Skip to main content
. 2015 Nov 4;16:365. doi: 10.1186/s12859-015-0774-y

Table 2.

The 5-CV performances of individual feature-based MLKNN models on Liu’s dataset

Features AUC AUPR Hamming loss Ranking loss One error Coverage Average precision
Enzyme 0.8861 ± 0.0006 0.3989 ± 0.0011 0.0483 ± 0.0001 0.0839 ± 0.0002 0.1695 ± 0.0053 837.7197 ± 1.6124 0.4551 ± 0.0005
Pathway 0.8884 ± 0.0006 0.4105 ± 0.0010 0.0477 ± 0.0001 0.0802 ± 0.0001 0.1865 ± 0.0076 827.1183 ± 2.9986 0.4721 ± 0.0007
Target 0.8947 ± 0.0009 0.4424 ± 0.0017 0.0464 ± 0.0001 0.0745 ± 0.0003 0.1695 ± 0.0061 812.6752 ± 2.9022 0.4919 ± 0.0010
Transporter 0.8863 ± 0.0006 0.4010 ± 0.0013 0.0482 ± 0.0001 0.0826 ± 0.0002 0.1661 ± 0.0041 836.2058 ± 2.8593 0.4644 ± 0.0007
Indication 0.8948 ± 0.0004 0.4566 ± 0.0020 0.0456 ± 0.0001 0.0762 ± 0.0003 0.1363 ± 0.0034 818.3745 ± 3.6611 0.4950 ± 0.0012
Substructure 0.8912 ± 0.0005 0.4255 ± 0.0015 0.0472 ± 0.0001 0.0754 ± 0.0004 0.1760 ± 0.0040 808.9192 ± 2.4440 0.4888 ± 0.0014