate pH 6, 20 min in autoclave. On peroxidase exhaustion (3% H2O2),
slides were incubated in blocking solution (3% BSA, 20 mM MgCl2, 0.3% Tween20
and 5% FBS in PBS). Primary antibodies were used at the following concentrations:
anti-Jag1 1:400 (sc-6011-Santa Cruz), anti-Dll4 1:3000 (ab7280-Abcam), anti-ICN1
1:100 (a-N1Icv monoclonal antibody Cell signaling #4147S) and developed using
horseradish peroxidase (HRP)-conjugated specific secondary antibody ((1:200,
Dako) or non-diluted HRP-conjugated universal secondary antibody reagent or
secondary EnVisionþ System-HRP Labelled Polymer Anti-Rabbit (Dako) and
tyramide amplification system TSA (PerkinElmer).

OCT-embedded embryos were fixed with � 20 �C methanol for 15 min and
block-permeabilized in 10% FBS, 0.3% Surfact-AmpsX100 (Pierce) and 5% non-fat
milk in PBS for 90 min at 4 �C. Anti-Kit 1:50 (BD 553356) and signal developed
using HRP-conjugated specific secondary antibody (Dako) and tyramide
amplification system TSA (PerkinElmer). On a step of endogenous biotin blocking
(Endogenous AvidinþBiotin Blocking System, ab3387 abcam), CD31 detection
with biotinylated anti-CD31 1:500 (BD 553371) followed by incubation with
secondary streptavidin Alexa Red 555-conjugated antibody 1:500 (BD 32355).

For sorted cell immunostaining, 2,000 endothelial cells (CD31þKit�

CD45�Ter119� ) from E11.5 embryos were directly sorted on pre-treated slides
and fixed for 40 min on ice in 4% paraformaldehyde. Primary antibodies anti-Jag1
1:400 (sc-6011-Santa Cruz) and anti-Dll4 1:3,000 (ab7280-Abcam) incubation
and detection was achieved with specific secondary Alexa 1:500 (A-11056
Alexa Fluor 546 or A-21206 Alexa Fluor 488 (Invitrogen Molecular Probes),
respectively.

Whole-mount immunostainings were achieved as detailed in ref. 38. Briefly,
embryos were fixed for 20 min on ice in 2% paraformaldehyde, dehydrated in
methanol and trimmed. On transference into scintillation vials containing 100%
methanol, embryos were rehydrated and blocked with BSA/PBS-MT solution on
ice for 1 h. Primary antibodies were used at the following concentrations: anti-Kit
1:500 (eBioscience 14-1171-81), anti-Jag1 1:50 (Santa Cruz sc-6011), anti-Dll4
1:500 (Abcam ab7280) and biotinylated anti-CD31 1:500 (BD 553371). Detection
was achieved with secondary Alexa 1:500 (A-21206 Alexa Fluor 488, A-21247
Alexa 647, Invitrogen Molecular Probes) or streptavidin Alexa Red 555-conjugated
antibody 1:500 (BD 32355). Vectashield medium plus DAPI (Vector) was used for
mounting and nuclear staining. All immunostainings were analysed in a
fluorescence microscope (Olympus BX61), and images were taken in a confocal
microscope (Leica SP5; lasers of 488-, 561- and 633-nm wavelengths). Fiji imaging
and Photoshop were used for final image processing.
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