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The idea that epidemiologic studies should start from first exposure onward has been advocated in the past few

years. The study of incident exposures is contrasted with studies of prevalent exposures in which follow-up may com-
mence after first exposure. The former approach is seen as a hallmark of a good study and necessary for causal in-
ference. We argue that studying incident exposures may be necessary in some situations, but it is not always necessary
and is not the preferred option in many instances. Conducting a study involves decisions as to which person-time ex-
perience should be included. Although studies of prevalent exposures involve left truncation (missingness on the left),
studies of incident exposures may involve right censoring (missingness on the right) and therefore may not be able to
assess the long-term effects of exposure. These considerations have consequences for studies of dynamic (open)
populations that involve a mixture of prevalent and incident exposures. We argue that studies with prevalent exposures
will remain a necessity for epidemiology. The purpose of this paper is to restore the balance between the emphasis on
first exposure cohorts and the richness of epidemiologic information obtained when studying prevalent exposures.

dynamic populations; epidemiologic methods; incidence rate; incident exposure; left truncation; prevalent

exposure; right censoring; study design

Abbreviation: cHRT, combined hormone replacement therapy.

Editor’s note: Counterpoints to this article appear on
pages 834 and 840, and a response appears on page 846.

The notion that epidemiologic studies should start with
participants that are observed from initiation of exposure on-
ward (1) and that this is necessary for causal inference has re-
cently received wide support (2—6). In contrast, studies that
enroll people with “prevalent exposures” are considered to
be prone to selection bias (7). The “first exposure” approach
received support because of observational research wrongly
indicating that combined hormone replacement therapy
(cHRT) protects against myocardial infarction. It is also sup-
ported on theoretical grounds rooted in counterfactual think-
ing (see below). Conversely, for over a century epidemiologic
studies have involved prevalent exposures, and their results
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have largely stood the test of time. In this paper, we argue
that studies (cohort or case-control) that estimate incidence
rates and rate ratios (hazard ratios) in dynamic populations
(8, 9) involving a mix of prevalent and incident exposures
are necessary, and that universal application of the first expo-
sure principle would be detrimental to epidemiology.

PRELIMINARY CONSIDERATIONS

We will first consider some background issues about types
of evidence, populations, exposures, follow-up, and patterns
of hazard ratios over exposure time.

Types of evidence used in causal inference

The first exposure principle is supported by theories of
causal inference that hold that causality can only be assessed
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by either a randomized trial or an observational study that
closely mimics a randomized trial. In a randomized trial,
follow-up usually starts from the initiation of an intervention
(it could be conducted in a population with previous/prevalent
exposure/treatment, but the focus would be on the effects of
the new (randomized) exposure/treatment). By analogy, the
effect of an exposure in an observational study can only be
fully and validly assessed if follow-up starts from first expo-
sure. The first exposure principle is implicit in the theory of
potential outcomes and counterfactual thinking (10, 11). Re-
cently, the principle has been made more explicit (2, 12, 13).
This view of causal inference is different from that in Aus-
tin Bradford Hill’s causal considerations that may . . . help
us to make up our minds on the fundamental question—is
there any other way of explaining the set of facts before us, is
there any other answer equally, or more, likely than cause and
effect?” (14, p. 299). The evidence used in such consider-
ations includes analytical studies that may include prevalent
exposures (having hypertension, being diabetic), as well as
evidence from time trends, ecological analyses, and biological
and mechanistic insights. Although some types of evidence
may be better than others for a specific hypothesis, there is
usually no definitive single study or study design that answers
the question of causality on its own. Moreover, randomized
controlled trials (or observational studies which mimic such
trials) may be regarded as the (hypothetical) “gold standard”
for many research questions, but there are other important
research questions for which it is difficult to conceive of a de-
finitive randomized trial even in theory (e.g., the health ef-
fects of climate change, or macro-level economic policies).

Types of populations

Populations can be closed or open, and the distinction de-
pends in part on the time axis used (15). For example, a pop-
ulation of people who have used a particular medication
would be “closed” if time is defined as time since starting
medication but would be “open” if time is defined as calendar
time. In addition, populations may be regarded as dynamic if
people can join, leave, and rejoin (e.g., the population of Lon-
don during the year 2014) or may be regarded as closed, or
fixed, if this is not permitted (e.g., follow-up of everyone liv-
ing in London on January 1, 2014).

In the current context, the key distinction is whether the
population is open to entry after the exposure under study be-
gins and open to exit before the outcome under study occurs
(S. Greenland, University of California, Los Angeles, per-
sonal communication, 2013). The first part of this criterion
involves the distinction between a study of “incident expo-
sures” in which follow-up starts from (or before) the time
of first exposure and a study of “prevalent exposures” in
which follow-up may start after first exposure. This leads to
left truncation (missingness on the left). Almost all studies
also involve right censoring (missingness on the right), be-
cause there will be a proportion of participants whose length
of follow-up is restricted.

Figure 1 shows a population that is dynamic with respect to
calendar time: Participants enter at different calendar time
points and are either exposed or unexposed, or they switch
exposures over time. The population is studied for the 4-year
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Figure 1. A hypothetical population that is dynamic with respect
to calendar time. The period of observation falls within the 2 vertical
dotted lines: the 4-year period 2009-2012. Solid horizontal lines (—)
represent exposed time experienced by a person in a dynamic popu-
lation; dashed horizontal lines (----) represent unexposed time; black
squares (m) represent incident cases; black circles (o) represent loss to
follow-up.

period 20092012, and the investigators will have informa-
tion only on disease incidence during this period (although
they may be able to collect information on exposures from
previous periods).

Figure 2 shows how this selected period of follow-up from
the 4-year calendar time period then matches up with the in-
formation that would have been obtained in the correspond-
ing fixed (with respect to start of exposure) cohort study in
which all participants would have been followed from first
exposure or the corresponding date for the nonexposed. The
key feature is that each study participant is at most followed
for 4 years. For some, this is the 4 years following the start of
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Figure 2. lllustration of how the observation period of the dynamic
(with respect to calendar time) hypothetical population in Figure 1 in-
cludes just some of the information from the corresponding fixed (with
respect to start of exposure) cohort study in which follow-up would
have started with first exposure or the corresponding date in the
nonexposed. The time axis is exposure time and starts at initiation of
exposure or beginning of follow-up in nonexposed persons (time 0).
Solid horizontal lines (—) represent exposed time experienced by a
person in a dynamic population; dashed horizontal lines (----) repre-
sent unexposed time; black squares (m) represent incident cases;
black circles () represent loss to follow-up.
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follow-up (exposed or nonexposed), but for most it represents
a different period (e.g., years 7—11 after first exposure or start
of follow-up). There is “left truncation” (delayed study entry
at different times during follow-up); if the entry at different
follow-up times is not taken into account, the data would rep-
resent a mix of the information that would have been obtained
from different follow-up periods in the full fixed cohort study,
and selection bias may occur (1, 2). However, this phenomenon
is well known in the clinical epidemiologic literature (16—18), as
well as in the occupational epidemiology literature (19), and
standard analytical solutions exist (e.g., by calculating life tables
with left-truncation, or by calculating person-years of exposure
in different categories of follow-up time) (19-21).

Types of exposure

Irrespective of when people are recruited into a cohort (or
identified as cases and controls in a case-control study), in-
formation can be collected on previous exposures. Thus,
prevalent exposures can be classified by using information
on current exposure, past exposure, or cumulative exposure,
and incident exposures can also be classified the same way
once follow-up has proceeded. For example, for cigarette
smoking and lung cancer, cumulative exposure may be most
important; this can be assessed at each person-year of follow-
up irrespective of when smoking started. On the other hand,
for hormone replacement therapy and myocardial infarction,
the recently initiated exposures may be most relevant. Fi-
nally, there are exposures that are “on-off”” phenomena or ex-
posures that are completely transient, which also determines
the type of follow-up that is needed.
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Types of follow-up that are needed

The relevant follow-up period will differ according to the
context. For example, in a study of venous thrombosis, follow-
up of a person who was using oral contraceptives at age 25,
had used the pill for 6 years, continued to use the pill for an-
other 13 years, and then stopped gives useful information for
several time windows of use/follow-up. Follow-up might
start with prevalent use and end at most 3 months after stop-
ping. This approach would be adopted mainly because the
risk of venous thrombosis with oral contraceptives is ex-
pected to be an “on-off” coagulation effect, with perhaps an
early peak, but followed by a sustained increased hazard ratio
until shortly after cessation of use (22—24). On the other hand,
in a study of oral contraceptives and breast cancer, follow-up
should continue for many years after stopping use. In the first
instance, the effect is due to the “drug in the blood” and stops
when the drug is no longer present; in the second instance, the
effect is presumably due to lasting cellular alterations.

Exposure-disease associations in case-crossover studies
are often an extreme form of expected on-off effects: They
are transient, more or less instantaneous, and completely re-
versible (e.g., coffee drinking and myocardial infarction (25),
cell phone use and car accidents (26)).

Patterns of hazard ratio by time since first exposure

Figure 3 shows 4 general patterns of hazard ratios by time
since first exposure. They can be viewed as daily hazard
ratios from date of first exposure onward (i.e., the ratio of
daily hazard rates or incidence rates between exposed and
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Figure 3. Some possible patterns of hazard ratios by time since first exposure in a hypothetical population. Time axis is arbitrary and can be
minutes, days, months, or years. A) Hazard ratio is constant by time since first exposure (latency period can be short); B) initially increased hazard
ratio followed by reduced hazard ratio; C) increasing hazard ratio by time since first exposure; D) initial increase, followed by lower but still elevated

hazard ratio.
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nonexposed, analogous to the theory of the Cox model). In
Figure 3A, the hazard ratio is constant from first exposure on-
ward, after an initial latency period. If the time axis was days
(or even minutes), this pattern would apply to transient and
on-off exposures whose effect is present as long as the expo-
sure is present. Figure 3B shows an initially increased risk fol-
lowed by a subsequently reduced risk, a pattern that was found
for cHRT exposure and myocardial infarction over years of
follow-up (2, 27-29). In Figure 3C, the hazard ratio increases
with duration of exposure; the findings for cHRT and breast
cancer are compatible with this pattern over years of follow-up
(27, 30-32). Figure 3D shows an initial peak followed by a
sustained increased risk; this pattern was seen for cHRT and
venous thrombosis (33, 34). The consequences of left trunca-
tion are different for these different exposures.

THE PROBLEM OF LEFT TRUNCATION (MISSINGNESS
ON THE LEFT)

Hormone replacement therapy and myocardial infarction

The potential problem with studying prevalent exposures
has been highlighted in the cHRT controversy. Observational
studies showed a consistent overall decrease of myocardial
infarction among users of cHRT. In contrast, in randomized
trials cHRT increased the risk of myocardial infarction in the
first years of use, but the hazard ratio was subsequently de-
creased (sketched in Figure 3B) (35). This apparent contra-
diction was solved by the realization that the observational
studies started with current users (35), who were contrasted
with never users or with past users. At the start of follow-up,
the current users were mostly past the initial period with
elevated risk; they showed a decreased hazard ratio of myo-
cardial infarction that corresponded to the findings of the ran-
domized trials after the first few years of use (28, 29, 35, 36).

Two different analytical solutions exist. First, analogous to
the reasoning about left-truncation when discussing types of
populations, analyses in the observational part of the Wom-
en’s Health Initiative study included study participants with
prevalent exposures, stratified on duration of cHRT use (syn-
onymous with time since first exposure) at enrollment, and
showed that for coronary heart disease the observational
study findings were consistent with those of the Women’s
Health Initiative randomized trials (36). Second, an analysis
of the observational Nurses’ Health Study compared incident
users, based on counterfactual thinking (see above): It ex-
cluded prevalent users, identified new (incident) users of
cHRT from each biannual examination, and analyzed these
data as a sequence of imaginary successive randomized trials;
this also made the findings for coronary heart disease consis-
tent with those from the randomized trials (29). The first so-
lution was particularly suited for analyzing the Women’s
Health Initiative observational data, as there were few
women who initiated cHRT during the follow-up; the second
approach was appropriate for the Nurses’ Health Study as
there were ample women initiating cHRT during successive
biannual periods (36). The 2 methods were proposed in differ-
ent contexts, but their underlying approaches are consistent
and complementary. There is debate whether a similar bias-
ing effect of studying prevalent users may exist for observa-
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tional studies of the effects of statins (refer to Web Appendix 1,
available at http:/aje.oxfordjournals.org/).

Confounders that change after initiation of exposure

Confounders and other covariates (e.g., mediators) may
change over time, and this may be caused by previous expo-
sure. This phenomenon can exist in all follow-up studies of a
fixed cohort. An “old” cohort (i.e., the latter part of follow-
up) may differ from the baseline with respect to these covar-
iates. Analyses that adjust for variables that are affected by
exposure may produce bias (7). This may be important in
some circumstances (e.g., in clinical and pharmacoepidemio-
logic studies of beneficial effects) when therapy changes in
the course of follow-up and where confounding by indication
plays a large role (i.e., the indication for treatment may have
changed). It may be less important in studies of adverse ef-
fects, in which the risk factors for adverse events are different
from the reasons for exposure (37) (refer to the example about
nonsteroid antiinflammatory drugs below), or when the expo-
sure is a recurrent transient phenomenon such as cell phone
use while driving, or coffee drinking (25, 26).

The exclusive solution: study follow-up from beginning of
exposure

It has been argued, on the basis of the cHRT experience,
that all “good” exposure-disease studies should start follow-
up from the start of exposure (3, 4, 38—40). Moreover, starting
from inception of exposure enables us to capture the life-
course effects of exposure. Studies of prevalent exposures
are weighted more towards participants who started exposure
at some time in the past. This is not a major problem—in the
sense that it will not put epidemiology completely on the
wrong foot—if the hazard rate is reasonably constant across
time periods since the first exposure (Figure 3A), is slowly in-
creasing (Figure 3C), or if an early peak is followed by a sus-
tained risk (Figure 3D). However, in the cHRT and myocardial
infarction example (Figure 3B), the cohort studies effectively
placed greater weight on the later time periods where the rate
ratio was less than 1.0 and less weight on the earlier time pe-
riods where it was greater than 1.0. Although limiting the anal-
ysis to persons followed from first exposure onward solved this
problem in 1 study (29), an analysis by duration of exposure
(time since first exposure) (28) addressed the problem equally
well and showed essentially the same findings (36).

An inclusive solution: the period analysis life table

Methods to account for left truncation are not new (20). In
oncology, a period analysis is used because the prognostic in-
formation for the near future is better with period analysis than
with full cohort analyses (41). Suppose that an investigator
wants to know the 20-year survival of persons who have under-
gone colorectal surgery for colon cancer. In a regional (or coun-
try wide) cancer registry, all persons are identified who are
alive after such surgery on January 1, 2009, and thereafter all
new patients who undergo the same surgery are enrolled; all are
followed until December 31, 2012. Follow-up is at most 4
years. However, these 4-year periods represent different time
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windows since the start of exposure for different patients.
For each of these time windows, incidence rates of death are
calculated, which are then transformed to cumulative inci-
dences, and a life table can be calculated (analogous to our Fig-
ures 1 and 2).

The 20-year cohort experience that is reconstructed is not the
same as the cohort experience that is obtained when starting
follow-up with everyone who had surgery 20 years ago. The
latter life table is of little interest for future patients, since it con-
cerns surgical and medical practices that may not apply in the
future. Conversely, the follow-up experience of those in their
16th—20th year of follow-up in the 2009-2012 time window
may be of less interest to persons who receive their surgery
in 2009-2012 because their survival is most likely going to
be different 20 years in the future, but it still has the advantage
of representing the recent state of health care. The most recent
(in calendar time) follow-up experience may be the most valu-
able for decisions about future health care (41, 42). The prob-
lem of left truncation in a life table was already described and
solved several decades ago in the statistical literature (refer to
the reports by Turnbull (42, 43), Detels et al. (44), and Hsia
et al. (45) for an overview of the older literature), but solutions
were sometimes reinvented by shrewd clinical investigators
who faced the problem in studies on the prognosis of transient
ischemic attacks (18), of colon cancer risk in patients with co-
litis (16), and of multiple sclerosis (17).

Similar analyses are routinely used in cohort studies and
case-control studies based on dynamic populations, wherein
hazard ratios or odds ratios from case-control studies are often
presented for different strata of duration of exposure. Herndn
(2) has proposed that it might be more insightful to present
such findings as cumulative risks, rather than as an array of
odds ratios or hazard ratios, as one can string together the
incidence rate ratios for successive duration of exposure/
follow-up windows (as in the period analysis life table). Refer
to Web Appendix 2, including Web Figure 1, for an example.

How generalizable is the problem?

How important is the cHRT and myocardial infarction
phenomenon for epidemiology? Severely biased findings
for the association of cHRT with myocardial infarction were
derived in epidemiologic studies, because the hazard ratio
completely reversed over the follow-up time (sketched in
Figure 3B). However, the same studies with prevalent cHRT
users did not produce any grossly wrong estimates for other
outcomes: The findings for venous thrombosis or pulmonary
embolism, breast and colon cancer, or strokes were all in line
with the findings of randomized trials (27, 36). For venous
thrombosis, there was an initial peak (as sketched in Fig-
ure 3D), followed by a sustained risk that was quite similar
in both randomized trials and observational studies (33, 34).
For breast cancer, both observationally and in the randomized
trials, there was a slow increase in cumulative risk (31), as
well as a suggestion for an increasing hazard ratio (as sketched
in Figure 3C) over exposure time (27, 30-32). Thus, all these
results were in the same direction for randomized trials and
observational studies and were numerically similar in their
order of magnitude. Moreover, separate analyses for duration
of exposure showed the pattern of the hazard ratios over time.

None of these other outcomes led to a clear selection bias
problem because of the use of prevalent exposures.

The reasons why the hazard ratios of myocardial infarction
went below unity in long-term users are not clear. Depletion
of susceptibles has been proposed (2), but this may not be a
complete explanation (Web Appendix 3).

A follow-up study of different nonsteroid antiinflamma-
tory drugs and the occurrence of myocardial infarction as
an adverse effect (46) is an example of the combination of the
best of both worlds, as it was possible to do sensitivity analy-
ses by comparing new users with prevalent users and to as-
sess the effects of the potential selection bias from the latter.
There was an early peak following first exposure, but the
main analyses yielded similar findings just using the overall
incidence rate ratios. Thrombotic phenomena with nonsteroid
antiinflammatory drugs are an example of a “drug-in-the-
blood on-off” phenomenon, where associations are present as
long as the drug is used, which allows that parts of the follow-
up are started during current exposure and are stopped at the
cessation of exposure. In addition, the data were obtained in a
period wherein the problem of myocardial infarction occur-
rence with different types of nonsteroid antiinflammatory
drugs was not yet known, so any reason for prescribing or
changing prescriptions would have been the result of noncar-
diovascular factors (e.g., stomach complaints), and bias from
confounders changing over time would be unlikely (37).

The iconic follow-up study of smoking and lung cancer by
Doll and Hill (47) started with prevalent exposures for smok-
ing. The “current versus never” contrast yielded very large risk
ratios, and duration of smoking was a strong risk factor in all
analyses. There was no risk reversal during follow-up. On the
contrary, risk continued to increase strongly over exposure time.
Even after cessation of exposure, continued increased risks ex-
isted that may gradually return to background levels (48). This
phenomenon is not unusual. In many studies of chronic envi-
ronmental or occupational exposures and cancer (e.g., nickel
and nasal cancer, asbestos and mesothelioma), it is standard
to include both prevalent and incident exposures (19). Such
studies start with the current employees of the factory/industry
on a particular day in the past and then add in new workers who
joined subsequently, and it is possible to have separate inci-
dence rate calculations for different time periods since first ex-
posure. This allows us to have all the information that one could
obtain from a study of incident exposures—and much more
quickly, and in larger numbers—analogous to the period life
table analysis. Omitting prevalent users would lead to a consid-
erable reduction in study size and would increase the problem
of right censoring because there would be very few participants
with long follow-up times since first exposure.

THE NECESSITY OF STUDIES WITH PREVALENT
EXPOSURES

Studies of prevalent exposures are not only reasonable but
also the best option in many situations. For many exposures,
like smoking or other environmental or occupational expo-
sures, it is unfeasible to start from the first exposure onward.
For smoking, that would need follow-up from age 11 onward.

In situations where follow-up includes a mix of prevalent
and incident exposures, as in many occupational studies,
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inclusion of prevalently exposed persons may greatly increase
the statistical precision of the “late” exposure duration windows
and/or the “long” time-since-first-exposure windows. This may
produce lesser precision in the early time-since-first-exposure
windows (5), but these are often of less interest.

Moreover, the situation is different for exposures that have
temporary and current effects (e.g., oral contraceptives and
venous thrombosis) versus exposures that have lasting effects
(e.g., oral contraceptives and breast cancer). In the case of
transient exposures, the problem might also be less important
(cellular phone use and car accidents, coffee drinking and
myocardial infarction).

Finally, it is often assumed that there are always potentially
clearly demarked beginnings of an exposure. However, for
many states, such as hypertension, hypercholesterolemia,
dementia, diabetes, and so on, the exact date at which these
conditions start is unknown. Nevertheless, these are clearly
important etiological causes of disease.

THE PROBLEM OF RIGHT CENSORING (MISSINGNESS
ON THE RIGHT)

Although the problem of left truncation has received con-
siderable attention, there has been relatively little discussion
of the problem of right censoring. Ideally, every study should
follow all participants until death, but this is rarely achiev-
able. Unless there are unlimited resources and unlimited
time available, any decision to restrict a study to incident
users inevitably means restricting its size and restricting it
to the earlier years since first exposure.

The problem of such restrictions is evident in the studies of
cancer in atomic bomb survivors (49). An initial increase in
leukemia and other hematological malignancies occurred,
but the hazard ratio declined after about 10 years; in contrast,
the increased risks for solid (epithelial) tumors only began to
become apparent 10—15 years after exposure. Similar patterns
were observed in studies of the development of secondary tu-
mors after chemo- and radiotherapy for cancer, wherein ran-
domized trials found little risk in contrast to observational
long-term follow-up studies (50, 51).

Finally, other biases exist in observational studies, as well
as randomized trials, that are due to self-selection toward ex-
posures and self-selection in adherence to exposures. They
can be important, but generally, they are similar between
studies that start from first exposures and studies with preva-
lent exposures. Refer to Web Appendix 4.

DISCUSSION

We have considered studies that enroll prevalently exposed
persons (left truncation). The context of our discussion is the
usefulness of dynamic populations with estimation of inci-
dence rates and rate ratios for many environmental, occupa-
tional, and also pharmacoepidemiologic problems in cohort
studies or case-control studies. It is apparent that the necessity
of starting follow-up from first exposure should be decided on
the basis of the best subject matter knowledge that is available.

If a more or less ideal cohort exists (large and extensive
longitudinal data) with incident exposures and follow-up
time in the relevant exposure time windows, this might be
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preferred. For all other situations, we will continue to need
dynamic population studies, because either the ideal cohort
does not exist or we cannot wait for it, or exposures are
transient. A dynamic population study can be a cohort or a
case-control study and is often the most feasible option; it
needs information about only a few calendar years to yield
data about many time-since-first-exposure windows. Even
if a suitable cohort with incident exposures and very long-
term follow-up exists, dynamic population studies can give
more interesting insights, because the early as well as the late
time-since-first-exposure experience has accrued over recent
calendar times and has immediate relevance for the next calen-
dar years.

Strong warnings about the inherent biasedness of studies
involving prevalent exposures (5, 6) seem inconsistent with
the practice and experience of epidemiology. Instead of de-
manding that studies start with newly exposed persons, it
might be more thoughtful to discriminate among 3 situations:

1. Start of follow-up coincides with the beginning of expo-
sure, which is alike to the randomized trial situation. This
might often work in pharmacoepidemiology. A potential
problem is that follow-up duration is usually short in such
studies and does not allow the study of long-term risks.

2. There is a suitable mix of prevalent and incident expo-
sures, that is, substantial numbers of new users as well
as of prevalent users with different durations of exposure.
This might often be the ideal situation, because it allows
us to explore the effects of different durations of exposure
(and/or time since first exposure) and greatly enhances in-
formation on long exposure durations. This is the case in
many population-based case-control studies and occupa-
tional and environmental follow-up studies.

3. There are only persons with prevalent exposures. This
makes it necessary to assess whether this might lead to
completely wrong conclusions if there is a qualitative re-
versal of outcome between early and later time-since-first-
exposure periods.

In situations 2 and 3, there is a need to consider whether the
analyses should be stratified on time since first exposure, and
whether the findings should be presented with this stratification.
In addition, there should be caution in adjusting for confound-
ers that may be consequences of previous exposure. All these
considerations will be context specific as they will differ be-
tween different applications in epidemiology (e.g., between
pharmacoepidemiology and occupational and environmental
epidemiology), which often rely on data with different struc-
tures and different challenges. In many situations, such as on-
off effects and transient exposures, this will not matter. No view
from a single experience should become an absolute norm.
Finally, there are implications for teaching. All types of ep-
idemiologic studies should continue to be taught. All designs
have their indications and contraindications, and their merits
differ in different situations. In particular, dynamic population
studies, follow-up studies, and case-control studies will re-
main important epidemiologic tools and therefore should
continue to be explicitly taught in introductory courses. Stu-
dents of epidemiology should learn that the mere potential of
a bias will not invalidate a study, but that in each case they
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should reason about whether the potential bias is likely to
occur, how strong it is likely to be, and whether it can be re-
moved by appropriate data analysis.
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