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Abstract
We performed a pilot proteogenomic study to compare lung adenocarcinoma to lung squa-

mous cell carcinoma using quantitative proteomics (6-plex TMT) combined with a custom-

ized Affymetrix GeneChip. Using MaxQuant software, we identified 51,001 unique peptides

that mapped to 7,241 unique proteins and from these identified 6,373 genes with matching

protein expression for further analysis. We found a minor correlation between gene expres-

sion and protein expression; both datasets were able to independently recapitulate known

differences between the adenocarcinoma and squamous cell carcinoma subtypes. We

found 565 proteins and 629 genes to be differentially expressed between adenocarcinoma

and squamous cell carcinoma, with 113 of these consistently differentially expressed at

both the gene and protein levels. We then compared our results to published adenocarci-

noma versus squamous cell carcinoma proteomic data that we also processed with Max-

Quant. We selected two proteins consistently overexpressed in squamous cell carcinoma

in all studies, MCT1 (SLC16A1) and GLUT1 (SLC2A1), for further investigation. We found

differential expression of these same proteins at the gene level in our study as well as in

other public gene expression datasets. These findings combined with survival analysis of

public datasets suggest that MCT1 and GLUT1 may be potential prognostic markers in ade-

nocarcinoma and druggable targets in squamous cell carcinoma. Data are available via

ProteomeXchange with identifier PXD002622.
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Introduction
Recent developments in liquid chromatography and high-resolution mass spectrometry (MS)
have allowed for highly precise, comprehensive characterization of proteomes [1]. Proteoge-
nomics, which combines discovery proteomics with genomic technologies, has emerged as an
important tool in the understanding of the complexities of the tumor genome and how they
are integrated into a functional proteome [2]. Groups such as the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) are taking advantage of these advances and setting the bar high
with thorough proteogenomic characterizations of a large numbers of tumor samples (i.e.,
cohorts of ~100 patients) [3]. There are several computational challenges to performing pro-
teogenomic studies [4]. New tools and pipelines have been developed to tackle these problems,
but a one-size-fits-all solution remains elusive [5–9].

Sample throughput is an issue in MS-based discovery proteomics because the necessary bio-
logical and technical replicates easily generate dozens of samples. These numbers can expand
significantly when analyzing large groups of patient samples in order to develop specific bio-
markers or molecular classification schemes, and these numbers can expand even further if
samples are fractionated using chromatographic methods in order to increase the depth of pro-
teome coverage. One solution to this increasing sample number problem is to utilize multiplex-
ing methods with isobaric chemical labeling reagents [e.g., tandem mass tag (TMT) or isobaric
tags for relative and absolute quantitation (iTRAQ)]. These methods provide a means for par-
allelization by running many samples simultaneously in a single mass spectrometer [10].

Proteomic methods are often being used to comprehend the underlying biology of lung can-
cer and to identify potential biomarkers [11], and proteomic profiling is showing promise for
clinical use [12,13]. Proteomic comparisons of two prominent non-small cell lung cancer
(NSCLC) subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SCC), have been
previously reported using label-free quantification and SILAC [14–17], and some proteoge-
nomic studies of ADC and SCC have also been undertaken [18,19]. Our first goal was to under-
stand how a TMT-based proteogenomics study would perform in our hands experimentally
and to determine whether special considerations would arise while analyzing TMT-derived
data. If our results were promising, then our next goal was to use a TMT-based proteogenomic
approach, moving forward with a larger study with more patient samples. Here, we undertook
a pilot proteogenomic study of three ADC and three SCC tissue samples using 6-plex TMT
and a custom Affymetrix microarray [Gene Expression Omnibus (GEO) no. GPL15048]. Max-
Quant was used to identify peptides and to extract and quantify reporter ion intensities for
comparison of ADC and SCC tissues [20]. We then compared our results to previously pub-
lished studies that used different discovery proteomic strategies in order to identify prevalent
candidate biomarkers (see Table 1).

Materials and Methods

Sample Preparation for Liquid Chromatography-Mass Spectrometry
This study was approved by Liberty IRB Inc., an independent review board company, under
Institutional Review Board approval number 12.11.0023. Tissue samples for this analysis were
from patients who had provided prospective written informed consent to be included in Mof-
fitt’s Total Cancer Care1 (TCC) institutional protocol. Quantitative proteomic analysis was per-
formed on tumor tissues isolated from six individual patients: three diagnosed with lung ADC
and three with SCC (S1 Table). To aid tissue lysis, frozen samples were macerated in a tissue
pulverizer. The pulverizer was then rinsed with 2 mL water, and each sample transferred to a
2-mL Eppendorf tube to lyse erythrocytes. Samples were centrifuged at 5,000g for 2 min, and
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the supernatant was removed. Lysis buffer (1.0 mL of 50 mMHEPES, pH 8.5, supplemented
with 2% SDS) was added, and the samples were incubated for 20 min at room temperature. The
samples were then heated for 5 min at 99°C and sonicated (Covaris) to reduce viscosity. After
centrifugation at 16,000g for 15 min, the supernatant was collected. The protein amount in
each sample was determined by using the bicinchoninic protein assay (Pierce Biotechnology/
ThermoFisher Scientific, Waltham, MA) followed by an adaptation of the filter-aided sample
preparation method [21,22]. Three samples each of ADC and SCC (100 μg of lung tissue lysate)
were reduced with 100 mM dithiothreitol at 99°C for 5 min and transferred into VIVACON
500 filter units (Vivaproducts Inc., Littleton, MA). SDS-containing buffer was removed from
the sample by centrifugation and exchanged with 8 M urea in 100 mM Tris-HCl buffer. Proteins
were alkylated with 50 mM iodoacetamide and washed with 50 mM triethyl ammonium bicar-
bonate. Porcine trypsin (Promega Corp., Madison, WI) was used to digest the proteins in an
enzyme-to-protein ratio of 1:100 (wt/wt).

For relative protein quantitation, the six samples were separately derivatized with 6-plex
TMT reagents (ThermoFisher Scientific), according to the instructions provided by the manu-
facturer. The ADC and SCC samples were labeled with TMT 126, 127, 128 and TMT 129, 130,

Table 1. NSCLC Proteomics Summary.

Stewart et al. Kikuchi et al. [15] Li et al. [19]

Replicates

ADC samples 3 4 (20)* 7

SCC samples 3 4 (20)* 4

Quantification 6-plex TMT label-free label-free

Fractions 50 20 1

Total MS run time 98 min 95 min 300 min

Intensities (log2)

Type Reporter Ion Peptide Peptide

Mean 11.4 21.55 17.72

Median 11.5 21.84 18.94

Standard deviation 1.43 3.11 4.42

Minimum (non-zero) 4.42 15.94 10.02

Maximum 17.57 34.15 31.27

Peptides

Unique peptides 51,001 18,198 39,048

Missing peptide intensities 395 (0.1%) 23,287 (16%) 92,255 (21%)

Mean peptide length 12.26 13.58 15.99

Mean posterior error probability score 0.0057 0.0046 0.0070

Proteins

Unique proteins 7,241 4,850 4,562

Single peptide protein identifications 1527 (21%) 1492 (31%) 752 (16%)

Peptides per protein 7.04 3.75 8.56

Differential Proteins (ADC vs SCC)

with P < 0.05 565 1,528 244

with P < 0.05 and fold-change > 1.5 or < 0.6667 279 1,465 231

with P < 0.01 113 869 66

with P < 0.001 11 431 11

*Kikuchi et al. used 4 pools of the same 20 samples in their analyses.

doi:10.1371/journal.pone.0142162.t001
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131, respectively. The labeled tryptic digests were pooled and concentrated by solid-phase
extraction (MacroSpin columns 30–300 μg capacity; The Nest Group Inc., Southborough,
MA). Samples were basified with 20 mM ammonium formate prior to injection onto a
reversed-phase column (150×2.0 mm Gemini1NX-C18 3 μm 110Å; Phenomenex, Torrance,
CA) using an Agilent 1200 series high-performance liquid chromatography (HPLC; Agilent
Biotechnologies, Palo Alto, CA) with ultraviolet detection at 214 nm with solvent A (20 mM
ammonium formate, pH 10, in 5% acetonitrile) and solvent B (20 mM ammonium formate,
pH 10, in 90% acetonitrile). Peptides were separated at a flow rate of 100 μL/min and eluted
from the column with a linear gradient from 0% to 70% solvent B. Seventy-two time-based
fractions were collected into a 96-well plate, with the first 18 and last 7 fractions pooled into 3
and together with all other fractions transferred to a total of 50 HPLC vials. Samples were acidi-
fied with 5% formic acid, organic solvent was removed in a vacuum concentrator at 45°C, and
peptides were resolubilized and diluted in 100 to 400 μL of 5% formic acid, depending on the
intensities of the individual ultraviolet traces [23]. Individual fractions were analyzed at pH 2.4
on an Agilent 1200 nano-HPLC system (Agilent Biotechnologies, Palo Alto, CA) coupled to a
hybrid linear trap quadrupole Orbitrap Velos mass spectrometer (ThermoFisher Scientific) uti-
lizing the Xcalibur software version 2.1 for data acquisition. Single fractions were loaded onto a
trap column (Zorbax 300SB-C18 5 μm, 5 × 0.3 mm; Agilent Biotechnologies, Palo Alto, CA)
with a binary pump at a flow rate of 45 μL/min. Loading and washing solvents were composed
of 0.1% trifluoroacetic acid in water (solvent A) and 0.1% trifluoroacetic acid in 70% methanol
and 20% isopropanol (solvent B). The peptides were eluted by back-flushing from the trap col-
umn onto a 16-cm fused silica analytical column with an inner diameter of 50 μm packed with
C18 reversed-phase material (ReproSil-Pur 120 C18-AQ, 3 μm, Dr. Maisch GmbH, Ammer-
buch-Entringen, Germany). LC-MS solvents were composed of 0.4% formic acid in water (sol-
vent A) and 0.4% formic acid in 70% methanol and 20% isopropanol (solvent B). Elution was
achieved with a 27-min gradient ranging from 3% to 30% solvent B, followed by a 25-min gra-
dient from 30% to 70% solvent B and, finally, a 7-min gradient from 70% to 100% solvent B at
a constant flow rate of 100 nL/min.

The analysis was performed in data-dependent acquisition mode. The 10 most intense ions
were isolated and fragmented by higher-energy collision-induced dissociation (HCD) for pep-
tide identification and relative quantitation of TMT reporter ions. Dynamic exclusion for
selected ions was 60 sec and a single lock mass atm/z 445.120024 (Si(CH3)2O)6) was used for
internal mass calibration.[24] The maximally allowed ion accumulation time was set to 500
and 200 ms for MS1 and MS2 scans, respectively. Overfilling of ion traps was prevented by
automatic gain control set to 106 ions for a full Fourier transform MS scan and 5×105 ions for
MS2 HCD scans. Intact peptides were detected in the Orbitrap mass analyzer at a resolution of
30,000 with a signal threshold of 2,000 counts for triggering an MS/MS event. HCD-MS2 spec-
tra were acquired with 1 microscan at a resolution of 7,500. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD002622 [25].

MaxQuant
Raw files from the Kikuchi et al. study were obtained directly from the authors, and raw files
from the Li et al. study were obtained from ProteomeXchange (http://www.proteomexchange.
org/) [25]. Raw files were grouped and analyzed by study using MaxQuant version 1.5.1.2.
Peaks were searched against the UniProt human database (20,193 sequences; released August
2014; http://www.uniprot.org) with the Andromeda search engine [26]. When possible, all raw
files were processed using similar parameters; however, workflow-specific changes were
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needed: the TMT data were processed by setting the “type” parameter to “reporter ion” and
selecting the relevant TMT 6-plex settings. At least seven amino acids per peptide were
required, and as many as two missed cleavages were allowed. A false discovery rate of 0.01 was
used for both peptides and proteins. The “match between runs” option was selected using a
time window of 4 min. N-terminal acetylations or methionine oxidations were both modifica-
tions allowed in protein quantification. MaxQuant results were manually spot-checked using
the MS browser, OpenChrom [27].

Affymetrix Gene Microarray
Tissues were processed and assessed for RNA quality according to the TCC protocol prior to
expression analysis. The six lung tumor samples were profiled using a custom Affymetrix Gen-
eChip that measures the expression of 60,607 distinct transcripts (GEO GPL15048). All probes
with standard deviation> 1 (11,008 or 18% of total probes) were used for the gene expression
heat map.

Peptide and Protein Data Processing
Peptide intensities were extracted from MaxQuant output and input into Libaffy [28]. Libaffy
consists of a set of routines for accessing the various file types and post-processing them using
a variety of algorithms, including iterative rank-order normalization (IRON) [28–30]. Peptide
intensities were normalized using IRON with proteomic parameters and then input into
R/RStudio with corresponding metadata [31,32]. Peptides were filtered for posterior error
probability> 0.1, reverse sequences, non-human contaminant peptides, and missingness. Pep-
tides were excluded from further analysis if there were more missing values than the larger of
the two NSCLC sample sizes. Remaining peptide intensities were log2-transformed and
mapped to possible protein matches.

In the event that peptides mapped to multiple proteins, called the protein inference prob-
lem, MaxQuant will choose the protein from a set of peptides based on which protein has the
most matching peptides and would thus be perceived to be the most abundant [33]. Constitu-
ent peptide intensities are then summed in MaxQuant to give the resulting protein intensity.
The major drawback to this approach is that the next most abundant protein or proteins, even
if they are very close to the abundance of the first protein, will not be included in the results.
Additionally, the authors of MaxQuant point out that selecting the protein with the most pep-
tides might not always be the best decision [34]. Furthermore, the process of summing the pep-
tide intensities to obtain the protein intensity can artificially lower the final protein intensity in
the case of missing data, and this can be a pervasive issue since proteomic data are rife with
missingness [35]. We implemented a more liberal peptide-to-protein mapping methodology to
address these issues. We began by mapping peptides to all possible proteins, and we then took
the weighted mean (also known as Tukey’s biweight; implemented in the R Bioconductor pack-
age “affy”) to obtain a protein intensity that is more robust than the summation of intensities
[36–38]. The weighted mean penalizes outlier values in its calculation so it will more closely
reflect the true intensity values for a particular protein. AWelch two-sample T-test was used
on the resulting protein intensities to ascertain differentially expressed proteins between ADC
and SCC.

We generated mapping tables using data from International Protein Index, UniProt, and
Genbank to match the microarray probes to proteins. If a protein had multiple matching
probes, then we chose the probe with the highest average intensity to use as the gene expres-
sion. Because our goal was to compare the gene expression to the protein expression, we
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filtered to only include results that were in both the protein expression dataset and the gene
expression dataset.

Statistical Analyses
Concordance of gene and protein expression was measured using both Pearson correlation
(herein referred to as R) and Spearman correlation (herein referred to as ρ). Clustering was per-
formed using Pearson correlation as a similarity measure and complete linkage to create the
dendrogram for the heat maps. Welch two-sample, two-sided T-tests were used to compare
expression of genes and proteins. In general, a significance level of 0.05 was used for statistical
testing, and we reported the P value or significance level any time a statistical test was per-
formed. Unless otherwise noted, P values were not adjusted for multiple hypothesis testing.

We used KM Plotter (http://www.kmplot.com) to perform survival analysis of MCT1 and
GLUT1 in ADC and SCC [39]. This tool facilitates combined survival analysis across multiple
microarray datasets including The Cancer Genome Atlas (TCGA), GEO, and caArray. Data
was normalized using the MAS5 algorithm and a second scaling normalization was used to
reduce batch effects. Only probes that are in common across all datasets were used. KM Plotter
provides a user-friendly interface to the R programming language (“survival” Bioconductor
package) to perform univariate and multivariate Cox regression (including estimating hazard
ratios), generate Kaplan-Meier curves, and calculate logrank P values. KM Plotter was accessed
March 2015 for the univariate analyses and October 2015 for the multivariate analyses.

Results

Quantitative Proteomics Identifies Differences Between NSCLC
Subtypes
Quantitative proteomic analysis was performed on three lung ADC and three lung SCC tumor
samples. MaxQuant reporter ion intensities for peptide expression were compared across sam-
ples, and on average we were able to identify 27.24% of the MS/MS spectra across the sample
fractions or 51,001 unique peptides with posterior error probability< 0.1 and false discovery
rate< 0.01. We then used Tukey’s biweight to combine these peptides into 7,241 unique pro-
teins (see Methods for details). Unsupervised, hierarchical clustering of these proteins identi-
fied the two histologic subtypes (ADC and SCC; Fig 1A). We found 279 of 7,241 (5%) proteins
to be differentially expressed between ADC and SCC (P< 0.05 and fold-change> 1.5
or< 0.6667). Differentially expressed proteins included p63, cytokeratin 5 and cytokeratin 6,
and PKP1, which are consistent with the SCC phenotype (S2 Table) [40–43]. Enriched path-
ways (S3 Table) were identified using GeneGOMetacore and included cytoskeleton remodel-
ing and cell adhesion pathways. These pathways contained p63, cytokeratins, and PKP1, again
consistent with the SCC subtype.

Comparisons of Labeled and Label-Free Proteomic Studies of NSCLC
We then compared our quantitative results to published proteomic studies of ADC and SCC.
To reduce analytical variability in our cross-study comparison, we used MaxQuant and the
same analysis pipeline to process publically available ADC and SCC lung tissue data from
Kikuchi et al. and Li et al. (Table 1) [15,19]. Our dataset identified 51,001 unique peptides, the
Li et al. data had 39,048 unique peptides, and the Kikuchi et al. data had 18,198 unique pep-
tides. There were 6,372 peptides in common between the three datasets (Fig 2A). Peptides that
overlapped between our results and the other studies showed low correlation (Fig 3A and 3B).
Our data had 395 missing reporter ion intensities (0.1% of all peptide intensities from this
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Fig 1. Proteogenomic Data Recapitulates NSCLC Histology. (A) Clustering of all identified proteins
(7,241) from quantitative TMT analysis group tissues by ADC/SCC histology. (B) Clustering of Affymetrix
array probes with standard deviation > 1 (11,008 or 18% of total probes) also groups tissues by ADC/SCC
histology.

doi:10.1371/journal.pone.0142162.g001

Fig 2. Overlap Between Proteomic Datasets. (A) Peptide overlap between proteomic datasets. (B) Protein
overlap between proteomic datasets. (C) Differentially expressed protein overlap between proteomic
datasets. D) Differentially expressed protein overlap between proteomic datasets, excluding proteins not
sharing the same direction of change.

doi:10.1371/journal.pone.0142162.g002
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dataset), the Kikuchi et al. data had 23,287 missing peptide intensity values (16% of all peptide
measurement from this dataset were affected), and the Li et al. data had 92,255 missing peptide
intensity values (21% of all peptide measurements from this dataset were affected). Peptide
lengths (S1A Fig) between our data (mean length = 12.26) and the others (Kikuchi et al. mean
length = 13.58, Li et al. mean length = 15.99) were significantly different by a Mann-Whitney/
Wilcoxon rank-sum test (P< 0.05). This may be explained by the increased fractionation
enabling additional sequencing of shorter peptides or by the increased mass and trend toward
higher charge states from addition of the covalent TMT modifier.

Data from our study yielded 7,241 unique proteins (7.04 peptides per protein), the Kikuchi
et al. data had 4,850 unique proteins (3.75 peptides per protein), and the Li et al. data had 4,562
unique proteins (8.56 peptides per protein). We had 1,527 proteins (21%) identified from a sin-
gle peptide, the Kikuchi et al. data had 1,492 (31%), and the Li et al. data had 752 (16%) (S1B–
S1D Fig). There were 3,453 proteins (48% of total identified proteome from our quantitative
TMT data) in common between experiments (Fig 2B). Our data and the Kikuchi et al. data had
about an order of magnitude drop (13.67 times and 14.46 times, respectively) between the

Fig 3. Comparison with Existing NSCLC Proteomic Datasets.Mean intensities are given in log2 scale. (A)
The correlations between reporter ion intensities and peptide intensities from Kikuchi et al. were low (R = 0.3,
P < 2.2E-16; ρ = 0.26, P < 2.2E-16). (B) As with the Kikuchi et al. data, correlations between reporter ion
intensities and peptide intensities from Li et al. were also low (R = 0.23, P < 2.2E-16; ρ = 0.21, P < 2.2E-16).

doi:10.1371/journal.pone.0142162.g003

Table 2. Differentially Expressed Proteins fromQuantitative TMT Shared Between Proteomic
Datasets.

Protein Peptide Count Log2 Fold-Change T-test P Value

KRT6C 80 2.57 0.043

KRT6A 88 2.56 0.044

KRT6B 82 2.42 0.046

PKP1 38 2.2 0.03

MCT1 7 1.88 0.004

COL7A1 15 1.47 0.011

GLUT1 6 1.46 0.041

ABCF3 11 0.73 0.013

LMO7 38 -0.94 0.001

Italics denote entries that were also differentially expressed at the gene level. Log2 fold-change was

calculated as log2(SCC/ADC).

doi:10.1371/journal.pone.0142162.t002
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number of unique identified peptides and unique identified proteins, whereas the Li et al. data
showed a decrease of two orders of magnitude (102.00 times). The Kikuchi et al. data had the
most differentially expressed proteins (P< 0.05 and fold-change> 1.5 or< 0.6667) with 1,465
(31%), the quantitative TMT data had 279 differentially expressed proteins (4%), and the Li
et al. data had 231 differentially expressed proteins (5%; Fig 2C). Noticeably, the Kikuchi et al.
data had 6.46 times more unique differentially expressed proteins than our data. A majority of
the overlapping, differentially expressed proteins also shared the same direction of change (Fig
2D). Nine differentially expressed proteins were observed in all three datasets (Table 2), and
seven of these nine differentially expressed proteins were more than two-fold higher in SCC
compared to ADC. LMO7, a zinc-binding protein thought to have tumor suppressor activity in
lung cancer, was the only commonly differentially expressed protein higher in ADC [44]. Both
MCT1 (a lactate transporter; SLC16A1) and GLUT1 (a glucose transporter; SLC2A1) were sig-
nificantly higher in SCC at the protein level (P< 0.05).

Combining Differentially Expressed Proteins Across Studies Yields a
Number of Significantly Enriched Pathways in ADC and SCC
Differentially expressed proteins from each study were simultaneously searched against Gen-
eGO (Table 3, S4 Table). Eighty-four pathways were found enriched in SCC and 44 were
enriched in ADC (P< 0.01). We found Wnt-related pathways enriched in the SCC subtype,

Table 3. Top Enriched Pathways from Combined Results.

Pathway No. of
Proteins

P Value

Enriched in SCC (higher relative to ADC)

Cytoskeleton remodeling—Keratin filaments 21 2.61E-17

Cytoskeleton remodeling—Cytoskeleton remodeling 30 6.78E-14

Cytoskeleton remodeling—TGF, WNT and cytoskeletal remodeling 25 4.32E-09

Cytoskeleton remodeling—Reverse signaling by ephrin B 10 6.80E-06

LRRK2 in neurons in Parkinson's disease 12 1.80E-07

Development—TGF-beta-dependent induction of EMT via RhoA, PI3K and
ILK.

14 2.20E-07

Cell adhesion—Endothelial cell contacts by junctional mechanisms 10 1.07E-06

Blood coagulation—Blood coagulation 12 1.43E-06

Cytoskeleton remodeling—Regulation of actin cytoskeleton by Rho
GTPases

9 3.16E-06

Cytoskeleton remodeling—Reverse signaling by ephrin B 10 6.80E-06

Enriched in ADC (higher relative to SCC)

Immune response—Antigen presentation by MHC class II 6 3.18E-07

Protein folding and maturation—Posttranslational processing of
neuroendocrine peptides

8 5.57E-05

Transport—Clathrin-coated vesicle cycle 9 1.26E-04

Transport—Alpha-2 adrenergic receptor regulation of ion channels 7 2.60E-04

Cytoskeleton remodeling—Keratin filaments 6 3.86E-04

Cell adhesion—Tight junctions 6 3.86E-04

Cell adhesion—Endothelial cell contacts by junctional mechanisms 5 6.04E-04

Neurophysiological process—Dopamine D2 receptor transactivation of
PDGFR in CNS

5 6.04E-04

Mitochondrial dysfunction in neurodegenerative diseases 7 1.07E-03

Cell adhesion—Gap junctions 5 1.20E-03

doi:10.1371/journal.pone.0142162.t003
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consistent with previous findings [41]. Proteins related to glycolysis, including MCT1, were
downregulated whenWnt signaling was inhibited in colon cancer cells [45], so the enrichment
of Wnt signaling and the expression of glycolytic enzymes like MCT1 and GLUT1 may be sim-
ilarly linked in SCC. We also found a glutathione metabolism pathway enriched in SCC (S4
Table). This is intriguing since there are known links between glutathione and cancer as well as
drug resistance in lung cancer [46,47], and it has been shown that inhibiting MCT1 disables
glutathione synthesis and glycolysis in cancer cells [48].

Gene Expression Recapitulates Known Differences Between NSCLC
Subtypes and Demonstrates Minor Protein-Gene Expression
Correlation
An Affymetrix microarray was used to characterize the same cohort of 3 ADC tissue and 3
SCC tissues from our quantitative proteomic study (S5 Table). We first clustered gene expres-
sion to determine whether it could recapitulate the ADC and SCC subtypes in a small sample
set (Fig 1B). We then identified 6,373 genes with matching protein expression for further anal-
ysis. The pairwise correlation between all protein expressions and gene expressions was low
(R = 0.13, P< 2.2E-16; ρ = 0.16, P< 2.2E-16) (Fig 4A), but correlations grouped by protein
and corresponding gene were higher by Pearson’s method (mean R = 0.34, Fig 4B) and Spear-
man’s method (mean ρ = 0.31). These results are comparable with the recent CPTAC colon
cancer proteogenomic study (ρ = 0.23) as well as results fromWilhelm et al. (ρ = 0.31 to 0.56)
[3,49]. We found 980 gene/protein observations to be significantly correlated by Pearson’s
method (P< 0.05 and R> 0.5; Table 4) and 582 by Spearman’s method (P< 0.05 and

Fig 4. Gene and Protein Expression ShowMinor Correlations Across Samples.Mean intensities are
given in log2 scale. (A) Pairwise protein expression and corresponding gene expression across all samples.
(B) Pearson correlations grouped by protein and corresponding gene. Values with Pearson R > 0 are colored
yellow. The mean Pearson correlation, including all positive and negative correlations, was 0.34.

doi:10.1371/journal.pone.0142162.g004

Table 4. Gene and Protein Expression Agreement.

No. matched 6373

No. significantly correlated 980

No. differentially expressed proteins 493

No. differentially expressed genes 629

No. gene/protein overlap 119

Mean Pearson Correlation 0.79

No. Fold-change agreement 113

doi:10.1371/journal.pone.0142162.t004
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ρ> 0.5). Of the 6,373 matched genes, 629 were differentially expressed (P< 0.05) and included
genes consistent with the ADC and SCC subtypes (e.g., p63 expression, cytokeratin expres-
sion). Similarly, 493 of the 6,373 matched proteins were significant (P< 0.05). Looking at the
intersection of the datasets, 119 were differentially expressed at both the gene and protein lev-
els. As expected, the mean correlation between these 119 significant gene and protein pairs was
higher (R = 0.79; ρ = 0.76), and 113 pairs (95%) changed in the same direction between ADC
and SCC. Six of the nine commonly differentially expressed proteins in Table 2 were also differ-
entially expressed at the gene expression level. This included both the MCT1 gene expression
that was 9.75 times higher in SCC than in ADC (P = 0.06; S5 Table) and the GLUT1 gene
expression that was 4.78 times higher in SCC compared to ADC (P = 0.02; S5 Table).

Protein Expression, Gene Expression, and Survival Analysis Suggest
MCT1 and GLUT1 May Be Prognostic Markers in ADC but not in SCC
We chose to further investigate the implications of the MCT1 and GLUT1 findings since can-
cer cells rely on aerobic glycolysis and produce excess lactate via the Warburg effect [50].
MCT1 is expressed in most tissues at low levels [51], and MCT1 is known to be higher in squa-
mous cell lung cancer and metastatic lung cancer [41,48,52–56]. The primary studies by Kiku-
chi et al. and Li et al. both did not identify MCT1 in normal samples but did in SCC samples.
Kikuchi et al. did not identify MCT1 in ADC samples; however, Li et al. did identify MCT1 in
one ADC sample. An analysis of three microarray datasets by Shi et al. found MCT1 consis-
tently upregulated in SCC [41]. Schuurbiers et al. observed an increase of MCT1 and GLUT1
in SCC over ADC via immunofluorescent staining and qPCR [56]. At the RNA expression
level, both MCT1 and GLUT1 were significantly higher in SCC than in ADC in TCGA lung
cancer data (ADC = 490, SCC = 491, P< 2.2E-16; Fig 5A). We found similar findings in the
Sanchez-Palencia et al. GEO dataset (GSE18842; ADC = 12, SCC = 31): MCT1 and GLUT1
gene expression were significantly higher in SCC than in ADC (5.71 times higher/P = 6.06E-6
and 5.96 times higher/P = 3.21E-6, respectively; Fig 5B) [55]. Furthermore, MCT1 gene expres-
sion in ADC tumors and compared to matched normal tissues was not significantly different
(P = 0.18), but GLUT1 gene expression was 7.17 times higher in ADC tumors than in matched
normal samples (P = 1.40E-06; Fig 5B). MCT1 and GLUT1 gene expression were both signifi-
cantly higher in SCC tumors compared to matched normal tissues (9.16 times higher/
P< 2.2E-16 and 41.08 times higher/P< 2.2E-16, respectively; Fig 5B).

Elevated MCT1 is reported to be a hallmark of MYC-driven malignancies [48]. We did not
observe MYC, MYCL, or MYCN in our quantitative TMT results, the Kikuchi et al. results, or
the Li et al. results; therefore, we tested the relationships between MYC, MYCL, MYCN, and
MCT1 in the aforementioned TCGA lung cancer dataset to further investigate. MYC was 2.29
times higher (P< 2.2E-16), MYCL was 2.13 times higher (P< 2.2E-16), and MYCN was 1.31
times higher (P< 2.2E-16) in SCC compared with ADC. However, the correlation between
MYC and MCT1 was about the same in both ADC (R = 0.28, P = 3.31E-10; ρ = 0.28,
P = 9.46E-10) and SCC (R = 0.27, P = 1.05E-9; ρ = 0.23, P = 2.12E-07). Correlation between
MYCL and MCT1 was negligible in ADC (R = -0.06, P = 0.21; ρ = -0.13, P = 4.84E-3) and in
SCC (R = -0.06, P = 0.20; ρ = -0.04, P = 0.37). Correlation between MYCN and MCT1 was also
negligible in both ADC (R = -2.94E-3, P = 0.94; ρ = 3.29E-3, P = 0.94) and SCC (R = -5.7E-3,
P = 0.90; ρ = -0.06, P = 0.19). It is possible that elevated MYC expression in SCC tissues could
be causing downstream elevation of MCT1, but there is not clear numerical evidence to sup-
port this.

Interestingly, Eilertsen et al. found MCT1 to be an independent prognostic marker for sur-
vival in NSCLC patients [53]. Furthermore, this same study shows that high expression of both
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MCT1 and GLUT1 has a negative impact on survival in NSCLC patients. Eilertsen’s patient
cohort included both ADC and SCC, and, although a majority of patients had the SCC subtype,
it is unclear whether this finding would hold for just one subtype. To address this, we per-
formed survival analysis to further investigate the subtype-specific role of MCT1 and GLUT1
in NSCLC. Intriguingly, high expression of MCT1 was not associated with poor survival in
SCC patients (P = 0.9, HR = 0.98; CI = 0.78–1.25; n = 525; S2 Fig) but was in ADC patients
(p = 5.3E-15, HR = 2.58, CI = 2.02–3.31, n = 719; Fig 5C). Similarly, high expression of GLUT1
was not associated with poor survival in SCC patients (P = 0.063, HR = 1.25, CI = 0.99–1.59;
n = 525; S3 Fig) but was in ADC patients (P = 4.8E-15, HR = 2.55, CI = 2–3.25, n = 719; Fig
5D). Our findings suggest that MCT1 and GLUT1 are both commonly overexpressed at the
gene and protein levels in SCC and thus not prognostic. However, they may serve as potential
histological markers or targets for this subtype since they are overexpressed in SCC tumors
compared to normal tissue. On the other hand, there appears to be a subpopulation of ADC
samples with overexpression of MCT1 and GLUT1, and we suggest that MCT1 and GLUT1
could serve as prognostic markers in the ADC subtype since their overexpression is associated
with poor survival. MCT1 and GLUT1 were associated with poor survival in ADC (MCT1
P = 0.0016; GLUT1 P = 0.0005) even after accounting for stage, gender, and smoking history in

Fig 5. Expression and Survival Analysis of MCT1 and GLUT1 in NSCLC Datasets.Gene expression is given in log2 scale. (A) Expression of MCT1 and
GLUT1 in TCGA data (ADC = 490, SCC = 491). (B) Expression of MCT1 and GLUT1 ADC, SCC, and matched normal samples (N-ADC and N-SCC,
respectively) extracted from Sanchez-Palencia et al.[55] (C) Survival analysis of ADC patients expressing low and high levels of MCT1 (median cutoff). (D)
Survival analysis of ADC patients expressing low and high levels of GLUT1 (median cutoff).

doi:10.1371/journal.pone.0142162.g005
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multivariate survival analyses (S6 Table). We note that an MCT1 inhibitor is being evaluated
for its efficacy in small cell lung cancer in the United Kingdom [57].

Discussion
ADC and SCC are very heterogeneous diseases, and this statement is emphasized by the exis-
tence of several subtypes within ADC and SCC [58,59]. Making sense of the variations between
ADC and SCC can be a difficult task, but alterations in the genomes of these cancers ultimately
get integrated and produce a cancer proteome that can be analyzed using modern proteomic
tools. However, it is already known that the agreement between ADC gene expression and pro-
tein expression is weak, underscoring the need for both genomic and proteomic tools in order
to identify differences and ultimately biomarkers and drug targets in NSCLC [60,61]. Here, we
undertook a pilot proteogenomic to understand how TMT would perform in our hands experi-
mentally as well as whether special considerations would arise while analyzing TMT-derived
data. Protein expression from our experiments shared some overlap with the gene expression,
and both protein and gene expression were able to group tissues by ADC and SCC histology
(Fig 1). Our gene-protein correlation was similar to previously published results [3,49], and
our findings were better than a previous study that had shown poor agreement of gene and
protein expression in ADC (ρ = −0.025) [60].

We then compared our results to previously published studies. We reduced variability in
our analysis by processing all raw discovery proteomics data through MaxQuant. However,
experimental differences, including patient sample differences, were sources of uncontrollable
variability. The number of samples and sample fractions, as well as the LC-MS gradients and
MS analysis time, certainly influenced the number of identified peptides from each study. For
example, we divided our samples into 50 fractions in order to minimize any co-isolation events
during precursor ion isolation prior to MS2 (Table 1), and we believe that this large fraction-
ation directly led to the large number of uniquely identified peptides observed in our study (Fig
2). Li et al. utilized a 5-h run time without any fractionation, and Kikuchi et al. used 20 frac-
tions and utilized a 90-min run time. The Kikuchi et al. data did have fewer identified peptides,
but this may be because their samples (ADC = 4 and SCC = 4) were the same pools of samples,
one for ADC and one for SCC, which were run four separate times. However, this finding is
balanced by the fact that the Kikuchi et al. data had the best protein representation (Table 1).

Despite the differences in the content of the discovery proteomics experiments, there was a
benefit in having these previous results to compare and analyze with our own. We were able to
identify nine differentially expressed proteins in common with the other datasets that also had
the same increase or decrease in expression relative to ADC and SCC (Fig 2C; Table 2), and we
were able to identify a number of pathways by simultaneously searching all differentially
expressed proteins from each study against GeneGO (Table 3, S4 Table). Of the nine common
differentially expressed proteins, four were known to be highly expressed in SCC: three iso-
forms of keratin 6 as well as PKP1 [40–43]. LMO7 was the only commonly differentially
expressed protein higher in ADC. CO7A1, a collagen, and ABCF3, an ATP-binding cassette
family member, were also consistently differentially expressed. However, there does not appear
to be an obvious link between these two proteins and the ADC or SCC subtypes, and we note
that the ABCF3 expression in our dataset was only modestly higher in our TMT SCC results
(0.73 log2 fold-change).

The most interesting of the common differentially expressed proteins were the lactate trans-
porter MCT1 and glucose transporter GLUT1. Because cancer cells rely on aerobic glycolysis
and produce excess lactate via the Warburg effect, we wished to understand how these trans-
porters behaved in a larger cohort as well as if they would be differentially expressed compared
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to normal tissues. Data analysis of publically available datasets (Fig 5A and 5B) showed that
MCT1 and GLUT1 were constitutively overexpressed in SCC and therefore may make promis-
ing drug targets or histological markers for this subtype. Survival analysis of publically available
datasets (Fig 5C and 5D) showed that higher expression of MCT1 and GLUT1 are associated
with poor survival in ADC patients and therefore may make promising prognostic markers.
Our findings suggest a larger role for MCT1 and GLUT1 in ADC and SCC than what is cur-
rently understood, and further work should be undertaken to elucidate their function in these
NSCLC subtypes.

Conclusions
These results suggest that our approach using quantitative TMT is a valid approach for future
and more expansive proteogenomic studies of cancer. Further, recent studies have found that
TMTs were more sensitive than iTRAQ [62]. Additional improvements in throughput can be
gained by reducing the number of fractions since other studies have reported large inventories
with less fractionation and instrument time [3,63,64]. Finally, switching from microarrays to
next generation sequencing technology (e.g., RNA sequencing) will enable the generation of
personalized peptide libraries that are likely to increase proteome coverage through variant
detection [65]. Improvements in genome and proteome technology, when coupled with high
quality cohorts with clinical data and well annotated tumor tissues, are likely to enable new dis-
coveries on proteins and pathways important in cancer.

Supporting Information
S1 Fig. Peptide Lengths and Peptides per Protein. (A) Peptide lengths differ between each
dataset. (B–D) The number of peptides identified per protein in each of the studies. Samples
with> 15 peptides per protein were excluded for plot clarity.
(TIF)

S2 Fig. SCC MCT1 Survival. Survival analysis of SCC patients expressing low and high levels
of MCT1 (median cutoff).
(TIF)

S3 Fig. SCC GLUT1 Survival. Survival analysis of SCC patients expressing low and high levels
of GLUT1 (median cutoff).
(TIF)

S1 Table. Characteristics of Patient Tissue Samples.
(XLSX)

S2 Table. Quantitative TMT Results.
(XLSX)

S3 Table. Pathway Enrichment from Quantitative TMT Results.
(XLSX)

S4 Table. Pathway Enrichment from Combined Proteomics Results.
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S5 Table. Gene Expression Results.
(XLSX)

S6 Table. Multivariate survival analyses of MCT1 and GLUT1 in ADC.
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