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Abstract: The present study introduces a novel curve-fitting algorithm for surface plasmon 

resonance (SPR) curves using a self-constructed, wedge-shaped beam type angular 

interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric 

and polynomial equations are still unsatisfactory for analyzing full SPR curves and their 

use is limited to determining the resonance angle. In the present study, we developed a 

sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve 

over a range of incident angles, including regions of the critical angle and resonance angle. 

Regardless of the bulk fluid type (i.e., water and air), the present sigmoid-asymmetric 

fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric 

and polynomial curve fitting methods did not. Because the present curve-fitting  

sigmoid-asymmetric equation can determine the critical angle as well as the resonance 

angle, the undesired effect caused by the bulk fluid refractive index was excluded by 

subtracting the critical angle from the resonance angle in real time. In conclusion, the 

proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable 

to various SPR measurements, while excluding the effect of bulk fluids on the  

sensing layer. 
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1. Introduction 

Since the first observation using surface plasmon resonance (SPR) sensors by Wood in 1902 [1,2], 

SPR sensors have emerged as popular analysis tools for bio-molecules, used label-free to detect 

changes in the refractive index or thickness of an adsorbed layer on or near the sensing film of the SPR 

sensor with a high sensitivity in real time [3–9]. However, the performance of the SPR measurement 

still requires improvement for reliable and high-speed data analysis. In fact, the curve-fitting of the 

SPR curve is an important and unique process to determine the performance of the SPR sensing, 

distinguishing the SPR measurement from other direct measurements using cantilever, fluorescence, 

and electrochemical sensors. 

For a typical angular interrogating SPR system, a SPR curve indicating the reflectance intensity 

versus the incident light angle provides a fundamental concept to analyze the binding kinetics of 

analytes on a sensor film according to changes in the refractive index [10]. SPR sensors generally 

monitor the changes of reflectance intensity over a range of incident angles when target-molecules 

interact on the sensing surface. The angle yielding the minimum light intensity on an SPR curve is 

denoted as the resonance angle, which is carefully determined with curve fitting for an SPR curve in a 

small range of incident angles. For the accurate measurement of the resonance angle from an SPR 

curve, several fitting methods have been proposed, such as the polynomial fits [11,12], centroid 

method [6] and parabolic fit [13,14]. Additionally, optimal linear method [15], asymmetric  

method [10] and signal processing methods of the SPR signals [16] were proposed. Also to determine 

the SPR line in the SPR image, researches utilizing Radon transform were introduced [17–21]. In 

particular, the asymmetric fitting method determines the resonance angle very accurately using a 

simple equation derived from the complicated multi-layer Fresnel equation. 

However, conventional curve-fitting methods have been used for determining the change in the 

resonance angle in short ranges of the incident angle with wedge-shaped beam type angular 

interrogation SPR spectroscopy, which is the most popular and appropriate SPR system for real-time 

monitoring, as shown in Figure 1a. When the targeted molecular interaction is measured by SPR 

spectroscopy, the real-time results obtained by the change of the resonance angle are also affected by 

the bulk fluid, which causes a bulk sensor refractive index. In fact, the existence of bulk fluid 

molecules around a sensing range cannot be avoided and should be excluded in the measured results. 

Without considering the undesired the effect of bulk fluid molecules, it is difficult to accurately 

evaluate the net binding kinetics of target molecules by analyzing only the resonance angle.  

Conventional SPR devices have adopted a reference channel to remove noise signals caused by the 

bulky effect of the flowing medium. In order to add a reference channel in a SPR sensor design, it is 

necessary to give up a main sensing channel on a limited sensor area. Furthermore, noise signals vary 

greatly with referencing approach [22]. However, these noise signals can be effectively removed by 

obtaining the critical angle and resonance angle simultaneously without a reference channel when  
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non-specific binding is absent. It is known that the critical angle is related to the refractive index of the 

surrounding medium [23]. Thus, if the medium is changed, the critical angle would be shifted and the 

resonance angle also would be shifted, correspondingly. Therefore, the capability to determine both the 

resonance and critical angles from a SPR curve over an entire range of incident angles is highly 

required. A successful curve-fitting method for a whole SPR curve can provide both critical and 

resonance angles. Then, the change of angle on specific adsorption of the analyte can be achieved by 

subtracting the critical angle from resonance angle in real-time as shown Figure 1b. However, an SPR 

curve in an entire range of incident angles cannot be easily fitted because of the complicated shape of 

the curve. The conventional fitting methods are not suitable for fitting the entire SPR curve over a 

range of incident angles. Although a multi-layer Fresnel equation with curve fitting [24] can determine 

the critical angle and resonance angle accurately, this has rarely been practically applied because the 

properties are not fully available and it requires a long computation time [10]. 

Figure 1. Concept schemes of the proposed sigmoid-asymmetric fitting method: (a) A full 

SPR curve including both regions with critical angle and resonance angle. (b) Sensor 

grams indicating the changes in resonance angle, critical angle and specific adsorption 

angle, respectively. Our novel method can monitor the change in the specific adsorption 

angle (ߠௌ) by simultaneously monitoring the change in the resonance angle (ߠோ) and 

the change in the critical angle (ߠ). 
In this study, we proposed a novel fitting algorithm based on a sigmoid-asymmetric equation that 

can fit an SPR curve over an entire range of incident angles. The proposed curve-fitting equation is a 

formulation combining the sigmoid-equation and asymmetric equation. The former equation 

determines the critical angle, whereas the latter determines resonance angle. Using this curve-fitting 

method, one can rapidly determine a critical angle as well as a resonance angle. The present analytical 

results were compared with those for the asymmetric and polynomial equation based fitting methods. 

In the present study, we also confirmed the feasibility for evaluating of specific adsorption of an 

analyte on a sensor chip by monitoring in real time the specific adsorption angle subtracting the critical 

angle from resonance angle with correlation constants. 
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2. Experimental 

2.1. Instrumentation 

We fabricated a lab-made wedge-shaped type angular interrogation-based SPR spectroscopy for 

signal detection. The equipment includes a light source, prism, detector and signal analysis software, 

liquid handling system with a peristaltic pump and a degasser and the flow cell. A schematic of our 

angular-interrogation-based Kretchmman-configuration SPR system is presented in Figure 2. A slide 

glass with a sputtered gold layer (50 nm of Au on 2 nm of Cr) on one side together with the flow cell is 

pressed against the prism coated with an index matching fluid in order to ensure continuous proceeding 

of the light. We used a 770 nm light-emitting diode (Opnext Inc., Tokyo, Japan) as a light beam in our 

system. The p-polarized wedge-type incidence beam with a range of the incident angle of 7.296°  

(1 pixel = 0.0057°) passes through a band-pass interference filter (770 ± 10 nm) and is entered to the 

SPR sensor chip through a half-cylindrical prism. Then, the intensity of the reflected light beam is 

monitored using a two-dimensional complementary metal oxide semiconductor (2D-CMOS) image 

sensor (IDS Co., Obersulm, Germany), which has a 1.41 cm sensing area (1280 × 1024 pixels). The 

image sensor is located immediately in front of the prism, and it allows the SPR system to be 

fabricated without any other lenses. Our system also has a rotation stage, which can control the incident 

angle from 35° to 85° as need for the various samples, including gas and liquid solutions. The flow cell is 

composed of independent three channels with dimensions of 5 mm (l) × 1 mm (w) × 0.2 mm (h) and 

fabricated from polyether ether ketone (PEEK) plastic. PEEK is used because it has excellent 

mechanical and chemical resistance properties. The sample solution is driven by peristaltic pump into 

flow cell and passes through a degasser in order to remove bubbles in the solution before entering  

the flow cell. 

 

Figure 2. Schematic of our homemade SPR system based on angular interrogation of 

Kretchmann configuration. The p-polarized wedge-type incidence beam with a range of the 

incident angle of 7.296° passes through a band-pass interference filter (770 ± 10 nm) and is 

directed to the SPR sensor chip through a cylindrical prism (BK7, n = 1.5125 at 770 nm). 

Then, the intensity of the reflected light beam is monitored using a two-dimensional 

complementary metal oxide semiconductor (2D-CMOS) image sensor (IDS Co.) with a 

1.41 cm sensing area (1280 × 1024 pixels). 
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2.2. Image Processing 

A final image for the curve fitting is acquired from three images—a dark image, TE-mode image, 

and TM-mode image—using a self-made MATLAB-based program. The dark image is obtained when 

the incident light is turned off, while the TE-mode and TM-mode images are obtained from the  

light-on mode when the polarizer is in the TE-mode and TM-mode, after the running buffer is injected 

on a gold sensor chip. We processed these three images using the following methods. Firstly, the 

intensity of the dark image is subtracted from the TE-mode and TM-mode images in order to remove 

the noise signal in the dark condition. Then, the final image is derived by dividing the subtracted  

TM-mode image by the subtracted TE-mode image. Figure 3 shows four images obtained from a  

2D CMOS image sensor. Final	image = ܯܶ ݁݀݉ ݅݉ܽ݃݁ − ݇ݎܽܦ ܧܶ݁݃ܽ݉݅ ݁݀݉ ݅݉ܽ݃݁ − ݇ݎܽܦ ݅݉ܽ݃݁  

 

Figure 3. Images from a 2D CMOS image sensor: (a) The dark image is obtained when 

the incident light is turned off. (b) The TE-mode. (c) TM-mode images are obtained from 

the light-on mode when the polarizer is in TE-mode and TM-mode after the running buffer 

is injected on a gold sensor chip. (d) The final image is obtained after image processing 

using (a), (b), and (c). 

2.3. Fitting Algorithm Based Sigmoid-Asymmetric Equation 

Figure 4 shows the proposed concept of the sigmoid-asymmetric curve-fitting algorithm. A full SPR 

curve denoted by the black dotted line in Figure 4 is acquired by plotting the average intensity values 

of 100 rows for each column in the final image, which is processed using the method described in  

Section 2.2. Then, the full SPR curve is fitted by the proposed sigmoid-asymmetric equation  

of Equation (1): ܴ(ܺ) = ቆܣ × ሾ1 − ሼܤ + ܥ × (ܺ − ܺ)ሽሿ(ܦ − ଶ(ܦ + ଶܧ ቇ + ൬ 1ܨ + ݁ீ×(ିு)൰ + ܫ) × ܺ) (1)

This equation is a formula combining the asymmetric function Equation (2) [10] with an equation 

modified from the sigmoid function Equation (3) [25]. 
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Figure 4. Determination of a resonance angle and a critical angle using sigmoid-

asymmetric curve fitting: full SPR curve (black dotted line) plotted from the final image is 

first fitted by the sigmoid-asymmetric equation (red solid curve), and the resonance angle 

and critical angle are simultaneously and automatically determined after calculating the  

1st derivative (blue solid line). 

The asymmetric function contributes to the determination of the optimal resonance angle on the 

right side of the full SPR curve, and the sigmoid function allows the determination of the optimal 

critical angle on the left side: ܴ(ܺ) = ቆܣ × ሾ1 − ሼܤ + ܥ × (ܺ − ܺ)ሽሿ(ܦ − ଶ(ܦ + ଶܧ ቇ (2)

(ݔ)݂ = ൬ 11 + ݁ି௫൰ (3)

In Equation (1), the parameters A, B, C, D, and E are real and constant values needed to fit the right 

side of the full SPR curve to the asymmetric function, and the parameter X represents the incident  

angle [11]. The parameters F, G, and H are real and constant values needed to fit the left side of the 

full SPR curve to the modified sigmoid function, and the parameter I is a real and constant value 

representing the tilt of the modified sigmoid function. The red solid line of Figure 4 is the fitting curve 

obtained using the proposed sigmoid-asymmetric equation. The proposed method determines a 

resonance angle, which is a response angle position to the minimum reflectance on the fitting curve 

obtained by the sigmoid-asymmetric equation. Moreover, it simultaneously determines the critical 

angle that is a response angle position to the maximum value of the 1st derivative curve in the region 

of the critical angle, as indicated by the blue solid line of Figure 4. 

2.4. Sample Preparation and Measurements 

Chemicals: Glycerol, bovine serum albumin (BSA), phosphate-buffered saline (PBS) were 

purchased from Sigma, Inc. (St. Louis, MO, USA). 

Gold sensor chip: The glass slide (20 mm × 10 mm × 0.55 mm) was from Asahi Glass, Inc. (Tokyo, 

Japan). The chrome and gold sputtered on the slide with 2 nm and 48 nm of thickness. 

Glycerol solutions: Distilled ionized water (DIW) and glycerin solutions of 1%, 2%, 3%, 4% and 

5% in DIW were prepared and measured with our SPR instrument to know the relationship between 
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critical angle and resonance angle. First, the DIW was injected into a microchannel on the gold sensor 

chip for a baseline with flow rate of 40 μL/min. Subsequently, the glycerol-water mixture solutions 

were loaded at 500 s intervals. 

BSA adsorption: BSA of 5 μg/mL in a 1 × PBS with 1.5% glycerin was prepared for protein 

adsorption in real time to confirm the feasibility of removing the bulk fluid effect. Here, the diluted 

BSA and glycerin were used as a model protein for adsorption on the gold sensor chip and for 

artificially changing the bulky refractive index around the sensor film. First, the 1 × PBS was injected 

into a micro channel on the gold sensor chip for a baseline with flow rate of 40 μL/min. Then, the BSA 

solution was loaded and then rinsed by 1 × PBS with same flow rate. 

3. Results and Discussion 

Using a MATLAB-based program developed in-house, we compared the curve fitting results for a 

SPR curve using three different methods: the asymmetric, 24th-order polynomial regression and  

sigmoid-asymmetric equations. We excluded the centroid and 2nd order polynomial method, which are 

also popular methods used in SPR spectroscopy, from our comparison experiments because those are 

local curve fitting methods with threshold values on SPR curves. In Figures 5 and 6, a full SPR curve 

for the fitting was obtained by a wedge type angular interrogating SPR sensor system with air and 

water as bulk fluids on a gold sensor chip, and each fitting curve was plotted, respectively.  

Figure 5. SPR curve-fitting results measured in water (black dot line: SPR curve, red  

solid line: fitting curve): (a) Asymmetric fitted SPR curve. (b) 24th-order polynomial  

regression-fitted SPR curve. (c) Sigmoid-asymmetric fitted SPR curve. 
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Figure 6. SPR curve-fitting results measured in air (black dot line: SPR curve, red solid 

line: fitting curve): (a) Asymmetric fitted SPR curve. (b) 24th-order polynomial 

regression-fitted SPR curve. (c) Sigmoid-asymmetric fitted SPR curve. 

Herein, air and water were used to confirm the feasibility in both gas and liquid phases, and with 

dry and wet samples. Also both fluids are good readily available examples to compare the fit quality 

according to the curve shapes because the shape of each SPR curve in both bulk fluids is very 

different. The performance of curve-fitting results with both bulk fluids was compared in the critical 

angle region and resonance angle region, respectively. The two regions that depict each angle were 

divided at a criterion angle, which was carefully determined. The criterion angles for water and air 

were 600 and 550 pixel of the total incident angle, respectively. Available fit quality parameters, 

including the coefficient of determination (CD), error variance (EV), and angle positions determined 

by each fitting method, are summarized in Table 1. The coefficient of determination, R2, indicates how 

well the experimental data fit the equation models. The EV is used to be defined as follows: 1ܰ (ܧ − ത)ଶேܧ
ୀଵ  (4)

where ܧ = ܺ − ܻ and ܧത is average of ܧ at each incident angle position. Here, the ܺ is the intensity of 

the fitting curve and ܻ is that of an experimentally obtained SPR curve at each incident angle position i. 

The resonance angle position was determined at the position where the minimum intensity yields a 

resonance angle region, whereas the critical angle position was determined at the position yielding the 

maximum of the 1st derivative SPR curve in the critical angle region. 
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In Figures 5a and 6a, the red solid lines represent the fitting curves obtained using the asymmetric 

equation. In the region of the resonance angle (pixel number > 600), the SPR curve was well fitted 

with the fitting curve. The CDs for water and air was 0.999 and 0.981, respectively and these values 

are fairly good results compared with sigmoid-asymmetric results (0.999 and 0.997, respectively), as 

listed in Table 1. However, the region of the critical angle on the left side was not fitted well, as shown  

Figures 5a and 6a. Consequently, the asymmetric curve-fitting method could not determine the critical 

angle position except for resonance angle. Thus, the resonance angles determined using asymmetric 

curve-fitting method were 66.6303° and 42.5929° for water and air, respectively, which agreed well 

with the sigmoid-asymmetric results (66.6189° and 42.6210°, respectively).  

Table 1. Calculated statistical results including error variance and coefficient of 

determination and both angle positions obtained by fitting methods based on asymmetric, 

24th-order polynomial and sigmoid-asymmetric equation for a full SPR curve. The SPR 

curve was experimentally obtained with water and air as bulk fluids on the sensing film, 

where N.A.: not available. 

Bulk Fluid Region Fitting Method 
Coefficient of 
Determination 

Error Variance 
(×10−4) 

Angle (°) 

Water 

Resonance 
angle 

Asymmetric 0.999 0.268 66.6303 
24th order 
polynomial 

0.999 0.020 66.6303 

Sigmoid-asymmetric 0.999 0.037 66.6189 

Critical 
angle 

Asymmetric 0.536 1.189 N.A 
24th order 
polynomial 

0.998 0.004 N.A 

Sigmoid-asymmetric 0.995 0.014 61.8309 

Air 

Resonance 
angle 

Asymmetric 0.981 3.177 42.5929 
24th order 
polynomial 

0.947 8.881 42.6955 

Sigmoid-asymmetric 0.997 0.499 42.6100 

Critical 
angle 

Asymmetric 0.773 0.960 N.A 
24th order 
polynomial 

0.412 2.488 N.A 

Sigmoid-asymmetric 0.985 0.065 41.3208 

In Figures 5b and 6b, the fitting curves obtained using the 24th-order polynomial regression 

equation exhibited a very different appearance depending on both bulk fluids. First, the fitting curve 

for the water condition on the gold sensor chip agreed well with the full SPR curve, but that for air was 

fitted poorly. The statistical results in Table 1 also clearly indicate the poor curve-fitting for air 

compared with water. Secondly, even for water, close inspection of the resonance angle region reveals 

that the fitted SPR curve is not smooth due to the characteristics of the polynomial equation. This 

unsmooth fitted curve makes determining the minimum resonance angle difficult and subsequently 

degrades the reproducibility regarding the determination of the resonance angle.  

In contrast, the fitting curves obtained using the proposed sigmoid-asymmetric equation almost 

perfectly matched the whole SPR curve over a range of incident angle, as indicated by Figures 5c and 6c. 
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Immediately after curve-fitting with a sigmoid-asymmetric equation, both the critical and resonance 

angles could be determined. The determined resonance and critical angles were 66.6189°, 61.8309° and 

42.6100°, 41.3208° with water and air, respectively. The determined critical angles almost coincide with 

theoretical critical angles (61.6265° and 41.3049° with water and air). The quality of the determined 

angle positions can be verified by the statistical results of curve-fitting in Table 1. The CDs were nearly 1 

and the EVs were also relatively small compared with others, regardless of the bulk fluid types. 

As summarized in Table 1, the three fitting methods agreed fairly well in determining resonance 

angle positions with water as a bulk fluid. The CDs for the three methods are greater than 0.999 and 

the angle is in the range of 66.6189°–66.6303°. However, for air, the quality of the curve-fitting was 

generally degraded for all three methods. In particular, the CD and EV for the polynomial method are 

significantly degraded, and subsequently the corresponding resonance angle (42.6955°) was different 

from that of other methods (42.5929°, 42.6100°). Meanwhile, the critical angle cannot be determined 

by any curve-fitting methods except the sigmoid-asymmetric methods, as listed in Table 1.  

The asymmetric method was unsuitable for determining the critical angle, yielding poor values of the 

CD and EV for both water and air. Also, the polynomial method was not able to determine the critical 

angle even though the values of the CD and EV are fairly good for water as a bulk fluid. It is worthy to 

note that the sigmoid-asymmetric method yielded fairly good fitting results for both water and air. 

Therefore, the sigmoid-asymmetric method was the only one to fit a whole SPR curve with high 

quality and thus determine both the resonance and critical angles with precision. 

In order to monitor specific adsorption of target molecules, one should exclude undesired changes 

caused by the bulk fluid, which would induce changes in refractive index around the sensor. For this 

reason, it is necessary to know the relationship between critical angle and resonance angle. The present 

study monitored the changes in the critical angle and resonance angle on full SPR curve using a DIW 

and a glycerol-water solution with a concentration in the range of 1% to 5% as a refractive-index 

solution. In a Figure 7a, the black dotted lines are SPR full curves measured for samples with each 

concentration of glycerol-water solution and the red solid lines represent fitting curves obtained by 

sigmoid-asymmetric method. A critical angle and a resonance angle on each curve were determined by 

the presented algorithm. Figure 7b presents a correlation between the critical angle and resonance 

angle caused by the change in the fluid refractive index due to the glycerol-water solutions. 

Fortunately, the correlation represents a simple linear equation in the range of 0.5613°, which is 

sufficient to measure biomolecular interactions among two or three macromolecular layers in real time 

as discussed in a previous work [26]. The slope of the trend line in the plots was 0.97, and the 

coefficient of determination was 0.999. Thus, we determined the normalization constant as 0.97, and 

the final equation for the specific adsorption angle in our system is described as follows: ߠௌ = ோߠ −  (5)ߠ0.97

where ߠௌ ோߠ , , and ߠ  indicate the specific adsorption angle, resonance angle, and critical  

angle, respectively. 

We conducted additional experiments for protein adsorption in real time to confirm the feasibility of 

removing the bulk fluid effect using the novel sigmoid-asymmetric equation-based algorithm.  

The black solid line of Figure 8 represents a sensorgram for measuring the corresponding change in the 

resonance angle on the BSA adsorption as a measurement method of the conventional SPR system. 
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First, the PBS buffer solution was injected into a micro channel on the gold sensor chip for a baseline. 

Then, the BSA solution was loaded at the 80 s point. The change in the resonance angle dramatically 

increased until 200 s. This change reflects a mass increase by the adsorption of the BSA on the surface 

and the change in the bulky refractive index due to the glycerin concentration. The change in the 

resonance angle then increased sluggishly until the 700 s point. This change includes only the mass 

change due to the adsorption of the BSA on the gold surface via hydrophobic interaction. Finally, the 

change in the resonance angle was dramatically reduced from the 700 s by washing with a PBS buffer 

solution. The signal was stable at a higher position than the baseline: ~0.0285°. This value indicates 

the specific adsorption level of the BSA on the gold sensor chip. If we do not know the composition of 

the sample solution, we cannot understand the meaning of step-by-step changes in the resonance angle. 

 

Figure 7. (a) Full SPR curves (black dotted lines) measured for a DIW and a glycerol-

water solution with a concentration in the range of 1% to 5% as a refractive-index solution 

and the curves (red solid line) fitted by sigmoid-asymmetric method. (b) Correlation graph 

between the changes in the critical angle and resonance angle caused by the change in the 

bulky refractive index due to glycerol-water solutions. 

 

Figure 8. Sensorgrams obtained by measuring θRA (black solid line), θCA (gray solid line), 

and θSAA (pink solid line) in real time on binding, diluted BSA-glycerin mixture in PBS 

buffer solution on bare gold sensor chip. 



Sensors 2015, 15 25396 

 

 

The sensorgram can be interpreted in many ways. For example, we can attribute the increased 

signal to the binding of abundant BSA, including strong and weak binding on the gold sensor surface. 

We can also predict a dramatic decrease in the signal due to the desorption of the weak-binding BSA 

on the surface. The gray solid line of Figure 8 represents a sensorgram for measuring the change in the  

critical angle. 

We observed that the baseline before loading the BSA-glycerin solution was the same as the last 

position after the washing with the PBS buffer solution. This sensorgram indicates only the change in 

the bulky refractive index around the sensor. Finally, we observed a sensorgram to evaluate only the 

change of specific adsorption angle, i.e., the change in the critical angle caused by the bulky refractive 

index subtracted from the change in the resonance angle obtained using Equation (5), indicated by the 

pink solid line in Figure 8. Its value is slowly increased by the adsorption of the BSA before the 

washing with the PBS buffer, and it is maintained after the washing, not decreasing due to the 

desorption. We confirmed that the sensorgram is very different from it regarding the change in the 

resonance angle due to the elimination of the change caused by the bulk refractive index. 

We successfully implemented a sensorgram for measuring the specific adsorption angle by 

conducting a protein adsorption experiment using only the novel fitting method with a self-constructed 

wedge-shaped beam type angular interrogation SPR spectroscopy, without any referencing approach or 

time consuming multi-layer Fresnel equation. We also consider that the sigmoid-asymmetric equation 

based full SPR curve fitting method is practically useful for the simultaneous and automatic 

determination of the critical angle and resonance angle in real time.  

4. Conclusions 

In this study, we introduced a novel full-SPR-curve-fitting algorithm based on a  

sigmoid-asymmetric equation that can rapidly determine the critical angle and resonance angle  

in real time. The fitting curves obtained by the proposed sigmoid-asymmetric based approach  

almost perfectly matched the full SPR curves with water and air as bulk fluids on the sensing  

film. This was also proven with the available fit quality parameters, which were better than those 

obtained using fitting methods that are conventionally used to determine the optimal resonance angle, 

including the error variance and coefficient of determination. The novel algorithm effectively eliminated 

the undesired change caused by the bulk fluid refractive index change on the sensorgram for measuring 

the molecular interaction. As a result, we realized a sensorgram for measuring the specific adsorption 

angle without changes caused by the bulk refractive index, by subtracting the critical angle from the 

resonance angle in real time using a sigmoid-asymmetric fitting algorithm. We consider that the  

sigmoid-asymmetric-equation-based full-SPR-curve-fitting method is practically useful for the 

simultaneous and automatic determination of the critical angle and resonance angle in real time  

in various applications including gas sensing and solutions based sensing. We believe that the  

sigmoid-asymmetric fitting equation can be applicable to commercially available SPR systems. 
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