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Abstract

Cytochromes P450 3A4, 2D6, and 2C9 metabolize a large fraction of drugs. Knowing where these 

enzymes will preferentially oxidize a molecule, the regioselectivity, allows medicinal chemists to 

plan how best to block its metabolism. We present QSAR-based regioselectivity models for these 

enzymes calibrated against compiled literature data of drugs and drug-like compounds. These 

models are purely empirical and use only the structures of the substrates, in contrast to those 

models that simulate a specific mechanism like hydrogen radical abstraction and/or use explicit 

models of active sites. Our most predictive models use three substructure descriptors and two 

physical property descriptors. Descriptor importance from the random forest QSAR method show 

that other factors than the immediate chemical environment and the accessibility of the hydrogen 

affects regioselectivity in all three isoforms. The cross-validated predictions of the models are 

compared to predictions from our earlier mechanistic model

INTRODUCTION

Oral bioavailability of drugs depends largely on their ability to withstand degradation by 

intestinal and hepatic enzymes during “first-pass” metabolism. One important class of 

enzymes is the cytochromes P450 (CYPs). These are heme-containing enzymes that catalyze 
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SUPPLEMENTARY MATERIAL
We supply the following supplementary material:

1. A comma-separated table containing the literature references:

a. For the large calibration sets.

b. For the external sets.

2. Mol2 files containing the structures of the molecules with activities

a. For the three large calibration sets.

b. For three external sets.

3. Definitions for atom properties for calculating the descriptors.
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a number of chemical changes: oxidation, dealkylation, desaturation, etc. 1–4. All probably 

involve the transfer of the oxygen radical from the heme iron of the enzyme to the molecule 

as one of the steps. Knowing where a molecule would be preferentially oxidized, i.e. the 

regioselectivity, by a particular CYP would give medicinal chemists insight on where to 

block the metabolism and make their drug candidates more stable in vivo. Normally the 

regioselectivity of CYP-mediated biotransformation is determined experimentally by 

metabolite identification techniques (for instance reference 2). However, all such 

experimental techniques are time and labor intensive, and a computational model for 

regioselectivity could allow chemists to make rational decisions more quickly.

A number of models for predicting regioselectivity by CYPs have been proposed 5–10 and a 

few commercial systems for doing so have been released. It should be noted that these 

models usually do not predict whether a molecule will be a substrate for a particular CYP, 

only where the oxidation will likely occur assuming it is a substrate. Of the CYP isoforms, 

CYPs 3A4, 2D6, and 2C9 are probably the most important in metabolizing drugs and drug-

like molecules 1,3. In some CYPs like 2D6, it has been proposed that there is a 

“pharmacophore” (i.e. a cation in molecules oxidized by 2D6) that controls regioselectivity 

by orienting the molecule in the active site such that certain atoms are closer to the heme 

oxygen (reviewed by Ekins et al. 11). In contrast, others like 3A4 do not have an obvious 

pharmacophore 4.

Previous work from this laboratory (Singh et al. 7) addressed metabolism by CYP 3A4. That 

model assumed, based on the observation that 3A4 lacks substrate specificity, that 

orientation effects from the 3A4 active site are negligible, and that regioselectivity depends 

primarily on the energy necessary to remove a hydrogen radical (the dehydration energy) 

from a particular atom, with the stipulation that only those hydrogens with sufficient solvent 

accessible surface area (≥ 8 Å2) could be attacked. We used AM1 molecular orbital 

calculations to calculate the dehydrogenation energy. Since even semi-empirical calculations 

like AM1 would take too long to make a rapid prediction system, we estimated the AM1 

dehydrogenation energy with a QSAR model based on the local chemical environment of 

the atoms.

The Singh et al. model is modestly predictive of 3A4 regioselectivity, but it was clear from 

the outset that this model has some serious limitations. First and most importantly, given 

that it depended only on dehydrogenation energy, it could address oxidations only where 

removal of a hydrogen radical is the proposed mechanism, i.e. sp3 carbons with at least one 

attached hydrogen, and could not at all address oxidations at aromatic carbons, sulfurs, etc. 

Second, it was clear that dehydrogenation energies sometimes gave systematically wrong 

answers for some sp3 carbons. For instance in N-methylpiperidines, the observed action of 

CYP3A4 is to almost always oxidize the methyl, resulting in an N-dealkylation, while the 

AM1 dehydrogenation energy always suggested that the piperidine ring carbons adjacent to 

the N would be slightly more susceptible. However, due to our small sample size at the time 

(only about 50 examples), we could not confidently add any correction factors to our model. 

Third, the use of a sharp cutoff on the solvent accessible surface area makes the results 

sensitive to the starting conformation; sometimes a particular carbon would be marked as a 

site of oxidation, sometimes not, depending on whether the area of the hydrogen was just 
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above or below the cutoff. Finally, we were not comfortable with completely ignoring 

orientation effects after crystal structures of CYP 3A4s became available 12,13 and it became 

clear that the active site is not so large or open as to permit free tumbling of a substrate, or at 

least rapid exchange of bound with free substrate, as would be required for orientation 

effects to be neglected.

Almost all models to date of CYP regioselectivity are mechanism-based. That is, one tries to 

simulate the chemical steps involved with oxidation, or at least the rate-limiting step (e.g. 

removing the H radical). Mechanism-based models are appealing because they appear to be 

general and require the least knowledge beforehand. For instance, molecular orbital 

calculations of dehydrogenation energy ought to give valid predictions for any molecule. 

However, in practice things are never so simple. For instance, oxidation at sp3 carbons 

probably involves the removal of a hydrogen radical as the product-determining step, but 

oxidation at aromatic rings probably occurs by a different mechanism, one proposal being 

the addition of a hydroxy radical 5. One must find a way to scale the relative importance of 

the two (or more) mechanisms for a prediction. Also, to match experiment one almost 

always has to add other effects that are not local to the atom.

Previous efforts developing CYP 3A4 models by one of us (KRK, unpublished work) 

suggested other factors, e.g. relative position to polar functionalities, whether the atom was 

part of a piperidine or piperazine ring, etc., were required to make the predicted and 

observed regioselectivity for 3A4 agree. When empirically-calibrated corrections are added 

on top of the original mechanism-based parameters, it is not clear that such an approach will 

result in a better model than that obtained by fitting parameters directly to experimental data 

and ignoring mechanistic considerations altogether.

In this paper we present QSAR-based regioselectivity models for human CYPs 3A4, 2D6, 

and 2C9 based on data in the literature plus some proprietary in-house data (for 3A4). The 

intention is to cover most commonly observed potential sites of oxidation (sp3 carbons, sp2 

carbons, sulfurs, etc.). We use descriptors intrinsic only to the candidate substrates and 

include no information about the active sites of the CYPs. We are able to show that the 

QSAR models make cross-validated predictions better than the predictions from Singh et al., 

and at least as good as the predictions from MetaSite, a more mechanism-based method of 

predicting regioselectivity. We also apply the models to a small set of compounds not in the 

original set.

METHODS

Datasets

Even more than for the Singh et al. model, we depend here on regioselectivity data in the 

literature. Gathering the citations was greatly aided by two licensed databases, the 

Metabolite Database from Molecular Design Limited (www.mdli.com) and the Human Drug 

Metabolizing Enzyme Database from Fujitsu (www.fqs.fujitsu.com/ccs/ASP_service_eng/

ASP_ADMEdatabase/ASP_ADMEdatabase _eng.html). For each molecule, the specific 

mechanism for oxidation had to be established as native human CYP3A4, 2D6, or 2C9 and 

the exact site(s) of oxidation of the molecule had to be known. The list of citations is 
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provided as Supplementary Material. The final “calibration” sets consisted of 316 molecules 

for 3A4 (305 from the literature plus 11 proprietary molecules), 124 molecules for 2D6, and 

92 molecules for 2C9. The structures of the molecules (minus the proprietary ones for 3A4) 

are also in Supplementary Material. One concern is that the molecules in the training set be 

diverse. Elucidation of metabolic products is difficult and time-consuming, so we are likely 

to see literature data on a limited number of molecules, drugs or drug candidates far along in 

their development, which tend to occur in a limited number of families. However, as will be 

shown, no family dominates any of the calibration sets.

Some months after we generated our original models, during the review process for the first 

submitted version of this manuscript, we rechecked the literature and found a total of 25 

additional compounds: 19 for 3A4, 10 for 2D6, and 9 for 2C9, with some overlap. We will 

call these the “external” sets. The structures of these are also in Supplementary Material.

Sites of metabolism

In an ideal world, as a QSAR “response” we would like to have a rate of oxidation for every 

atom in every molecule measured under uniform conditions. However, what can be found in 

the literature is the elucidation of at most a few major sites of metabolism per molecule. 

Sometimes the relative amounts of the metabolic products are noted in the citation. In the 

molecular structure in Supplementary Material we have marked atoms as “1” (primary site), 

“2” (secondary site), etc. Topologically equivalent atoms are marked identically. However, 

most of the citations do not contain such detailed information and to maximize the number 

of molecules our models, we felt it best to treat atoms as having a binary response: “1” if it 

was noted as a major site of metabolism in the citation and “0” if it was not. We counted N- 

and O-dealkylations as occurring on the carbon of the leaving group adjacent to the N or O. 

There are some rarer reactions, such as ring openings, replacements of =S with =O, etc. In 

those cases the atom was marked which, in the opinion of the authors of the citation, is most 

likely to receive an oxygen radical from the CYP. Table 1 shows the frequencies of the 

atoms and observed oxidation sites in the calibration sets divided into major types

Data of this type has several issues. Foremost is the usual concern whether data from the 

literature can be sensibly combined. In this case, oxidation products of different molecules 

are measured in different labs with different techniques. Also, it is not clear that the primary 

oxidation product is given in some citations because the authors may be trying to identify 

the CYP responsible for a particular oxidation product without necessarily establishing it as 

the primary product. Errors in the structures of oxidation products and incorrect assignment 

of oxidation products to a particular CYP are also possible.

Another major concern is that the data shows relative susceptibilities to oxidation of atoms 

within each individual molecule, but the meaning of “1” may not be the same between 

molecules and it is not clear that atoms from different molecules can be pooled in a single 

training set. For instance, consider a purely aliphatic compound A with an N-

methylpiperidine and a methoxy group. The N-methyl is established as a site of oxidation 

(1). The methoxy methyl is not (0). On the other hand, consider a completely aromatic 

compound B. One of the aromatic carbons is marked as the site of oxidation (1), although on 

an absolute basis the methoxy methyl group in A is probably much more susceptible than 
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the aromatic carbon in B. Despite the potential difficulties, however, we have produced a 

reasonably self-consistent and predictive model.

Descriptors

We have examined several descriptors that describe the local environment around each 

nonhydrogen atom i in each molecule. The first types (SS, SS-A, SS-B) can be called 

“detailed substructure descriptors” (SS for substructure). Solvent accessible surface area of 

hydrogens is obviously important and is represented by the descriptors HYDROGENAREA 

and NONHYDROGENAREA. The PE (physiochemical environment) and 

HYDROPHOBICMOMENT descriptors describe the long-range environment around atom 

i. The final descriptor SPAN has to do with where atom i is placed in a molecule. Only the 

HYDROPHOBICMOMENT, HYDROGENAREA, and NONHYDROGEN area require the 

3D structure of a molecule; all the others use the connection table only. Details follow:

1. SS—This is the nonhydrogen-centric version of the substructure descriptors introduced 

in Singh et al.7 to describe local chemical environments. They have the form ATi, ATi-ATj, 

ATi-ATj-ATk, ATi-ATj-ATk-ATm where ATi is the type of atom i, ATj is the atom one 

bond away, ATk the atom two bonds away, etc. Atom i is always the candidate atom for 

oxidation. Atom type includes the element, the number of nonhydrogen neighbors and the 

hybridization of the atom. It might also include some special properties: what kind of ring 

the atom i is in: a5, a6 for five- and six-membered aromatic rings, and A5, A6 for five and 

six-membered aliphatic rings. br5, br6 mark bridgehead atoms in 5- and 6-membered rings. 

The PATTY 14 notation for defining these types is in Supplementary Material. It is 

established, since one can fit and predict AM1 dehydrogenation energies very well with this 

type of descriptor 7, that they contain implicit information about dehydrogenation energy.

2. SS-A, SS-B—The information in SS can be split into two separate descriptors, one SS-

A including the element/neighbors/hybridization information, and one SS-B including the 

special properties. In the case of SS-B, an atom without any special properties is labelled “n” 

(for “none”). Figure 1 shows the substructure descriptors for a candidate site in a small 

example molecule.

3. HYDROGENAREA—As with Singh et al. we use the areas of attached hydrogens. Not 

all atoms i have hydrogens, but for the ones that do we note the total area of all the 

hydrogens attached to atom i (SUM), the mean area (MEAN), and the minimum (MIN) and 

maximum (MAX) areas. Again, as in Singh et al., the area of any given hydrogen is an 

average over 25 conformations generated by our Flexibase procedure 15 starting from the 

CORINA16 conformation. A variation of this is to use the area of a single CORINA 

conformation.

4. NONHYDROGENAREA—This is the same as the above, except that one looks at the 

areas of nonhydrogens once the hydrogens are removed from the structure.

5. PE—These are of the form AT_d, where d is the through-bond distance to atom i and AT 

may be one of the following: 1=cation; 2=anion, 3=neutral H-bond donor, 4=neutral H-bond 
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acceptor, 5=donor/acceptor, 6=hydrophobe, 7=none of the above. Definitions of these types 

are in reference 14. Figure 1 shows the PE descriptors for a candidate site in the example 

molecule.

6. HYDROPHOBICMOMENT—Given a CORINA conformation, one calculates the 

hydrophobic moment vector of a molecule (analogous with dipole moment with atom type 

replacing charge; type “6” above is hydrophobic). We note the length of the hydrophobic 

moment, and the projection of atom i on the hydrophobic moment and the projection 

normalized by the length. This is averaged over 25 conformations. The idea of these 

descriptors is to distinguish atoms at the hydrophobic ends of molecules vs. those at the 

hydrophilic end, under the hypothesis that the hydrophobic ends are preferentially oxidized.

7. SPAN—This is a measure of whether the candidate oxidation site is at the end or the 

middle of a molecule in a topological sense. One notes the longest through-bond distance in 

the molecule, MAXDISTMOL. One then notes the longest distance from atom i to any other 

atom in the molecule, DISTFURTHESTNEIGHBOR. The descriptor RATIO= 

DISTFURTHESTNEIGHBOR/MAXDISTMOL is 0.5 if atom i is exactly at the middle of 

the molecule and 1.0 at the end. Figure 1 illustrates this for one candidate site.

Descriptors were generated using our in-house modeling infrastructure MIX.

Random forest QSAR method

Random forest 17 is an ensemble recursive partitioning method that constructs predictions by 

averaging over multiple “trees”. Each tree in the forest is constructed from a different 

bagged subset of the training set and at each branch point of the tree the method chooses 

from a random subset of the descriptors. We used the R implementation of random forest 

(http://cran.r-project.org/src/contrib/Descriptions/randomForest.html). In our experience 

random forest gives the best cross-validated predictions compared to other major QSAR 

methods (partial-least squares, k-nearest neighbors, neural networks, etc.), and this is true 

for our particular dataset as well. Recursive partitioning methods like random forest have the 

advantage that not all the cases have to be fit by one model (e.g. sp3 carbons and sp2 carbons 

can have their own set of rules), coupling between descriptors is naturally handled, and it is 

not assumed that the activity is a linear function of the descriptors. Also, recursive 

partitioning methods are not affected by having large numbers of irrelevant descriptors, so 

descriptor elimination is not necessary. The importance of a descriptor for a random forest 

model may be gotten from the “out-of-bag” predictions during model building (on the 

average bagging leaves out about one-third of the cases). Each descriptor is in turn randomly 

reassigned to the wrong case and the accuracy of the prediction (over multiple trees) is 

monitored. The out-of-bag prediction accuracy will become much worse when an important 

descriptor is permuted, but will change little when an unimportant one is.

For our QSAR models, each atom was treated as a separate entity with its own descriptors 

and binary response. Similarly each atom was predicted as a separate entity. We generated 

the models using 100 trees; having more trees generally does not improve the predictions 14. 

Predictions were returned as probabilities that a given atom would be a site of metabolism, a 

number between 0 and 1.
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Generally, when we speak of predictions in this paper, it will refer to cross-validated 

predictions on the calibration set. Half the molecules in the calibration set for a particular 

CYP were randomly selected, and a QSAR model was constructed from the atoms in those 

molecules. Then, the responses for atoms in the remaining molecules were predicted. This 

was repeated 20 times. The predicted response for any particular atom is the mean over the 

number of predictions for that atom, on the average 10 predictions for the 20 trials. At no 

time is a molecule being predicted represented in the QSAR model doing the prediction. 

“Leave-half-out” is usually considered a very conservative method of cross-validation, 

certainly less likely to overestimate the goodness of prediction than leave-one-out cross-

validation.

For the external sets, a QSAR model was made from all the compounds in the calibration set 

for a particular CYP and atoms in the molecules in the external set for that CYP were 

predicted against it.

Measures of goodness

One may quantitatively measure the “goodness” of a model in a number of ways. Cross-

validated R2 of the cross-validated predictions vs. the observed responses is a standard for 

QSAR, but this is not appropriate when the activities are binary and we do not expect a 

particularly linear response. Therefore we use the following methods: 1. One may construct 

Receiver Operating Characteristic (ROC) curves 18 by ordering the atoms in decreasing 

predicted probability of being an oxidation site, and monitoring how many true and false 

positives are found as atoms are checked in that order. Here we will use “molecule-scaled” 

predictions. The maximum prediction of all atoms in a particular molecule is set to 1.0, the 

lowest to 0.0, with the other atoms linearly scaled between. For regioselectivity, where we 

are trying to find the relative probability of oxidation for atoms within a single molecule, 

this is more appropriate than using the raw predictions. The ROC curve for the case where 

the predictions are perfect would be the left and top sides of a square (area under the 

curve=1.0), and the curve for the case where the predictions are no better than random 

would be a diagonal line (area=0.5). Since the ROC curve pools all atoms regardless of what 

molecule they are in, not quite what is needed for regioselectivity, we need other measures 

in addition: 2. In a “Molecule-scaled prediction plot,” atoms are plotted with their molecule-

scaled prediction on the y-axis and the molecule they are from on the x-axis. Thus all the 

atoms in a given molecule are in a single column. Usually the molecules are arranged left to 

right in order of decreasing Z-score. Z-score=(M1-M0)/S0, where M1 is the mean prediction 

for the atoms that are oxidation sites in the molecule, and M0 and S0 are the mean and 

standard deviation prediction for the atoms that are non-sites. Since the Z-score is 

characteristic of a single molecule, it does not matter if one uses the raw or molecule-scaled 

prediction. The more positive the Z-score, the better the discrimination of the sites from the 

non-sites. A prediction that did not discriminate sites at all would have Z-score=0. One can 

use the mean Z-score over all the molecules as a measure of goodness. 3. Often 

regioselectivity models are measured by of the percent of the molecules for which at least 

one of the k atoms in a molecule with the highest predictions is an observed oxidation site. 

Typically k=2.
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Comparison to other methods

We compare our current method against the earlier model of Singh et al. 7 and MetaSite8, 

which at the time of writing is the only widely distributed package for predicting 

regioselectivity. For the purposes of generating a ROC curves for Singh et al. predictions, 

we ordered the nonhydrogen atoms in order of increasing AM1 dehydrogenation energy. In 

accordance with the model, if the maximum solvent accessible area of all attached 

hydrogens was < 8 Å2, or if there were no attached hydrogens, the atom was given a 

dehydrogenation energy of 99 kcal/mol, an arbitrarily high number near the maximum 

dehydrogenation energy, which serves to put such hydrogens at the end of the sorted list.

A license for MetaSite was obtained from Molecular Discovery (http://

www.moldiscovery.com). Here we show results from version 2.7.5. MetaSite can handle sp3 

carbons, sp2 carbons, sulfurs, and aromatic nitrogens. We followed the default protocol: 

“reactivity correction on” and a maximum of 20 conformations. MetaSite produces a 

prediction for each nonhydrogen atom in each conformation, but there are two types of score 

averaged over the conformations: Averaged Similarities and Averaged Ranking. It is the 

latter that is recommended by the vendor to get the best predictivity.

RESULTS

Which descriptors are important?

Building a QSAR model involves relating the activity of interest (here the probability of 

being an oxidation site) to the structure (here the attributes of nonhydrogen atoms) which is 

represented as descriptors. In this section we explain which of the descriptors presented in 

the Methods section are important for activity. Having tried a number of descriptor 

combinations and checking the cross-validated predictions with ROC curves, we settled on 

SS-A, SS-B (substructure descriptors), HYDROGENAREA (exposure of hydrogens), PE 

(physiochemical environment), and SPAN (end-vs-middle) as a reasonable minimum 

combination of descriptors that gives the best cross-validated predictions. SS-A plus SS-B is 

slightly superior to SS because making the atom types in the substructure descriptors too 

specific hurts the ability of the model to extrapolate, especially for the two smaller datasets 

(2D6 and 2C9). We stay with HYDROGENAREA, the solvent accessible surface area of 

each hydrogen averaged over multiple conformations, to be consistent with our previous 

work. However, using only a single conformation also gives reasonably predictive models, 

as does using the area of the atoms of a molecule from which the hydrogens have been 

deleted.

One way of appreciating the relative contributions of the descriptors is to look at the 

descriptor importances in Table 2. Descriptors that are on the average negatively correlated 

with being an oxidation site (independently of the QSAR model) are marked with *. Since 

random forest is not a linear method, one cannot always interpret a high descriptor 

importance for a descriptor as suggesting that higher values of that descriptor means a 

higher probability of being an oxidation site (or a lower probability for the descriptors 

marked with *). In some cases it may be that intermediate values of the descriptor give the 

highest probability.
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For 3A4, the most important descriptor is CX1sp3-NX3sp3, which indicates that methyl 

groups adjacent to sp3 nitrogens with 3 neighbors are the most likely sites of oxidation. This 

is especially true if the nitrogen is a cation as shown by the PE descriptor 1_1 (one bond 

away from a cation). This is not surprising given that N-demethylation is a widely observed 

reaction of CYP3A4. HYDROGENAREA descriptors are important as expected, the more 

exposure the better. SPAN_RATIO indicates that atoms at the ends of molecules are more 

likely to be oxidized than atoms in the middle. The importance of SPAN descriptors is 

evidence that at least some orientation issues are important for 3A4, contrary to the 

assumptions in Singh et al. The oxidation of –S- (SX2sp3) is among the top 20 descriptors.

There are enough atoms in the 3A4 dataset that one can further dissect the descriptor 

importances by generating a QSAR model for only a subset of the atoms, here the sp3 

carbons with hydrogens and the sp2 carbons with hydrogens. The descriptor importances for 

sp3 carbons with hydrogens resemble that for the full set (not surprisingly because they 

account for the majority of the total atoms and 80% of the oxidation sites in 3A4) except that 

the relative importance of the HYDROGENAREA terms becomes less. Some of the 

descriptors below the top 20 are interesting relative to some of the systematically wrong 

predictions of Singh et al.. Descriptors number 21, 25, and 26 are n-n-n, n-n-n-n, and n-n. 

They indicate that, among sp3 carbons, oxidation is favored on non-ring atoms. We believe 

this reflects the fact that carbons in piperidines and piperazines (among the most common 

aliphatic rings in drugs) are rarely oxidation sites for 3A4 despite being adjacent to 

nitrogens.

For sp2 carbons with hydrogens, HYDROGENAREA terms are still important for 3A4. The 

site adjacent to a phenolic oxygen is especially favorable as indicated by CX2sp2-CX3sp2-

OX1sp3 and 5_2 (two bonds from a donor/acceptor). SPAN parameters are still important, 

although SPAN_RATIO is no longer clearly the most important among them. The fact that 

nearly all oxidation sites at sp2 carbons for 3A4 are on 6-membered aromatic rings is 

reflected by the descriptor a6-a6-a6-a6.

For 2D6, HYDROGENAREA and SPAN descriptors are clearly important. The most 

important substructure descriptors (CX1sp3-OX2sp3-CX3sp2, CX1sp3-OX3sp3, n-n-a6, 

6_4 etc.) are all consistent with the very common O-dealkylation of aromatic methoxy by 

2D6. There is evidence for oxidation at the para-position of aromatic rings (CX2sp2-

CX2sp2-CX2sp2-CX3sp2) and at aromatic methyl groups (CX1sp3-CX3sp2-CX2sp2) as 

well. The putative 3D “pharmacophore” for 2D6 oxidation, where oxidation sites are 

expected to be 5 to 7 Å from a cation 11 is not discernible as such, but the closest is the 22nd 

descriptor 1_8 (8 bonds from a cation). A through-bond distance of 8 corresponds to a 

through-space distance of 7.8 + 0.9 Å in CORINA-built structures, somewhat longer than 

expected. If one builds a QSAR model for 2D6 using only cationic substrates, the 1_8 

descriptor is 13th in importance.

The set of top 20 descriptor importances for 2C9 qualitatively resemble those for 2D6. We 

can discern no descriptor that corresponds to a pharmacophore for 2C9.
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Molecule-scaled cross-validated prediction plots are shown in Figure 2 for the calibration 

set. If the models were perfectly predictive, all the blue squares would be above all the red 

squares. Clearly, prediction is far from perfect, but reasonable. For about two-thirds of the 

3A4 molecules (Figure 2A), there is a blue square at the top, indicating that the atom with 

the highest molecule-scaled cross-validated prediction is indeed an oxidation site. However, 

after that the predictions tend to degrade and at the right side the blue squares are toward the 

bottom, indicating particularly bad predictions. Again for 3A4, we can further dissect the 

plot by looking at subclasses of potential sites. Figure 2B shows the plot for sp3 carbons 

with hydrogens. It resembles the full plot, again not surprisingly, because sp3 carbons 

account for a large majority of the oxidation sites. Figure 2C shows the plot for sp2 carbons 

with hydrogens. The model has more trouble predicting these than sp3 carbons, that is, fewer 

blue squares are near the top. Figure 2D shows the plot for –S- and –S(=O)-. The model 

does well here. This not surprising since whenever a potentially oxidizable S appears in a 

molecule, it is likely to be an oxidation site for 3A4 (i.e. there are more blue than red 

squares), and any statistical model is sure to incorporate that information. The model 

correctly predicts 5 out of 10 aromatic nitrogen sites in Figure 2E near the top of the plot. 

However, sp3 nitrogens are poorly predicted, with most of the blue squares at the bottom. 

Again, not surprising since very few sp3 nitrogens are oxidation sites.

The molecule-scaled prediction plot for 2D6 (Figure 2G) also looks very good, with about 

two-thirds of the compounds having a blue square at the top of the plot. The plot for 2C9 

(Figure 2H) looks slightly less good, with only about half of the molecules having a blue 

square at the top. Given that the 2C9 dataset is the smallest, it is not be surprising that the 

cross-validated predictions would be poorest. The dissections of 2D6 and 2C9 (not shown) 

are qualitatively similar to those for 3A4, except that there are few or no examples of 

aromatic nitrogens or sp3 nitrogens being oxidation sites.

Examples of well-predicted and poorly-predicted molecules by cross-validation

Some example 3A4 molecules from the left and right sides of the plot in Figure 2A are 

shown in Figure 3A. We try here to show a variety of oxidation sites. Not surprisingly, the 

molecules with the highest Z-scores ones have commonly oxidized groups (N-alkyls, sulfur, 

etc.) and/or a few aliphatic carbons among many aromatic ones. However, there are other 

not so common cases (aromatic oxidations, aromatic nitrogen oxidations) where the Z-score 

is reasonably high. It is perhaps more interesting to look at the molecules where the 

prediction fails. For instance in lisofylline, the model would not expect an aliphatic carbon 

to be oxidized when much more attractive N-methyl groups are present. The model expects 

–S- to be easily oxidized in troglidazone, while the observed reaction is a rare ring opening. 

Similarly, the model expects an sp3 carbon near unsaturated carbons in zonisamide to be 

oxidized, not a ring opening. Troglitazone is an example where, after our citations had been 

compiled, a different citation with an additional metabolite was brought to our attention. 

Reddy et al. 19 proposed that an S oxidation, the site predicted by the model, leads to 

opening of the thiazolidinedione ring and formation of a glutathione conjugate.

Figure 3B shows the same for 2D6. Again, not surprisingly molecules with aromatic 

methoxy and aromatic methyl have the largest Z-scores, but sulfur oxidations and N-
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demethylations are also observed. The model expects an N-demethylation instead of a 

tryciclic ring oxidation in nortriptyline. Bortezomib is unique in having a boron atom, so 

cross-validated prediction from the other molecules is unlikely to predict it correctly. The 

model expects atoms at the end of molecules to be oxidized, all else being equal, hence the 

misprediction for N-nitrosodiamylamine.

Figure 3C shows the same for 2C9. Again we see high Z-scores for aromatic methoxy and 

aromatic methyl, with sulfur oxidations and N-dealkylation. Again we have a problem with 

bortezemib. Quazepam is another example of an almost unique reaction that the model does 

not account for. Chlorpropamide has an end-vs-middle misprediction.

External set compounds

Having external sets gives us a chance to predict compounds that had no participation in any 

QSAR model. Some well-predicted and poorly-predicted compounds are shown in Figure 4. 

There seems to be a similar mix as with the cross-validated predictions: a few “easy” 

examples with high Z-scores (e.g. BPU for 3A4, Foxy for 2D6), some with moderate Z-

scores (e.g. FLU-1 for 3A4 ) and a few poorly predicted ones with negative Z-scores (e.g. 

methyleugenol for 2D6). As with the cross-validated predictions, some of the observed 

oxidation sites are hard to explain. For instance, given the high propensity of 2D6 for O-

demethylation, one expects the methoxy groups of methyleugenol to be the sites of 

metabolism, but they are not noted as such.

Comparison with other methods for the calibration set

ROC curves for the methods are shown in Figure 5 and measures of goodness in Table 3. 

The appearance of the ROC curves seems generally consistent with the table, the better the 

ROC curve the higher the other measures of goodness. The Singh et al. model is strictly 

speaking applicable to 3A4 only, but we include it for the other CYPs as well. For any of the 

CYPs the Singh et al. model has the worst ROC curve among the three methods. This is not 

at all surprising since the model is expected to work only on sp3 carbons with hydrogens. 

The Singh et al. model seems to do much worse for 2D6 and 2C9 than for 3A4, probably 

because other factors than the lability and exposure of hydrogens are more important for 

those CYPs.

Of the MetaSite predictions Averaged Ranking seems the better, consistent with the 

recommendations of the vendor. The cross-validated predictions of the QSAR model for 

3A4 are clearly better than MetaSite for this set of compounds. For 2D6 and 2C9, the QSAR 

predictions are only slightly better than MetaSite. The MetaSite authors claim that in a 

diverse set of molecules they assembled, the oxidation site is in the top 2 atoms in 78, 86, 

and 86% of the molecules for 3A4, 2D6, and 2C9, respectively 8. Since the authors did not 

release the identities of the molecules in their set, we cannot verify this or try our own 

method on their set. Using our own dataset, the results for MetaSite in Table 3 are 62, 72, 

and 73%, respectively.

Detailed comparison of the predictions of the QSAR models against MetaSite for any given 

molecule for any given CYP shows that the predictions are very different. The correlation of 
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molecule-scaled predictions between the QSAR cross-validated predictions and MetaSite 

predictions is only ~0.5 for any of the CYPs. This is also true for all subclasses of oxidation 

sites (sp3 carbons, sp2 carbons, etc.) as well. Perhaps this is not surprising given the methods 

use very different approaches.

A big concern is whether the QSAR method may have an unfair advantage over the other 

methods, because there are similar molecules in the training set and the test set. One way to 

evaluate this is to determine the relative contributions of close analogs to the datasets. For 

instance, if we cluster (using the method of Butina 20) the 3A4 set at 0.7 similarity using the 

atom pair descriptor 21, we get 243 clusters, of which 198 are singletons. We see that the 

largest cluster (tricyclics) has 7 members, the next largest (benzodiazepines) has 6 members, 

the next largest (steroids) has 4 members, etc. Similarly the 2D6 set generates 105 clusters, 

with the largest cluster containing 5 morphine analogs. The 2C9 set generates 81 clusters, 

with the largest containing 4 kaempferide analogs. These clusters are small compared to the 

entire set. Also, for the most part, each molecule in a cluster comes from a different citation, 

so they are truly independent determinations. A stronger argument comes from redoing the 

QSAR cross-validation on “diverse” datasets that contain only one molecule from each 

cluster, so that there is no possibility of a close analog of the compound being predicted 

being included in the QSAR model. The measures of goodness for the diverse datasets are in 

parentheses in Table 2. There is a detectable decrease in the measures, but the decrease is 

not substantial, and the predictions from the QSAR model for 3A4 and 2D6 remain better 

than those from MetaSite.

We can also look into the question of why the QSAR predictions for 3A4 seem to be 

significantly better than MetaSite while those for 2D6 and 2C9 are not. One possible 

explanation is that since the 3A4 dataset is much larger than the other sets, the models built 

during cross-validation contain more information, and thus the cross-validated predictions 

are likely to be better. One way to address this is to generate smaller 3A4 sets by randomly 

selecting 124 and 92 compounds (the sizes of the other sets) and to repeat the 20-fold cross-

validation. When we do this, the ROC curve (not shown) for the cross-validated QSAR 

predictions for 3A4 looks only slightly better than the curve for MetaSite on the same 

reduced set of compounds, much like the situation with 2D6 and 2C9. Thus, the size of the 

dataset is at least part of the explanation.

Goodness measures for the external set

Measures of goodness for the external sets are in Table 4. Since the number of external 

compounds is small, one should not overinterpret the results. However, the goodness 

measures for QSAR predictions in this table seem about as good as the corresponding 

measures in Table 3. We see that the QSAR predictions in Table 4 are on a par with 

MetaSite predictions or slightly better, with the Singh et al. methods doing more poorly (at 

least in ROC area and Z-score). This is in general agreement with the results in Table 3. 

Thus, there is no evidence that cross-validated predictions and “real” predictions are 

fundamentally different for these models.
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DISCUSSION

We have created a purely empirical model for CYP 3A4, 2D6, and 2C9 regioselectivity 

based on data from the literature. In essence we are asking “What would the literature 

predict would be oxidation sites in this molecule?” It should be reemphasized that our model 

can predict only where a molecule might be oxidized assuming it is a substrate, and cannot 

predict whether a molecule will actually be a substrate of a CYP, or determine which CYP 

might be more important for the metabolism for a given molecule. Models of whether 

particular molecules will be substrates or inhibitors of CYPs are under development in this 

and other laboratories (reviewed by Lewis 22).

Given the potential difficulties mentioned in the Introduction about combining the data of 

separate molecules, the QSAR approach works remarkably well, making molecule-scaled 

predictions at least as good as those from MetaSite, which is much more mechanistically-

based (more below). This is true even for the very conservative method of cross-validation 

we use here. Using a less conservative cross-validation, for instance leaving only 20% of the 

molecules out instead of 50% makes the results appear even better. A reasonable speculation 

as to why the models work is that, if enough molecules are included, the relative frequencies 

of an atom environment appearing as the major oxidation sites of different molecules will 

eventually reflect the relative probabilities of those environments being oxidation sites if 

they occurred in the same molecule. This is reasonable because most drug molecules contain 

a variety of environments, for instance, they contain aliphatic and aromatic portions.

The QSAR-based approach is one of a number of valid approaches to the regioselectivity 

problem, and we know of at least one example where a regioselectivity model was derived 

from literature databases of oxidation 23. One advantage of the QSAR-based approach is 

that, as long as the relevant information is implicit in the descriptors used to build the model, 

it does not require knowledge about which mechanisms are important for regioselectivity or 

require that we undertake computationally expensive simulations of each mechanism. The 

downside of this, of course, is that our models contain no mechanistic explanation, only a 

statistical summary of what is already known. In our particular case, one strong motivation 

for attacking the problem empirically was to avoid expensive molecular orbital calculations 

altogether. On the other hand, any kind of QSAR approach depends on having a large body 

of data from which to calibrate a model, and it is never clear whether the data is sufficiently 

unbiased or complete enough to allow extrapolation far beyond the types of molecules and 

atom environments the model was built on. (A specific corollary to this is that models have 

trouble predicting the more rare reactions, e.g. ring openings in 3A4.) Noise in the data is 

always an issue unless there are a sufficient number of cases such that the noise can be 

averaged out. For all these reasons QSAR models are limited to those CYPs for which a 

great deal of regioselectivity data is already available, currently only 3A4, 2D6, and 2C9, 

and 2C9 is probably a borderline case.

While tried to be inclusive of all the data in the literature, it is possible to argue that the data 

sets we have assembled here, while diverse overall, may not be representative of drugs in 

general. This is to some extent unavoidable because by definition the datasets contain only 

known substrates for each CYP and are thereby enriched in specific chemical groups. For 
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example the 3A4 set contains more N-alkyl amines and the 2D6 set contains more aromatic 

methoxy groups and cations than expected in a randomly selected set of drug molecules of 

the same size. We do not feel that the bias is hurting the applicability of the model, 

especially since the assumption of the model is that any molecule to be predicted already is a 

substrate. In any case, as more data is generated in the literature, the datasets will likely 

become more inclusive and less biased.

MetaSite 8 provides an interesting contrast to our empirical approach in that it does not 

depend at all on having preexisting data, but is based on first-principle arguments. It makes 

its predictions based on the lability of hydrogens, plus orientation effects based on the 3D 

structure of a CYP active site. Specifically this is done by matching the intramolecular 

environment of a candidate atom in a molecule (encoded by atom types and distances) to the 

active site environment around the heme oxygen in a CYP active site, atoms that more 

closely match the heme environment presumably being the ones most likely to be oxidized. 

Currently, MetaSite can handle 3A4, 2D6, 2C9, 1A2, 2C9, and 2C19, and can be extended 

to any CYP for which a homology model can be generated. Clearly, MetaSite has the 

advantage for 1A2 and 2C19, where there is not currently enough data in the literature to 

generate a QSAR model. There are other methods, which we did not examine, that predict 

regioselectivity by explicitly docking potential substrates into the active sites of CYPs. Zhou 

et al. 9 have discussed the GLUE method for predicting 3A4 regioselectivity, and de Graaf et 

al. 10 discuss a docking method for 2D6.

The influences on regioselectivity are usually thought to have two components, the local 

reactivity of the atom to be oxidized, and “orientation” effects that make broad regions of 

the molecule more or less likely to be attacked. We concur with the MetaSite authors’ 

conclusion that orientation issues are important in all CYPs, though perhaps not as much for 

3A4. In the case of MetaSite and the docking-based methods the orientation information is 

provided by an active site model. One can expect that the results of such models will depend 

on which specific active site structure is used, and one can also argue that having a single 

explicit structure for the active site of a CYP would not necessarily provide all the needed 

orientation information since CYPs, oxidizing a very wide variety of substrates, are likely to 

have very flexible active sites that can change shape to adapt to specific molecules. Ekroos 

and Sjorgen 13 have recently confirmed this for 3A4 by x-ray crystallography. The fact that 

our QSAR models do at least as well as MetaSite suggests that, given a large amount of 

regioselectivity information to calibrate against, it is not necessary to use explicit CYP 

active site structure to get reasonable predictions.

Our QSAR model looks only at aspects of the substrate molecules, but we did try to relate 

the important “environment” descriptors in our QSAR models to the active site structures of 

the CYPs. Not surprisingly in retrospect, we were not able to do so except in a very broad 

sense. The active sites of the CYPs examined here are of limited size, and some longer 

molecules cannot fit into them, so it is not a surprise to see for all CYPs that molecules are 

more likely to be oxidized at the ends than in the middle. The only specific active site 

feature we can discern is the presence of an anionic residue in the active site of 2D6 

influencing the regioselectivity of cationic substrates.
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It should be noted that since neither our model nor MetaSite can explain more than about 

70% of the regioselectivity data in the literature (assuming the literature data is for the most 

part correct), some critical information is likely missing in current modeling efforts, and 

more work is needed. Certainly, at present, it makes sense for a chemist to look at 

predictions from all available methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The topological substructure descriptors (SS, SS-A, SS-B) and physiochemical environment 

(PE) descriptors for an atom (indicated by arrow) in an example molecule. The number near 

each atom is it's physiochemical type (1=cation, 3=H-bond donor, 6=hydrophobe, 7=other). 

Also indicated is the ratio for the SPAN descriptor that determines whether an atom is at the 

end or middle of a molecule based on its topology.
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Figure 2. 
Molecule-scaled prediction plots for the cross-validated predictions. The y-axis is the 

molecule-scaled prediction from 0 to 1. Atoms in one molecule fall in a single column. 

Molecules are ordered from left to right based on the Z-score, how much higher the 

observed oxidation sites (blue squares) are predicted relative to the other atoms in a 

molecule (red squares).
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Figure 3. 
Example molecules in the calibration set that are well-predicted and poorly predicted in 

cross-validation by the QSAR models. Observed oxidation sites are circled. The large arrow 

points to the atom with the highest cross-validated prediction in the molecule (molecule-

scaled prediction=1). The smaller arrows are for molecule-scaled predictions > 0.5. The 

number after the molecule name is the Z-score for that molecule. Molecule nomenclature is 

from the original citations.
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Figure 4. 
Example molecules in the external set that are well-predicted and poorly predicted by full 

QSAR models. The same conventions are used for as for Figure 3.

Sheridan et al. Page 27

J Med Chem. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sheridan et al. Page 28

J Med Chem. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
ROC curves (using molecule-scaled predictions) comparing the cross-validated predictions 

of the QSAR model with predictions from other models of CYP regioselectivity.
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Table 2

Twenty most important descriptors for QSAR models.

Descriptor Importance

3A4 all nonhydrogen atoms

CX1sp3-NX3sp3 19.304

HYDROGENAREA_SUMAREA 18.269

1_1 15.726

CX1sp3-NX3sp3-CX1sp3 14.709

HYDROGENAREA_MAXAREA 14.368

HYDROGENAREA_MEANAREA 13.125

HYDROGENAREA_MINAREA 12.349

CX1sp3-NX3sp3-CX2sp3-CX2sp3 11.419

SPAN_RATIO 10.523

CX1sp3-NX3sp3-CX2sp3 10.337

HYDROGENAREA_NHYD 9.420

SPAN_MAXDISTMOL 7.294 *

CX2sp3-NX3sp3-CX2sp3 7.020

SPAN_DISTFURTHESTNEIGHBOR 6.810 *

6_1 6.406 *

6_3 5.893 *

6_5 5.812 *

6_4 5.015 *

6_6 4.959 *

SX2sp3 4.881

3A4 sp3 carbon with H

1_1 16.368

CX1sp3-NX3sp3-CX2sp3 11.224

CX1sp3-NX3sp3 10.804

HYDROGENAREA_MEANAREA 9.568

HYDROGENAREA_SUMAREA 9.549

6_1 9.214 *

CX1sp3-NX3sp3-CX1sp3 8.329

SPAN_RATIO 8.132

HYDROGENAREA_MAXAREA 7.620

HYDROGENAREA_MINAREA 7.438

SPAN_MAXDISTMOL 6.862 *

6_5 6.313 *

SPAN_DISTFURTHESTNEIGHBOR 5.189

CX1sp3-NX3sp3-CX2sp3-CX2sp3 4.998

CX2sp3-NX3sp3-CX2sp3-CX1sp3 4.803
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Descriptor Importance

6_4 4.563 *

6_3 4.353 *

6_2 4.320 *

CX2sp3-NX3sp3-CX2sp3 4.310

6_8 4.168

3A4 sp2 carbon with H

REGIO8_MAXDISTMOL 2.278 *

6_3 2.126 *

HYDROGENAREA_MEANAREA 2.071

HYDROGENAREA_MINAREA 1.964

HYDROGENAREA_MAXAREA 1.963

SPAN_RATIO 1.887

SPAN_DISTFURTHESTNEIGHBOR 1.805 *

HYDROGENAREA_SUMAREA 1.696

CX2sp2-CX3sp2-OX1sp3 1.476

6_6 1.053 *

5_2 0.990

6_4 0.944 *

7_3 0.902

CX2sp2-CX3sp2-ClX1sp3 0.878

a6-a6-a6-a6 0.844

6_7 0.840 *

6_8 0.821 *

6_5 0.766 *

3_4 0.755

CX2sp2-CX2sp2-CX2sp2 0.713

2D6 all nonhydrogen atoms

HYDROGENAREA_SUMAREA 10.569

HYDROGENAREA_MEANAREA 7.888

HYDROGENAREA_MAXAREA 7.559

CX1sp3-OX2sp3-CX3sp2-CX2sp2 6.896

SPAN_RATIO 6.710

HYDROGENAREA_MINAREA 6.453

CX1sp3-OX2sp3-CX3sp2 5.507

HYDROGENAREA_NHYD 5.284

CX1sp3 4.804

CX1sp3-OX2sp3 4.627

CX2sp2-CX2sp2-CX2sp2-CX3sp2 3.131

6_1 3.055 *
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Descriptor Importance

SPAN_MAXDISTMOL 2.816 *

6_3 2.720 *

CX1sp3-CX3sp2-CX2sp2 2.538

SPAN_DISTFURTHESTNEIGHBOR 2.531

6_4 2.441 *

n-n-a6 2.376

4_1 2.337

6_2 2.216 *

2C9 all nonhydrogen atoms

HYDROGENAREA_SUMAREA 7.104

HYDROGENAREA_MAXAREA 6.227

HYDROGENAREA_MEANAREA 5.680

HYDROGENAREA_MINAREA 5.574

SPAN_RATIO 5.189

CX1sp3 3.729

HYDROGENAREA_NHYD 3.428

SPAN_MAXDISTMOL 2.914 *

CX1sp3-OX2sp3-CX3sp2-CX2sp2 2.777

6_3 2.361 *

SPAN_DISTFURTHESTNEIGHBOR 2.313

CX1sp3-CX3sp2-CX2sp2 2.164

CX2sp2-CX2sp2-CX2sp2-CX3sp2 1.988

CX1sp3-OX2sp3-CX3sp2 1.975

6_2 1.790 *

6_8 1.690

6_1 1.689 *

6_4 1.642 *

CX1sp3-OX2sp3 1.614

a6-a6-a6-a6 1.603 *
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Table 3

Measures of goodness for regioselectivity models for the calibration sets.

CYP Method of prediction Area under ROC curve Mean Z-score % of molecules where top 2 atoms contain 
oxidation site

3A4 N=316 QSAR 20X cross-validated 0.924 (0.916)a 7.83 (5.85) 77 (74)

Singh et al. 0.803 (0.796) 1.08 (1.05) 51 (50)

MetaSite Averaged Ranking 0.853 (0.854) 2.72 (2.79) 62 (61)

2D6 N=124 QSAR 20X cross-validated 0.931 (0.927) 9.32 (8.05) 72 (70)

Singh et al. 0.735 (0.746) 0.86 (0.87) 24 (25)

MetaSite Averaged Ranking 0.891 (0.886) 3.47 (3.39) 65 (64)

2C9 N=92 QSAR 20X cross-validated 0.894 (0.855) 6.74 (5.06) 73 (68)

Singh et al. 0.783 (0.785) 1.10 (1.11) 31 (33)

MetaSite Averaged Ranking 0.862 (0.862) 3.26 (3.06) 69 (66)

a
Number in parenthesis is for the corresponding diverse dataset.
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Table 4

Measures of goodness for the external sets.

CYP Method of prediction Area under ROC curve Mean Z-score % of molecules where top 2 atoms contain 
oxidation site

3A4 N=19 QSAR full model 0.901 7.61 84

Singh et al. 0.797 1.03 58

MetaSite Averaged Ranking 0.853 1.94 58

2D6 N=10 QSAR full model 0.934 17.90 70

Singh et al. 0.842 1.38 50

MetaSite Averaged Ranking 0.949 3.38 70

2C9 N=9 QSAR full model 0.937 7.43 67

Singh et al. 0.866 1.50 67

MetaSite Averaged Ranking 0.920 3.06 67
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