Skip to main content
. 2015 Oct 16;15(10):26478–26566. doi: 10.3390/s151026478

Table 5.

Comparison of some surface elastic models for surface Young’s modulus of nanowires resonators (The relative parameter descriptions can be seen in the literature).

Model Formulation Materials Theory and Method Effects
Surface elasticity model [195] (EI)*=EI+2Eswh2 GaAs Classical beam theory Surface elasticity
Surface Cauchy-Born (SCB) model [196] cIJKLs=MIJKLsAIJpsAKLqs(D1)pqs Si Based on standard bulk Cauchy-Born model Surface stress
He’s model [191] (EI)*={EI+Eswh2/2+Esh3/6(rectangle)EI+πEsdc3/8(circular) Al and Si Euler-Bernoulli beam theory and Young-Laplace equation Surface stress with different boundary conditions
High-order surface stress model [190] (EI)*={EI+Eswh2/2+Esh3/6+Eswhh1+8Dsw(rectangle)EI+πEsd3/8(circular) Si Generalized Young–Laplace equation High-order surface stress and surface moment
Liu’s model [197] (EI)*={EI+(2μ0+λ0)(2bh2+4h3/3)2υIτ0/H(rectangle)EI+πD3(2μ0+λ0)/82υIτ0/H(circular) Al and Si Gurtin–Murdoch theory Surface stress, surface elasticity and surface density
Core-shell model [192,193] (EI)*={Ewchc3/12+Estwc(hc+2t)2+2Est(hc/2+t)3/32Est3(wc+2t)/3(rectangle)π(EEs)dc4/64+πEs(dc+2t)4/64(circular) ZnO resonance experiment and linear surface elastic theory Surface layer thickness
Rudd’s model [198] Etot=Ecore[1+(Ctott/Atot)Δ]+O(t2/R2) hydrogen-passivated Si First-principles density functional theory Plane-wave cut-off energy
Feng’s model [189] E*=4Aτ0(E0t+4Es)A(E0tl+4Esl+4tτ0+6lτ0)4(E0t+4Es)tanh(Al/4)(tl+t) nanoporous materials Gurtin–Murdoch theory Surface energy and residual surface stress
Yan’s model [199] (EI)*={112(c11+e312/κ33)bh3+(c11s+e31se31/κ33)(bh2/2+h3/6)(rectangle)πD464(c11+e312/κ33)+πD38(c11s+e31se31/κ33)(circular) piezoelectric materials Generalized Young–Laplace equations residual surface stress, Surface elasticity and piezoelectricity
Non-uniform core-shell model [194] (EI)*=πE{D464(12rs/D)4+D3rs8α0[eα0(12rs/D)3]3D2rs24α02[eα0(12rs/D)2]+3Drs3α03[eα0(12rs/D)]6rs4α04(eα01)} ZnO Nonlinear surface elastic theory Non-uniform surface elasticity