Skip to main content
. 2015 Nov 4;16:365. doi: 10.1186/s12859-015-0774-y

Table 3.

The 5-CV performances of individual feature-based FS-MLKNN models on Liu’s dataset

Features AUC AUPR Hamming loss Ranking loss One error Coverage Average precision
Enzyme 0.8878 ± 0.0004 0.4080 ± 0.0013 0.0478 ± 0.0001 0.0826 ± 0.0002 0.1611 ± 0.0057 837.1250 ± 2.9063 0.4652 ± 0.0005
Pathway 0.8895 ± 0.0006 0.4187 ± 0.0028 0.0473 ± 0.0001 0.0792 ± 0.0003 0.1688 ± 0.0037 824.2678 ± 4.2341 0.4799 ± 0.0006
Target 0.8962 ± 0.0007 0.4557 ± 0.0019 0.0457 ± 0.0001 0.0739 ± 0.0003 0.1442 ± 0.0048 810.4788 ± 2.9801 0.5008 ± 0.0008
Transporter 0.8871 ± 0.0008 0.4060 ± 0.0018 0.0480 ± 0.0001 0.0819 ± 0.0003 0.1635 ± 0.0037 836.4404 ± 2.3029 0.4698 ± 0.0007
Indication 0.8963 ± 0.0008 0.4648 ± 0.0043 0.0452 ± 0.0002 0.0755 ± 0.0003 0.1341 ± 0.0054 818.0483 ± 3.9917 0.5005 ± 0.0014
Substructure 0.8931 ± 0.0005 0.4343 ± 0.0011 0.0468 ± 0.0001 0.0739 ± 0.0005 0.1659 ± 0.0069 804.3813 ± 2.7354 0.4989 ± 0.0021