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Abstract

Objective—Conventional inverse-scattering algorithms for microwave breast imaging result in 

moderate resolution images with blurred boundaries between tissues. Recent 2D numerical 

microwave imaging studies demonstrate that the use of a level set method preserves dielectric 

boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric 

properties distribution. Previously proposed level set algorithms are computationally expensive 

and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave 

imaging algorithm based on level sets.

Methods—We reduce the computational cost of the level set method using a Jacobian matrix, 

rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 

3D imaging using simulated array measurements from 3D numerical breast phantoms. We 

evaluate performance by comparing full 3D reconstructions to those from a conventional 

microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in 

evaluating breast density.

Results—Our reconstructions of 3D numerical breast phantoms improve upon those of a 

conventional microwave imaging technique. The density estimates from our level set algorithm 

are more accurate than those of conventional microwave imaging, and the accuracy is greater than 

that reported for mammographic density estimation.

Conclusion—Our level set method leads to a feasible level of computational complexity for full 

3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast 

more accurately than conventional microwave imaging methods.

Significance—3D microwave breast imaging using a level set method is a promising low-cost, 

non-ionizing alternative to current breast imaging techniques.
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I. Introduction

MICROWAVE imaging of the breast is an exploratory imaging modality that offers several 

potential advantages over x-ray mammography, magnetic resonance imaging (MRI), and 

provides complementary information to ultrasound. Microwave imaging via inverse 

scattering involves reconstructing the 3D distribution of the breast dielectric properties from 

scattered fields measured in the microwave frequency range using an antenna array 

surrounding the breast. Microwave imaging does not involve painful compression or 

ionizing radiation, unlike x-ray mammography. The equipment used in microwave imaging 

is also portable and low-cost; thus, microwave tomography has the potential to be more 

widely available and cost effective than MRI.

In the microwave frequency range there is a moderate to large contrast between the 

dielectric properties of different breast tissue types [1], [2]. This contrast reflects both the 

type and physiological state of the tissue. Hence, the dielectric properties distribution within 

the breast conveys clinically relevant anatomical and functional information. 

Reconstructions of the dielectric properties are potentially useful for several clinical 

applications including density estimation, tumor detection, and treatment monitoring. 

However, the inverse scattering problem is ill-posed, so microwave imaging performance 

depends heavily on the algorithm used to reconstruct the dielectric properties of the breast. 

Many common microwave imaging algorithms are based on iteratively solving a least 

squares problems with Tikhonov-Philips regularization (e.g. [3]) which results in over-

smoothing or blurring of the boundaries between tissues of contrasting dielectric properties.

Level set algorithms [4]–[6] for microwave imaging have yielded high-resolution 

reconstructions of dielectric properties. An algorithm for imaging several 3D, homogeneous, 

non-overlapping targets is described in [6], but the only level set algorithms suitable for 

imaging the spatially complex and heterogeneous tissue structure of the breast are applied to 

2D numerical breast phantoms [4], [5]. These 2D level set algorithms have a high 

computational cost and are impractical for 3D breast imaging. They involve a large number 

of iterations (over 100) [4], with each iteration requiring multiple runs of a computational 

electromagnetics simulation that can be time-consuming for large domain sizes [5].

In this paper, we present a computationally feasible level set method for 3D microwave 

breast imaging. Our algorithm requires only one electromagnetics simulation per iteration 

and fewer overall iterations than previously proposed level set approaches. The effectiveness 

of our algorithm is demonstrated by comparing our 3D level set reconstructions of 

anatomically realistic MRI-derived numerical phantoms [7] to those from the distorted Born 

iterative method [8].

We quantitatively evaluate the performance of our level set method in the context of breast 

density estimation – a promising application for microwave imaging. Current imaging 

modalities for 3D breast density evaluation have shortcomings in terms of accuracy and 

cost. High volumetric breast density, defined as a large percentage of fibroglandular tissue, 

is one of the strongest predictors of breast cancer risk [9]. Hence, breast density estimation 

can play an important role in assessing breast cancer risk, as described by Harvey and 
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Bovbjerg [10], as well as monitoring preventative interventions designed to lower breast 

density and the consequent cancer risk. We use density estimation as a biologically relevant 

performance metric for the reconstructions obtained with our level set method. The high 

resolution images produced by our level set method yields more accurate breast density 

estimates than those obtained with Tikhonov-regularized Gauss-Newton methods. The 

accuracy of our density estimates also exceeds that reported previously for mammographic 

density estimation [11], [12].

The next section presents the physical relevance of the level set technique for representing 

the dielectric properties of breast tissue. We also introduce a single parameter dispersion 

model that significantly reduces computational requirements. Our level set model for 

dielectric properties and the optimization algorithm we use for imaging are presented in 

Section III. Section IV describes the implementation details of our algorithm and Section V 

presents the results from our imaging study using numerical phantoms. A discussion of our 

results is found in Section VI and the conclusions are presented in Section VII. Throughout 

this work boldface symbols represent vectors or matrices and superscript T represents matrix 

or vector transpose. The symbol ▽ represents the Fréchet derivative, whereas  represents 

the partial derivative with respect to variable x. A preliminary version of this work was 

reported in [13].

II. Dielectric Properties of Breast Tissue

Previous studies have shown that there exists a large contrast in the dielectric properties of 

different types of healthy breast tissues at microwave frequencies [1]. The dielectric 

properties of fibroglandular tissue, which consists of epithelial and connective tissue, are 

significantly higher than those of adipose (fatty) tissue. The contrast ratio of fibroglandular 

tissue to adipose tissue is large in both permittivity and effective conductivity [1]. This 

contrast in properties suggests using level sets to represent the distinctly different adipose 

and fibroglandular tissue types.

The microwave inverse scattering problem is ill-posed, as the number of unknowns is much 

larger than the number of electric field measurements. The ill-posedness of the microwave 

breast imaging problem is reduced by using a dispersive model for the tissue dielectric 

properties and making measurements at multiple frequencies. Throughout the frequency 

range of interest (0.5-3 GHz) the dispersive nature of breast tissue is well-approximated by a 

single-pole Debye model for the complex permittivity [14]:

(1)

The only parameters in the Debye model that are assumed to be spatially varying are Δε, ε∞, 

and σs. The parameter Δε is the difference between static permittivity (εs) and infinite 

frequency permittivity (ε∞). The static conductivity of the material is σs. A fixed, spatially 

invariant relaxation time constant (τ) of 15 ps is used for all tissue types. This Debye model 

results in three unknown parameters per voxel in the imaging domain.
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We further reduce the number of unknowns by exploiting the following linear relationship 

between the three unknown Debye parameters,

(2a)

(2b)

The linear model above well approximates the underlying dispersion curves for both adipose 

and fibroglandular tissue as demonstrated in Fig. 1. Figure 1 compares the linear relationship 

in (2) to the Debye parameters that correspond to the 25th, 50th, and 75th percentile values 

[8] of measured dielectric properties of breast tissue [1]. The resulting linear model reduces 

the number of unknowns in the imaging problem to one parameter, εs, per voxel. Reduction 

to a single unknown parameter at each voxel significantly reduces the complexity of the 

multi-frequency microwave breast imaging problem. Once εs is reconstructed throughout the 

imaging domain, the frequency dependent dielectric properties of each voxel may be 

calculated according to the relationship in (2) and the Debye model of (1).

III. Level Set Method for Microwave Imaging

A. Mathematical Model for Permittivity

The breast is composed of distinct healthy tissue types, namely adipose (fatty) tissue and 

fibroglandular tissue. On a microscopic (cellular) scale, there are clear-cut natural 

boundaries between these different tissues. On a macroscopic scale, these distinct 

boundaries persist, albeit in a spatially complex manner due to the inherent heterogeneity of 

the the mammary network. Nevertheless, level sets can accommodate such spatial 

complexity. Thus level sets are indeed well defined for this problem.

In this paper we use a single level set to represent the distribution of healthy tissue 

throughout the breast. A level set is a real valued function that is defined everywhere in the 

imaging domain. An example of a single level set segmenting a domain into distinct regions 

is shown in Fig. 2, where sections with (ϕ > 0) have dielectric properties that correspond to 

fibroglandular tissue, and regions with (ϕ ≤ 0) have dielectric properties that correspond to 

adipose tissue. This representation gives rise to the following model for complex 

permittivity in the imaging domain, as follows:

(3)

Here ϕ(r) is our level set, H(·) is the Heaviside or unit step function, εf(r) is the complex 

permittivity inside the region corresponding to fibroglandular tissue, and εa(r) is the 

complex permittivity inside the region corresponding to adipose tissue. The static 

permittivity in the fibroglandular and adipose regions,  and  respectively, are used 

to calculate the complex permittivity in each region by substituting (2) into (1). The level set 

function segments the imaging domain into arbitrarily shaped regions of fibroglandular and 

adipose tissue. We note that this inherent segmentation makes breast density estimation a 

trivial calculation based on the level set function itself. The complex permittivities εf(r) and 
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εa(r) may be spatially varying inside the regions; they may also incorporate any a priori 

information about the statistical distribution of the dielectric properties of tissue.

B. Level Set Optimization

We use an iterative approach to reconstruct the level set and corresponding permittivities of 

an unknown object from a set of electric fields measured with the unknown object present. 

The following least squares cost function is used to assess how similar the measured electric 

field  is to the total electric field  computed for the 

reconstructed properties, ε(r):

(4)

The location of the receiver for one of the M transmit-receive pairs is denoted by rm, while 

ωf is one of the F frequencies being used. The residual Ri is defined as the difference 

between the measured and reconstructed electric fields for a transmit-receive pair at a given 

frequency.

We iteratively optimize the least squares cost function with respect to ε(r) as follows. An 

initial guess for ε(r) is made, then a forward solution is computed to obtain the 

corresponding electric fields. A search direction is identified, based on the difference 

between the reconstructed and measured electric fields, and is used to update each dielectric 

properties voxel. The search direction used in other level set based microwave imaging 

algorithms [4] is based on an adjoint solution [5]. This adjoint solution incurs a considerable 

computational burden, on the order of another forward simulation.

We avoid this computational cost by calculating the Jacobian matrix instead. The Jacobian 

matrix of the least squares cost function in (4) is calculated using only the Green's function 

and total field simulated inside a known permittivity distribution, as derived in [15], as 

follows:

(5)

Here, Gr(r|r′) is the MF × K Green's function matrix, where K is the number of imaging 

voxels. Each row in this matrix represents the Green's function, as it varies across the K 

imaging voxels, for a particular channel and freq ωf for a medium with permittivity ε. In the 

MF × K total field matrix , each row represents the total electric field for a particular 

channel calculated at each of the K imaging voxels for a specific frequency ωf. The Jacobian 

matrix for the least squares cost function evaluated for a specific permittivity is the element-
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by-element multiplication (Hadamard product) of the Green's function matrix and the total 

field matrix. Each row of the Jacobian matrix is interpreted as the Fréchet derivative of the 

residuals in (4) with respect to the complex permittivity ε.

The finite-difference time-domain method (FDTD) is used to compute the total electric 

fields necessary to evaluate the Jacobian at each iteration. The Green's function matrix is 

calculated from FDTD simulations of the total field [16] assuming each source excitation is 

a z-directed current source, Iz, of known length, L. Each row in the Green's function matrix 

is calculated as follows:

(6)

This Green's function calculation is described in detail in [8].

The Fréchet derivative of our cost function with respect to permittivity is calculated using 

the Jacobian matrix from (5) and the cost function in (4) as follows [17]:

(7)

Calculating the Fréchet derivative in this manner greatly reduces the computational 

complexity compared to the adjoint method [18]. Using our method requires only one FDTD 

simulation, whereas the adjoint method requires two electromagnetics simulations to obtain 

this derivative at every iteration. Therefore, our method of calculating the derivative using 

the Jacobian reduces our computational burden by half at every iteration.

The partial derivatives of (3) with respect to ϕ, , and  are computed as follows:

(8a)

(8b)

(8c)

where  and  are derivatives of the complex permittivity in (1) with respect 

to the static permittivity with the linear model of (2) substituted for the ε∞ and σs 

parameters.

The partial derivatives of the cost function with respect to the level set parameters are 

obtained using the chain rule to combine (8) with the Fréchet derivative in (7), as shown 

below:
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(9a)

(9b)

(9c)

These partial derivatives are used to obtain a gradient-based descent optimization approach, 

as follows:

(10a)

(10b)

(10c)

where n is the iteration number. The step sizes αϕ, , and  are chosen independently to 

control the descent of each parameter while taking into account any a priori information 

about the tissue types and their structure.

IV. Algorithm Implementation Details

A. Extension Velocity

The partial derivative with respect to the level set is only defined at the boundary between 

tissue types due to the delta function in (8a). Choosing a suitable region around the 

boundary to extend the derivative is often referred to as choosing an extension velocity [18]. 

There are many choices for extension velocities but here we simply extend the derivative to 

the entire imaging domain. Consequently, the level set function is updated everywhere in the 

imaging domain at each iteration, according to (10a). The permittivites for the two different 

regions do not need an extension velocity and are updated everywhere in the imaging 

domain according to (10b), (10c).

B. Step Size Selection

We determined appropriate step sizes αϕ,  , and  in (10) based on a priori information 

about the statistical distribution of dielectric properties for the two tissue types. The step 

sizes are also chosen to take into account the general behavior of the optimization algorithm. 

The step size of the level set function αϕ is chosen to allow a fixed percentage of the 

estimated number of fibroglandular voxels to change from adipose to fibroglandular 
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(negative value to positive value) or vice versa. This step size prevents the algorithm from 

taking erroneously large steps that add too many fibroglandular or adipose voxels in one 

step.

The step size for the region corresponding to fibroglandular tissue  is larger than the step 

size for the region corresponding to adipose tissue  to account for the larger variation in 

complex permittivity of fibroglandular tissue than adipose tissue as reported by Lazebnik et 

al. [1]. These step sizes can be increased or decreased to encourage more or less 

heterogeneity within tissue types. At each iteration the static permittivity  of the 

fibroglandular region is restricted to the range 20 to 65, and the static permittivity  of the 

adipose region is constrained to be in the range 2 to 10 based on the expected values for the 

measured tissue properties [1].

C. Multiple Frequency Approach

We use several frequencies independently in our algorithm in a frequency hopping fashion 

similar to the algebraic reconstruction technique (also known as the Kaczmarz method) [19]. 

One frequency is used to update every parameter (ϕ, , ) for multiple iterations and then 

we switch to the next frequency and so forth until the algorithm converges. This strategy of 

iterating through the frequencies is an attempt to avoid any local minima that might exist at 

one frequency but not at other frequencies. This approach prevents the steepest descent 

algorithm from getting stuck in the nearest local minimum associated with any individual 

frequency. We terminate the iterative process when the change in the cost function is less 

than 1% of the initial cost, after ensuring that each frequency is given the same number of 

iterations.

D. Initial Parameter Generation

Many different biologically relevant initial guesses may be used with the level set method. 

The initial guess we chose in this work is based on a distorted Born iterative method 

(DBIM) reconstruction obtained using the approach outlined in Shea et al. [8]. The 

boundary of the level set is chosen by thresholding the DBIM reconstruction with the 

threshold set midway between the 50th percentile for static permittivity of fibroglandular 

tissue and the 50th percentile for static permittivity of adipose tissue [1]. Inside each region 

the level set function takes on a value corresponding to the signed Euclidean distance from 

the boundary. Level set voxels corresponding to fibroglandular tissue assume a value of the 

Euclidean distance from the boundary, whereas those corresponding to adipose tissue are the 

negative of the distance to the boundary as shown in Fig. 3. Using the Euclidean distance 

effectively reduces the likelihood of the algorithm changing voxels in the interior of the two 

initial guess regions. This strategy was chosen because DBIM reconstructions approximate 

the rough shape of the different regions well, but tend to blur boundaries, reducing 

confidence in the initial guess near those boundaries. The initial values for the permittivity 

in the region corresponding to fibroglandular tissue  and adipose tissue  are 

homogeneous and set to the 50th percentiles as reported by Lazebnik et al. [1].
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E. Numerical Phantoms

We tested our level set method using nine MRI-derived numerical breast phantoms from the 

UWCEM online repository [20]. These 3D phantoms span the four breast density classes 

defined by the American College of Radiology Breast Imaging Reporting and Data System 

(BI-RADS) Atlas. The BI-RADS denotes Class 1 as mostly adipose, Class 2 as scattered 

fibroglandular, Class 3 as heterogeneously dense, and Class 4 as very dense. The phantoms 

are surrounded by an oil immersion medium and a cylindrical array of 40 dipole antennas, 

arranged in five rings of eight antennas, as described in Shea et al. [8]. The location of the 

skin, its thickness, and its dielectric properties were assumed known for all reconstructions. 

The antennas were excited with an ideal wideband current source, and we record data at four 

frequencies: 1.0, 1.5, 2.0, and 2.5 GHz. The fields received at the antennas were computed 

using a 2 mm FDTD grid. Gaussian noise was added to obtain a 30 dB SNR, where SNR is 

defined as the ratio of total non-monostatic received power to total noise power.

V. Results

We begin by comparing reconstructions obtained with our level set method to those obtained 

with the DBIM algorithm. Figures 4 and 5 present reconstructions of Class 3 and Class 4 

phantoms, respectively. The first row shows the phantom properties, the second row shows 

the reconstruction using the DBIM algorithm described in Shea et al. [8], and the third row 

shows the reconstruction after 80 iterations of our level set method. The cross sections 

shown represent regions of the breast contained within the span of the rings of the antenna 

array. The eight coronal cross sections are spaced every 8 mm for both the Class 3 and Class 

4 phantom, where the base of the breast phantom is nearest to the first column of images (far 

left). All the cross sections are of static permittivity. Images of the other Debye parameters 

(static conductivity and infinite permittivity) are similar due to the linear relationship of (2) 

and are omitted for brevity.

The proposed level set method more accurately reconstructs breast tissue structure than 

conventional microwave imaging methods. For example the DBIM reconstruction misses 

fibroglandular tissue in the fifth and sixth columns of Fig. 4 that is accurately reconstructed 

by the level set method. The level set method also identifies the small regions of 

fibroglandular tissue extending from the bottom of the large fibroglandular tissue region in 

the second column of Fig. 5; this feature is not present in the DBIM reconstruction. The 

average absolute errors of the reconstructed Debye parameters using DBIM and the level set 

method are shown in Table I for the adipose and fibroglandular regions of the Class 3 and 4 

phantoms (Figs. 4 and 5). While the average absolute errors in adipose tissue properties are 

comparable between the two methods, the absolute error in fibroglandular properties are 

consistently smaller for the level set method.

Next we compare the density of the phantom to the densities estimated from the DBIM and 

level set method reconstructions. All three densities are determined by comparing the static 

permittivity at each voxel to a threshold. Static permittivity is chosen because it exhibits the 

largest difference between fibroglandular and adipose tissue types. The threshold is chosen 

to account for the variance in measured static permittivity by fitting Weibull distributions 

[21] to the adipose and fibroglandular properties, respectively, reported in Lazebnik et al. 
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[1]. The threshold is chosen as the value giving equal area under the two distributions. 

Adipose tissue was modeled as a Weibull distribution with λ = 7 and K = 1.63, and 

fibroglandular tissue was modeled as a Weibull distribution with a λ = 51.82 and a K = 4.29. 

We used the coefficient of determination (R2 value) to assess the fit of these models to the 

25th, 50th, and 75th percentiles of the Lazebnik et al. study [1]. The coefficient of 

determination was 0.91 for the fit to adipose tissue and 0.95 for the fit to fibroglandular 

tissue. These models lead to a threshold of 18.8 for static permittivity. Any static 

permittivity values greater than 18.8 were classified as fibroglandular tissue and any values 

less than or equal to 18.8 were classified as adipose tissue.

The breast density estimates (volumetric percentages) for the nine phantoms of the UWCEM 

repository [20] are shown in Table II. Applying the static permittivity threshold of 18.8 to 

the level set method reconstructions gives the exact same density estimate as the level set 

segmentation itself. This occurs because the level set method reconstruction forces all voxels 

in the fibroglandular region to have a static permittivity greater than 20 and all voxels in the 

adipose region less than 10, as noted in Section IV-B.

The quantitative density estimates shown in Table 1 reveal that the level set method 

outperforms DBIM for the higher density classes, and performs similarly to DBIM for the 

lower density phantoms. The level set density estimates for the Class 3 and Class 4 

phantoms, the two density classes with the highest cancer risk, have an average error of 1.3 

percentage points or a 5% relative error. This performance is much better than the average 

error of 7.1 percentage points or 25% relative error of the DBIM reconstructions. The 

density estimation performance of our level set method is also better than the 5-10 

percentage points [11] or 10-15% relative error [12] reported for mammographic density 

estimation.

We calculated density estimates in each cross section to further investigate imaging 

performance and evaluate whether the reconstructed fibroglandular tissue was being 

spatially localized correctly. Fig. 6 compares the fibroglandular tissue volume in sequential 

2 mm cross sections of the phantom to that of DBIM and level set method reconstructions. 

The error bars in Fig. 6 represent the standard deviation of the density estimates over 10 

different noise realizations with the same SNR.

The sensitivity of our level set method to errors in the assumed skin properties was also 

tested. This represents a realistic error that might occur in a clinical application. We 

introduced 10% error in the dielectric properties of the reconstructed skin properties and 

compared the density estimates to reconstructions without errors. A 10% error in skin 

properties resulted in less than a 0.5% change in the overall density estimates reported in 

Table II. Furthermore, the volume of fibroglandular tissue in individual cross sections 

changed less than 0.2 cm3 from the mean values shown in Fig. 6. This demonstrates our 

level set method is robust to noise and assumed skin properties, both of which are potential 

sources of error in clinical application.

The results shown in Fig. 6 indicate that for the highest density classes (Fig. 6c and Fig. 6d) 

the level set method accurately reconstructs the tissue throughout the breast. DBIM 
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overestimates the volume of fibroglandular tissue near the base and underestimates it in the 

apical coronal cross sections. Overall the fibroglandular tissue distribution of the level set 

method tracks the profile of the phantom confirming the spatial accuracy of the 

reconstruction.

VI. Discussion

Current level set imaging algorithms for 2D microwave breast imaging have a high 

computational cost that make them impractical for 3D imaging. Level set algorithms like the 

one developed by Irishina et al. [4] use an adjoint method [18] that requires two 

electromagnetics simulations to calculate the Fréchet derivative at each iteration. The 

algorithm of [4] also follows a staged approach that does not update every parameter at each 

iteration, which results in a large number of iterations (over 100) in 2D imaging. Our level 

set method utilizes the Jacobian matrix to calculate the Fréchet derivative which only 

requires one electromagnetics simulation per iteration, effectively cutting our computational 

burden in half. Our algorithm also updates every level set parameter each iteration, utilizes 

frequency hopping across different iterations, and incorporates a priori information to 

determine step sizes and bounds for the properties of the different tissue regions. This 

optimization strategy gives our algorithm a faster convergence rate than other level set 

algorithms and results in fewer iterations (≈80) in 3D imaging.

We selected DBIM as our benchmark instead of other microwave breast imaging algorithms 

for several reasons. DBIM, a well known technique that is equivalent to the Gauss-Newton 

algorithm [22], has Tikhonov regularization when implemented using conjugate gradient 

least squares [23] as described in Shea et al. [8]. It is able to localize coarse features of the 

breast, which motivates the use of DBIM for generating an initial guess of the level set. 

Robustness of the level set method to the initial guess was not investigated in this study. 

Certainly other initial guesses (for example, Kurrant et al. [24]) could be employed for the 

level set method.

In this study, we used breast density evaluation to quantitatively assess the efficacy of our 

level set method for 3D microwave imaging. Conventional microwave imaging algorithms 

often use a minimum norm regularizer to select a unique solution to the ill-posed inverse 

problem. Minimum norm regularizers are know to blur the tissue structure of the breast and 

produce misleading density estimates as illustrated by the DBIM results in Table II. This 

blurring inhibits the detection of small tissue features, especially in regions with less 

fibroglandular tissue, such as the apical coronal cross sections of the breast. This blurring 

effect also erroneously extends the size of large tissue features like those near the base of the 

breast. Both of these effects are apparent in Figs. 6c and 6d, and their impact on the overall 

density estimate is clearly evident in Table II. Our level set method does not suffer from 

these blurring effects since it incorporates a priori information about the tissue properties 

and preserves distinct boundaries between tissues. Requiring the solution to contain two 

tissue types constrains the set of possible solutions and forces the algorithm to produce 

physically meaningful results. This results in a more accurate boundary between tissue 

types. Consequently, our level set method improves upon the reconstructed tissue structure 
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of DBIM and results in better localization and identification of the fibroglandular tissue as 

shown in Fig. 6 and Table II.

The level set method presented here was formulated with a single level set to accommodate 

two types of tissue: adipose and fibroglandular tissue. This formulation is relevant to 

imaging healthy breast tissue, as is the case for breast density estimation. An additional level 

set can be added to the model in (3) to represent cancerous tissue in a manner similar to that 

presented by Irishina et al. [4]. This addition would allow the application of the algorithm to 

tumor detection.

VII. Conclusion

We have developed a level set method that requires fewer iterations and fewer 

electromagnetics simulations per iteration than other level set based implementations and 

leads to a feasible level of computational complexity for full 3D imaging. Reconstructions 

of anatomically realistic numerical breast phantoms demonstrate the ability of the proposed 

algorithm to reconstruct the tissue structure better than conventional microwave imaging 

approaches. The entire-breast density estimates as well as the sequence of coronal cross 

section density estimates demonstrate the high accuracy that our level set method achieves 

in reconstructing the actual tissue structure of the phantom.
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Fig. 1. 
Linear Debye-parameter relationship of (2), shown by the black curve, compared to the 

Debye parameters that correspond to the 25th, 50th, and 75th percentile values [8] of 

measured dielectric properties [1]. (a) Infinite permittivity and static conductivity versus 

static permittivity of adipose tissue; (b) Infinite permittivity and static conductivity versus 

static permittivity of fibroglandular tissue.
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Fig. 2. 
2D example of a single level set ϕ segmenting a sample domain into distinct regions. 

Sections with (ϕ > 0) have dielectric properties that correspond to fibroglandular tissue, and 

regions with (ϕ ≤ 0) have dielectric properties that correspond to adipose tissue.
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Fig. 3. 
(a) Coronal cross section of static permittivity from a DBIM reconstruction. (b) Thresholded 

version of the DBIM reconstruction where fibroglandular tissue is represented by εs = 49.1 

(i.e. red) and adipose tissue is represented by εs = 4.8 (i.e. dark blue). (c) Initial guess of the 

level set obtained using the DBIM reconstruction. Voxels in the level set are assigned a 

value based on the distance from the boundary between tissue types, with negative distance 

used for the region corresponding to adipose tissue.
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Fig. 4. 
Coronal cross sections of static permittivity from a Class 3 phantom (top) and the 

corresponding cross sections from the 3D DBIM reconstruction (middle) and the 3D level 

set method reconstruction (bottom). The coronal cross sections are taken every 8 mm 

between the top and bottom rings of antennas with the cross sections closest to the phantom 

base shown at the far left.
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Fig. 5. 
Coronal cross sections of static permittivity from a Class 4 phantom (top) and the 

corresponding cross sections from the 3D DBIM reconstruction (middle) and the 3D level 

set method reconstruction (bottom). The coronal cross sections are taken every 8 mm 

between the top and bottom rings of antennas with the cross sections closest to the phantom 

base shown at the far left.
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Fig. 6. 
Volume of fibroglandular density in 2 mm thick coronal cross sections as a function of 

cross-section position (distance from the base of the phantom). The markers represent the 

mean value in the reconstructed cross section. Error bars represent the standard deviation of 

the estimates over 10 noise realizations. (a) Class 1 phantom, (b) Class 2 phantom, (c) Class 

3 phantom, and (d) Class 4 phantom.
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TABLE I

Average absolute error in Debye parameters with the two reconstruction techniques

DBIM Level Set Method

ε s ε ∞ σ s ε s ε ∞ σ s

Class 3 Adipose 6.3 2.3 0.09 6.3 2.1 0.09

Fibroglandular 16.2 5.4 0.29 15.0 4.7 0.24

Class 4 Adipose 7.2 2.7 0.11 7.2 2.4 0.11

Fibroglandular 16.4 5.6 0.27 16.3 5.1 0.26
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TABLE II

Volumetric percent density estimates for the nine phantoms and the two reconstruction techniques

Breast Density (%)

Phantom Level Set Method DBIM

Class 1 Phantom 1 2.6 1.6 1.7

Phantom 2 2.9 1.4 0.6

Class 2 Phantom 1 5.0 2.8 2.1

Phantom 2 6.4 3.8 4.7

Phantom 3 4.5 2.9 2.6

Class 3 Phantom 1 29.5 28.7 36.5

Phantom 2 24.2 22.9 33.2

Phantom 3 23.0 19.9 25.9

Class 4 Phantom 1 33.4 33.4 42.7
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