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Abstract
Many diseases are differentially distributed among human populations. Differential selec-

tion on genetic variants in ancestral environments that coincidentally predispose to disease

can be an underlying cause of these unequal prevalence patterns. Selected genes may be

pleiotropic, affecting multiple phenotypes and resulting in more than one disease or trait.

Patterns of pleiotropy may be helpful in understanding the underlying causes of an array of

conditions in a population. For example, several fibroproliferative diseases are more preva-

lent and severe in populations of sub-Saharan ancestry. We propose that this disparity is

due to selection for an enhanced Th2 response that confers resistance to helminthic infec-

tions, and concurrently increases susceptibility to fibrosis due to the profibrotic action of Th2

cytokines. Many studies on selection of Th2-related genes for host resistance to helminths

have been reported, but the pleiotropic impact of this selection on the distribution of fibrotic

disorders has not been explicitly investigated. We discuss the disproportionate occurrence

of fibroproliferative diseases in individuals of African ancestry and provide evidence that

adaptation of the immune system has shaped the genetic structure of these human popula-

tions in ways that alter the distribution of multiple fibroproliferative diseases.

Prevalence of Fibroproliferative Diseases in Individuals of African
Ancestry
Fibroproliferation is a response to tissue injury in which fibroblast-like cells under the influ-
ence of immune modulators proliferate and produce extracellular matrix components to heal a
wound. Aberrant regulation may result in excessive accumulation of matrix components, i.e.,
fibrosis. This pathological process, which can occur in multiple tissues, is a common response
to injury that leads to scarring and dysfunction of injured tissue and sometimes death [1]. Der-
mal fibrosis can result in keloids or other types of hypertrophic scars; fibrosis in the kidney,
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liver, and lung can result in end-stage disease. Fibrosis is also seen in autoimmune diseases,
including scleroderma, sarcoidosis, systemic lupus, and in airway remodeling in asthma. Disor-
ders whose pathophysiology is characterized by an exaggerated response to injury are referred
to as fibroproliferative diseases. An increased incidence of fibrosis has been widely observed in
black populations and has been termed a fibroid [2] or fibroplastic diathesis [3–5]. Fibroid
diathesis is used to describe processes in which growth is an essential characteristic, and it
depends for the most part on changes caused by inflammation. As a rule, the starting point is
tissue injury. “As the element of heredity seems to enter largely into these changes, perhaps the
term fibroid diathesis may be admissible as expressing the inherent tendency to this class of
changes” [2].

In a series of articles, Anthony P. Polednak suggested that adaptation to the tropical envi-
ronment in Africa may have involved a tendency toward connective tissue overgrowth as well
as hyperpigmentation, and that both tendencies may affect susceptibility to several chronic dis-
eases and response to disease or drug therapies [6–8]. A subset of fibroproliferative disorders
that occur at higher frequency and/or with more severe manifestations in people of African
ancestry is listed in Table 1. These include keloids [9], glaucoma [10,11], hypertension [12,13],
nephrosclerosis [14], scleroderma [15], sarcoidosis [16], uterine fibroma [17], and allergic dis-
eases, including asthma [18–21].

Not all fibrotic disorders show increased prevalence in blacks; such inconsistencies are prob-
ably due to a variety of etiologies. In the subset of fibrotic disorders listed in Table 1, different
organ systems are affected. In keloids, the dermis alone is involved, whereas in scleroderma
there is life-threatening fibrosis of skin and visceral organs with a higher prevalence of renal
crisis in African Americans [22]; in sarcoidosis any organ system may be involved but severe
pulmonary fibrosis is more prevalent in individuals of African descent [23].

Table 1. Relative frequencies of certain fibroproliferative diseases in black and white populations.

Disease Fold increase in blacks versus whites References

Asthmaa 2 [18,77,78]

Glaucoma, primary open-angleb 4–5 [10,170]

Hypertensionc,d 1.4–1.6 [8,13,26,171]

Keloidse 20 [172]

Left ventricular hypertrophyd 2–3 [173,174]

Malignant hypertensionc 5–7 [29,175]

Nephrosclerosisc 3–5 [14, 176–178]

Nephrosclerosis attributed to hypertensionc 4–20 [179,180] and references cited in [181]

Sarcoidosisf 3–17 References cited in [7], and [16, 182–188]

Sclerodermac,e,g 3 References cited in [7], and [189–191]

Systemic lupus erythematosusf 2–4 References cited in [7], and [192–195]

Uterine leiomyomah 1.5–3 [17,196–198]

Location of fibrosis
a) airway
b) eye
c) kidney
d) cardiovascular
e) skin
f) lung
g) visceral organs
h) uterus

doi:10.1371/journal.pgen.1005568.t001
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There is strong evidence for a genetic role in fibroproliferative disorders, although in most
cases they are genetically complex. Genome-wide linkage studies and targeted genome scans
have implicated common loci for several fibroproliferative diseases that may have been selected
in a similar environment [24]. We [25], and others [7,14,26–29], have suggested that a com-
mon etiopathology may operate in these diseases, and common genetic factors may account
for their unusual distribution. We propose that the increased prevalence of fibroproliferative
diseases in individuals of African ancestry is due to selective pressure for an elevated Th2
response that confers resistance to helminthic infections and concomitantly increases suscepti-
bility to fibrosis.

Cytokine Profile for Fibrosis
In the late 1980s it was shown, using a panel of mouse CD4+ T cells, that two groups of T helper
(Th) lymphocytes produced distinct cytokine patterns [30]. Early evidence that Th2 cytokines
were profibrotic came from experiments in which administration of IL12, a cytokine that
primes Th1 immunity and blocks Th2 immunity, prevented fibrosis in a mouse model of schis-
tosomiasis [31]. The role these cytokines played in the fibrotic response was further supported
in studies using mouse models that polarized to either a Th1 or Th2 response to wounding.
Using inbred strains of mice that differed in sensitivity to murine leishmaniasis—a Th1-re-
sponsive disorder caused by the intracellular trypanosomatid protozoan Leishmania chagasi—
it was found that polarization of the immune response toward Th1 or Th2 is under genetic
control (reviewed in [32,33]). In C57BL/6 mice that are resistant to leishmanial infection, the
Th1 cell population expanded and produced IFNγ, whereas susceptible BALB/c mice exhibited
a Th2 response characterized by production of IL4. As seen in Table 2, several different expo-
sures induced a fibrotic phenotype in BALB/c but not in C57BL/6 mice.

In the carbon tetrachloride study, strains of mice that lacked IFNγ defaulted to a Th2
response and developed fibrosis, whereas treatment with anti-IL4 or IFNγ prevented fibrosis,
even in BALB/c mice [32]. When the immune response to infection with Schistosoma mansoni
or to injection with soluble egg antigen was compared between wild type C57BL/6 mice and
mice genetically engineered to be deficient in Th1 or Th2 cytokines and/or Th10, Th2 cyto-
kines were profibrotic while Th1 cytokines were inflammatory. Mortality due to either Th1- or
Th2-related pathologies was regulated by IL10, which suppressed the production of both type 1
and type 2 cytokines [34]. Gene expression profiling in liver [35] and lung [36] revealed similar
results: Th2-polarized mice overexpressed genes involved in fibrogenesis and wound repair,
whereas Th1-polarized mice overexpressed genes associated with inflammation-induced tissue
damage.

Th2 cytokines also play an important role in human fibrosis [1,37,38]. IL4 and IL13 increase
collagen synthesis in human fibroblasts [39–43]; they also promote fibrocyte differentiation
from a subset of peripheral blood monocytes. In contrast, the antifibrotic Th1 cytokines IFNγ

Table 2. Response to exposure by mouse strain.

Mouse strain Exposure Cytokine production Disease phenotype

C57BL/6 Carbon tetrachloride (liver) Th1 cytokines Minimal fibrosis

BALB/c Carbon tetrachloride (liver) Th2 cytokines Severe fibrosis [32]

C57BL/6 Nitric oxide synthase blocker Ratio IFNγ/IL4 = 173 Hypertension with no increase in cardiac collagen

BALB/c Nitric oxide synthase blocker Ratio IFNγ/IL4 = 21 Hypertension with increased cardiac collagen and collagen cross-linking [199]

C57BL/6 Angiotensin II Not reported No disease

BALB/c Angiotensin II Not reported Dilated cardiomyopathy [200]

doi:10.1371/journal.pgen.1005568.t002
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and IL12 inhibit fibrocyte differentiation [44]. Increased levels of type 2 cytokines have been
observed in patients with pulmonary fibrosis [45,46] and hepatic fibrosis [47,48]. Decreased
levels of the antifibrotic Th1 cytokines IFNγ and IFNα have been reported for African Ameri-
cans with keloids compared to those without keloids [49]. While Th2 cytokines were not mea-
sured in this study, an increased level of IL6 was observed; IL6 has been shown to promote Th2
differentiation and inhibit Th1 differentiation [50]. An enhanced Th2 response in keloid
patients is also supported by: (1) an increased keloid incidence in high school students with
allergies [51]; (2) a reduction in collagen synthesis in keloid and scleroderma fibroblasts by
Tranilast, a drug developed to control allergies [52,53]; and (3) a correlation of excessive scar
formation with IgE levels [54]. Patients with progressive systemic sclerosis also exhibit a pre-
dominant type 2 response, which accounts for the endothelial cell injury, fibrosis, and autoanti-
body production in this disease [55,56]. Mutations in IL13Rα2, a decoy receptor that serves as
an off-signal for IL13 [57,58], are associated with systemic sclerosis [59].

Immunity to Helminths
Helminths are parasitic worms that cause the most common infectious diseases of humans in
developing countries. It is estimated that one billion people in developing areas of sub-Saharan
Africa are infected with at least one helminth (Fig 1) [60]. These worms represent a highly
diverse group of multicellular eukaryotic parasites, consisting of two phyla, Nematoda, and
Platyhelminthes. Infection by any of these parasitic worms, including schistosomes, hook-
worms, and ascaris, induces a Th2 immune response [60,61]. This response includes the pro-
duction of cytokines IL4, IL5, and IL13, antibody isotypes IgG1, IgG4, and IgE, and expanded
populations of eosinophils, basophils, mast cells, and IL4- and IL13-activated (alternatively
activated or M2) macrophages (Fig 1) [61,62]. The adaptive Th2 response mirrors a range of
innate helper cell responses that occur upon parasite invasion of epithelium [62]. Interestingly,
helminth diversity was observed to correlate with 3,478 gene variants in more than 800 genes
in complex networks centered around Th2 cytokines [63]. Th2 immunity is enhanced in envi-
ronments with a high prevalence of helminthic infection, and may have evolved to isolate and
encapsulate the organism and resolve localized extracellular damage [64]. This process can
result in tissue injury due to an excess deposition of extracellular matrix, i.e., fibrosis [62,64].

Controlling the Th2 response is imperative to avoid excessive host scarring and other patho-
logical effects. It may also benefit the parasite by damping the immune response, thereby per-
mitting the chronic nature of most helminthic infections. Helminthic infections promote
down-regulation of the immune response by expanding populations of immune regulatory
cells, including alternatively activated macrophages, Treg cells, and regulatory B cells, by pro-
duction of IL10 and TGFβ, and by suppression of Th17 [65–68].

The immune response to helminths shares key features with the allergic response. Both are
characterized by high levels of IL4, IL5, and IL13, eosinophilia, and abundant IgE production.
Several investigators have proposed that a genotype that confers resistance to helminths
increases susceptibility to diseases such as allergies, asthma, and autoimmune disease when hel-
minths are not present [69–74]. This is supported by the observation that the geographic distri-
bution of helminth parasitism and allergic disease are complementary [69,75,76], in contrast to
the coincident distribution of sickle cell disease and malaria. The prevalence and severity of
allergic airway disease are both disproportionately high among African Americans, even after
adjustment for demographic and socioeconomic factors [18–21,77,78]. Also consistent are
reports of a higher prevalence of atopic dermatitis and elevated IgE levels in individuals of Afri-
can descent compared with European descent [21,79,80].
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During chronic infection, mechanisms that down-regulate both Th1 and Th2 immunity
reduce allergic and autoimmune reactions and other pathological effects of the Th2 response,
including fibrosis [65–68,81]. Therefore, what we and others argue has been selected histori-
cally to deal with parasites may produce an increased fibrotic disease burden in a relatively

Fig 1. Helminth exposure selects for a protective Th2 immune response that simultaneously increases risk for fibrosis. The high prevalence of
helminths in Africa has selected for genotypes favoring an enhanced Th2 immune response characterized by increased levels of interleukin 4 (IL4),
interleukin 13 (IL13), and interleukin 4 receptor (IL4R), and other Th2 factors. This selection also decreases Th1 factors, such as interferon gamma (IFNG)
and interferon gamma receptor (IFNGR), and Th2 regulatory factors, such as IL10 and interleukin 13 receptor alpha 2 (IL13RA2). These genotypes increase
resistance to helminthic infection and contribute to a subset of fibroproliferative diseases that are more common and/or more severe in individuals of African
ancestry. Global distribution of helminth species in upper part of figure adapted from Lustigman et al. [168].

doi:10.1371/journal.pgen.1005568.g001
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helminth-free environment where the muted response does not occur. Thus, in the absence of
helminthic control mechanisms, individuals genetically predisposed to an increased Th2/Th1
ratio might produce a damaging excess of Th2 cytokines and demonstrate increased incidence
and severity of fibroproliferative disease. While direct evidence that helminth infection impacts
fibrosis is lacking—save for the complementary distribution of helminth parasitism and
asthma (a fibroproliferative disease)—our hypothesis should stimulate research to determine
whether this is indeed the case.

Considerable emphasis has been placed on identifying Th2-related genes common to host
resistance against helminths and asthma [82–84], but association of such genes with fibrotic
disorders that occur with disproportionately high frequency in individuals of African ancestry
is lacking. Yet there is support for the notion that Th2 immunity evolved as a rapid repair
mechanism in response to extracellular pathogens [64], and that an increased ratio of Th2 to
Th1 cytokine responses after injury leads to fibrosis. Moreover, asthma itself is a fibroprolifera-
tive disease. As asthma becomes more severe, the airway environment is similar to a chronic
wound characterized by secretion of growth factors that induce smooth muscle proliferation,
angiogenesis and fibrosis [85,86]. Numerous studies have shown that increased airway wall
thickening that includes subepithelial fibrosis results in increased disease severity, including
near-fatal and fatal asthma (references cited in [86]).

Genetics of Resistance to Helminthic Infections
Epidemiological studies in the late 20th century showed that susceptibility to helminthic infec-
tion, as defined by worm burden, is a heritable trait with the proportion of variance attributed
to genetic effects varying from 0.21–0.44 (reviewed in [70]). Evidence for a genetic predisposi-
tion to infection was also provided by ethnic variation in susceptibility, familial aggregation,
and individual variation. Differences in susceptibility to helminth infection between ethnic
groups was noted early in the 20th century in studies in the southern United States, where a
much higher prevalence and intensity of hookworm infection was observed in people of Euro-
pean than African ancestry [87–89]. Additional evidence came from studies that separated
effects of relatedness and shared households by statistically analyzing large pedigrees across
many households [90].

Identification of specific genes that associate with infection susceptibility provided evidence
that immune-related, and especially Th2-related genes, tended to associate with helminth
infection. The first genome scans for a parasitic disease associated a major locus that mapped
to chromosome region 5q31-q33 with resistance to S.mansoni infection. This region is rich in
Th2 cytokine and Th2 cytokine-related genes [91–93]. A genome study of ascaris infection
intensity identified two chromosomal regions, 13q32-q34 and 1p32. TNFSF13B, which encodes
B lymphocyte stimulator protein and hence is a player in the Th2 response, is in the 13q32-q34
region; this locus also associates with total IgE levels (cited in [70]).

Analysis of Schistosoma haematobium infection in Mali revealed that in chromosomal
region 5q31-q33, polymorphisms in the IL13 gene promoter at −1055 and −591 were associ-
ated with the infection rate: alleles −1055C and −591A were preferentially transmitted to chil-
dren with the 10% highest infection rate, whereas −1055T associated with the lowest infection
levels [94]. The protective −1055T allele associated with increased IL13 transcription [95,96]
and with resistance to reinfection in a Kenyan cohort [97]. In the latter study, it was also found
that the IL4 −590T allele associated with high IgE, and the IFNγ +874T allele associated with
high IFNγ production; both increased resistance. Another study in Mali revealed an association
between a single-nucleotide polymorphism in the STAT6 gene at 12q13.3 and intensity of
infection by S. haematobium; this polymorphism had an additive effect with IL13 −1055 [98].
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While most genetic studies of susceptibility to helminth infection have focused on infection
intensity, variation in pathology has also been reported, even in the absence of differences in
infection intensity. Differences in severity of schistosomal pathology between people of African
and European ancestry have been observed in Brazil, with individuals of European ancestry
showing increased susceptibility to severe, inflammation-induced pathology [99,100]. A 5-fold
increased risk of hepatosplenic disease was observed, despite similar egg counts [101]. Severe
hepatosplenism in humans is associated with high levels of Th1 cytokines and low levels of the
Th2 cytokine IL5 [102]. Severe disease has been reported more recently to involve elevated lev-
els of the proinflammatory and profibrotic cytokine IL17, produced by Th17 cells [103,104].
However, mutations in the gene encoding the antifibrotic Th1 cytokine IFNγ or its receptor
may be important in combating other immunopathological effects caused by Th2 cytokines
[105–107]. Individuals with low levels of IFNγ have been reported to be susceptible to severe
fibrosis, whereas high levels correlated with reduced fibrosis [107]. Studies in a Sudanese popu-
lation supported the presence of a major codominant gene controlling hepatic fibrosis in schis-
tosomiasis. Severe hepatic fibrosis due to S.mansoni infection was also associated with
variation at 6q22-23, close to the gene for the IFNγ receptor α chain (IFNGR1) [108]. Two
polymorphisms (+2109A/G and +3810A/G) in intron 3 of the IFNγ gene were associated with
periportal fibrosis: the 2109G allele with severe fibrosis, and 3810A with protection from fibro-
sis. Other studies indicate that 2109G decreases IFNγ expression, whereas 3810A increases it
[106].

Evidence for an Immune Adaptation for Resistance to Helminths in
Individuals of African Ancestry
As hypothesized by Le Souef et al. [72], “Modern man’s ancestors lived in an environment
where infectious tropical diseases would have been endemic.” They postulated that, in this hos-
tile environment, genetic selection for increased Th2 immune responses occurred. In more
temperate areas, these pronounced responses would have been less important (and selected
against) due to increased mortality from overly vigorous responses to harmless or less common
environmental agents. They reviewed evidence that alleles resulting in a heightened Th2
response in several genes, such as IL4, IL4R, and the IgE receptor, are more prevalent in popu-
lations with long-term tropical ancestry than in those with long-term residence in temperate
regions.

Little has been done to directly determine whether healthy Africans or African Americans
exhibit a Th2-biased response. In one small study comparing healthy African children and
adults from the Gabonese rain forest to healthy European children and adults from Austria,
Wilfing et al. reported an increased frequency of both Th1- and Th2-cytokine-producing T
cells in African versus European adults; however, whereas CD4+ cells expressing the type 1
cytokines IL2 and IFNγ expanded in both African and European adults, CD4+ cells expressing
the type 2 cytokines IL4 and IL13 expanded only in African adults [109]. Although these data
are consistent with our hypothesis, more extensive studies are needed to determine whether
healthy individuals with African ancestry skew toward a Th2 immune response relative to Th1
and Th17 responses.

More recent studies of a subset of genes, and population studies such as 1,000 Genomes
[110] and HapMap [111], have supported increased prevalence of alleles associated with resis-
tance to helminths and concomitant susceptibility to fibrosis in West African (YRI), and Afri-
can American (ASW) populations relative to individuals of Northern European descent
(CEU). Of particular interest are polymorphisms in IL4, IL4R, IL13, IL13RA1, IL13RA2, IFNG,
IFNGR1, and IL10, described below and in Table 3, which occur with higher frequency in the
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Table 3. Population-specific allele frequencies (1,000 Genomes, 16 October 2014 release).

rs number Position Allele Prevalence of bolded allele in different
populations

Effect of bolded allele

YRI CEU ASW

IL4

rs2243250 −589 C/T 0.833 0.126 0.566 [19,112–114,117,118]a,c,d

rs2070874 −33 T/C 0.481 0.126 0.361 [112]c,d

rs2227284 3017 T/G 0.972 0.268 0.779 [112]c

rs2243270 intron 2 A/G 0.773 0.136 0.549

rs2243291 intergenic C/G 0.736 0.136 0.508

rs734244 intron T/C 0.491 0.126 0.402

IL4R

rs1801275 Q576R A/G 0.852 0.222 0.664 [131,132,135,137,138,140]d,f

rs1805015 S503 P T/C 0.449 0.167 0.328 [135]d

rs1805010 I50V A/G 0.454 0.449 0.467 [133,137,138]c

IL13

rs7719175 −7402 G/T 0.241 0 0.066 [126]e

rs1800925 −1055 C/T 0.417 0.177 0.320 [94–97,121,125]a,d,e,f

rs2069743 −591 A/G 0.292 0 0.123 [94]e

rs20541 R110 Q A/G 0.177 0.227 0.189 [120,201,202]d,e

rs2243204 T/C 0.681 0.106 0.467 [125]f

IL13Rα2

rs638376 C/T 0.994 0.423 0.885 [59]f

TGFβ

rs1800470 Pcodon 10L T/C 0.444 0.389 0.377 [13,153,154]a,f

rs1800469 −509 A/G 0.227 0.303 0.205 [153,154,203–205]a,f

IL10

rs1800896 −1092 T/C 0.718 0.480 0.623 [145–147,149]b,c,f,g,h

rs1800871 −819 A/G 0.468 0.207 0.377 [145,146,149]b,c,g,h

rs1800872 −592 T/G 0.468 0.207 0.377 [145,146,149]b,c,g,h

IFNγ YRI CEU ASW

rs2430561 874 T/A 0.833 0.576 0.770 [97,160,206]b,f,h,i

rs1861494 2109 A/G 0.136 0.329 0.156 [106]f

IFNGR1

rs1327474 −611 T/C 0.972 0.596 0.877 [163]b,h

IFNGR2

rs9808753 Q64R A/G 0.245 0.141 0.279 [164]c

a) increased transcription
b) decreased transcription
c) increased IgE
d) allergic disease/asthma
e) resistance to helminthic infection
f) fibrosis
g) increased Th2 cytokines
h) forward strand in 1,000 Genomes and HapMap, but apparently earlier literature reporting similar prevalence differences used complementary strand
i) sensitivity to helminthic infection

doi:10.1371/journal.pgen.1005568.t003
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recent African descent populations. We also note that allele frequencies in Th2 genes differ
more on average between West African and European populations than do differences
genome-wide (Fig 2A), supporting the hypothesis that these loci have been exposed to different
patterns of selection. Of note, these differences are more pronounced than differences between
Th1 genes and the genomic background (Fig 2B and 2C). The frequencies of polymorphisms
in East Africa (LWK) seen in 1,000 Genomes are generally similar to YRI. Many of these simi-
larities are also observed in Asian descent populations (S2 Table). Most variants in Th2 and
Th1 genes also differ more among these human populations than the genomic background (S1
Fig). However, except for evidence of increased keloid formation in these populations, data on
prevalence of fibroproliferative diseases and/or helminthic infection prevalence are too limited
to extend our hypothesis beyond Western Africans and African Americans.

Interleukin 4
IL4 plays a major role in Th2 differentiation. It induces immature T cells to assume a Th2 phe-
notype and represses Th1-inducing signals. As a downstream effector, it acts on B cells to pro-
duce IgE. Polymorphisms in IL4 have been associated with increased total serum IgE levels,
atopy, and asthma in some populations, but not in others [112–114]. Importantly, IL4

Fig 2. Pattern of differences between YRI and CEU HapMap populations, as determined by Fst between SNPs. (A) Th2 variants compared to
background (18 genes and 256 SNPs); (B) Th1 variants compared to background (14 genes and 207 SNPs); (C) A comparison of Fst values for Th2 as
compared to Th1 SNPs); (D) TGFβ and TGFβ-receptor variants, as compared to background (6 genes and 340 SNPs). Fst was calculated using the method
of Weir and Cockerham [169] and varies from zero (when two populations have identical allele frequencies of a given SNP) to one (when they are fixed for
different alleles). Genes used for these analyses are listed in S1 Table.

doi:10.1371/journal.pgen.1005568.g002
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polymorphisms that associate with asthma severity and elevated IgE in individuals of European
descent are more frequent in African Americans than in European Americans (Table 3)
[18,19,114,115]. Recent studies have also pointed to a role for private IL4mutations in African
Americans that may be associated with asthma susceptibility [116]. Somewhat surprisingly,
three of the most well-studied of these polymorphisms, at −33, −589, and +3017, associate with
asthma and/or elevated IgE in individuals of European descent but not in African populations
(Table 3) [19,112–114]; the lack of association at −589T and +3017 in African populations may
be due to their high frequency in these populations. Because −589T also associates with expres-
sion variation, it provides a putative mechanism to explain the variable patterns of association
[117–119]. For example, −589T contributes to lower baseline values of forced expiratory vol-
ume (FEV) and higher IgE levels observed in individuals of African descent [21,79,80] and
probably the increased prevalence of fibroproliferative disease.

Interleukin 13
IL13 plays a major role in promoting fibrosis in asthma and schistosomiasis
[94,96,97,120,121]. It signals through a common pathway with IL4 [122,123]. Polymorphisms
in IL13 and IL13Rα1 have been associated with asthma and elevated IgE [57,120,121]. The
decoy receptor IL13Rα2 down-regulates IL13 signaling and reduces fibrosis [57,58,124]. As
indicated above, −1055T in the IL13 gene promoter (rs1800925) correlates with different rates
of infection in Mali and Kenya [94,97]. This allele, which is associated with lowest infection lev-
els, has also been associated with allergic inflammation, an increased rate of IL13 transcription
[95,121], and systemic sclerosis in individuals of European descent [125]. As seen in Table 3,
the T allele is more common in YRI and ASW than in CEU. Also protective against schistoso-
miasis and occurring at higher frequency in populations of African ancestry is a G allele at a
second promoter site (rs771975). These two SNPs are in linkage disequilibrium (LD), making a
mechanistic conclusion difficult [126], but haplotype analysis revealed that homozygotes for
the doubly protective haplotype TG were less likely to be infected than other subjects. The G
allele of a third polymorphism in the IL13 promoter at −591A/G (−646), rs2069743, was also
protective and is present at 33% and 12.3% in YRI and ASW 1,000 Genomes populations,
respectively, but is not seen in populations of European descent [94]. A fourth polymorphism,
located in the 3’UTR of IL13, rs2243204, has been associated with systemic sclerosis in individ-
uals of European ancestry [125]; here too, the risk allele T occurs at higher frequency in African
and African-American populations (Table 3). In addition to polymorphisms in IL13, a poly-
morphism in IL13Rα2 associated with systemic sclerosis in individuals of European ancestry
[59] occurs with higher frequency in individuals of African ancestry (Table 3).

IL4 Receptor
Both IL4 and IL13 signal through a common pathway by binding to the heterodimeric IL4
receptor (IL4R) composed of the IL4Rα chain and either the common γc chain or the IL13Rα
chain. Signaling via IL4Rα plays a critical role in the pathogenesis of asthma [127], with more
than a dozen polymorphisms in the gene contributing to asthma risk [128–135]. Several of
these susceptibility alleles are more common in African Americans [136–139]. Of particular
interest is rs1801275, which causes a glutamine to arginine change at position 576 in the recep-
tor α chain. Arginine at this position is associated with altered IL4 signaling, a shift of the Th1/
Th2 balance toward Th2, and susceptibility to asthma and several connective tissue disorders,
including systemic lupus and scleroderma [139,140]. The risk allele has a 68% frequency in
African Americans but only 20% in populations of European ancestry [137]. Other data dem-
onstrate this allele frequency difference (Table 3) [138]. A nearby variant, rs1805015, which
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causes a serine to proline change at position 501 associated with atopy [141], is also more prev-
alent in African Americans, but a third atopy-associated allele (rs1805010) is not (Table 3).
While individual alleles are pathogenic, susceptibility is increased by multiple mutations in the
IL4Rα gene, creating risk haplotypes that are more prevalent in African Americans [138]; these
interact with other mutations that influence Th1/Th2 activity, such as those that occur with
increased frequency in IL13 [141].

Interleukin 10
IL10 is a major immunoregulatory cytokine that downregulates both Th1 and Th2 activity
[68,142]. It is effective in preventing fibrosis in several model systems, and suppresses synthesis
of procollagen by human scar-derived fibroblasts (cited in [37]). Overexpression of IL10 pro-
motes scarless wound-healing in adult mice [143]. In studies of S.mansoni infection, severe
periportal fibrosis is associated with low concentrations of IL10 and IFNγ [144]. IL10 promoter
haplotypes that include polymorphisms at −1082, −819, and −592 have altered rates of tran-
scription. Alleles causing low IL10 expression are associated with elevated IgE [145] and
increased Th2 cytokines [146]. Allele −1082A is predictive of increased periportal fibrosis in S.
mansoni infection [147]. Population studies have revealed significant differences in the propor-
tion of high or low producer genotypes in populations of European descent versus African
Americans [148,149]. A study by Delaney et al. yielded similar results [150]. The combined fre-
quency of low-expression genotypes was significantly higher in African Americans than in
European Americans, while the frequency of high expression genotypes in African Americans
was less than half that in European Americans. Recently, 1,000 Genomes data confirmed the
increased abundance of alleles at promoter sites −1082, −819, and −592 that decrease transcrip-
tion of IL10 in YRI and ASW compared to CEU (Table 3). These data support a major role for
IL10 in preventing fibrosis by down-regulating Th2 cytokines. Thus, the increased frequency
of low IL10 expression genotypes in individuals of African ancestry supports selection for an
enhanced Th2 response in this population.

Transforming Growth Factor β
Increased TGFβ is a component of helminth-mediated down-regulation of the Th2 response
[65,71]. While muting the response might be expected to reduce Th2-mediated fibrosis, TGFβ
itself promotes a variety of fibrotic conditions [151,152]. Two polymorphisms in TGFβ1, −509,
and +869, which elevate plasma levels of TGFβ1, increase the severity of cystic fibrosis [153]
and familial pulmonary hypertension [154]. It has been hypothesized that overexpression of
TGFβ1 contributes to increased morbidity in African Americans [155]. Plasma levels of TGFβ1
in hypertension and end-stage renal disease are higher in African Americans [13,14], and
higher levels of TGFβ1 have been reported in normotensive African Americans than in normo-
tensive European Americans. In these studies the +869 variant, encoding a proline, was associ-
ated with higher levels of TGFβ1 mRNA and protein, and was initially reported to be more
frequent in African Americans [13]. However, increased prevalence was not observed in the
1,000 Genomes database (Table 3). Moreover, the −509 polymorphism associated with
increased TGFβ1 is more common in CEU than ASW or YRI (Table 3) [156]. While the
TGFβ1 promoter is highly polymorphic, frequencies of different polymorphisms do not differ
among racial groups [157]. Several rare variants are present only in individuals with African
ancestry but their effects on expression have not been determined [157]. The failure to observe
racial differences in frequency of TGFβ polymorphisms and the presence of two common poly-
morphisms in TGFβ1 that increase expression but are not more prevalent in individuals with
African ancestry suggest that, while TGFβ1 contributes to fibrosis in multiple populations,
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increased expression does not directly account for the higher incidence of fibroproliferative dis-
eases in African Americans.

Interferon γ

Several antifibrotic effects have been attributed to IFNγ, the prototypic Type 1 cytokine. It
inhibits fibroblast proliferation and collagen deposition, promotes fibroblast apoptosis, and
inhibits the production and profibrotic action of TGFβ (reviewed in [38]). It inhibits develop-
ment of fibrosis in vivo [158], and reduces the extracellular matrix in animal models of fibrosis
[159]. Decreased levels of IFNγ have been observed in the blood of keloid patients [49]. In a
Sudanese population infected with S.mansoni, low levels of IFNγ were associated with severe
fibrosis, whereas high levels correlated with reduced fibrosis [107]. However, high levels of
IFNγ have been reported to be protective against infection with S.mansoni [97].

In 1999, Pravica et al. identified a polymorphism in intron 1 at position +874 of IFNγ, and
found that the A allele at this position correlated with a higher copy number of CA repeats that
altered an NFkβ binding site, resulting in decreased IFNγ production [160]. Several studies
reported that African Americans have a higher frequency of the allele that decreases produc-
tion than do European Americans (Table 3) [148,150,161,162]. In Delaney et al. [150], the risk
allele frequency was 0.804 in an African American population and 0.61 in a European Ameri-
can population, and was also higher in YRI and ASW (Table 3). As described previously, two
polymorphisms, +2109A/G (rs1861494) and +3810A/G, in intron 3 of the IFNγ gene associ-
ated with periportal fibrosis in a Sudanese population: the 2109G allele decreased IFNγ expres-
sion and correlated with severe fibrosis, whereas 3810A increased IFNγ expression and
protected from fibrosis [106]. Somewhat surprisingly, the 2109G allele that associated with low
IFNγ production was more frequent in CEU (0.33) than in YRI (0.14) or ASW (0.16) (Table 3).
The effect of these alleles on resistance to infection has not been reported; however, high levels
of IFNγ have been associated with resistance to infection, suggesting that the low prevalence of
the 2109G fibrosis risk allele in African populations may be protective against infection [97].

IFNγ Receptor (IFNGR)
IFNGR is a heterodimer consisting of two chains—IFNGR1 encoded on chromosome 6 and
IFNGR2 on chromosome 21. Mutations in IFNGR1 have been reported to affect fibrosis. Stud-
ies in a Sudanese population indicated that a major codominant locus controlling hepatic fibro-
sis in schistosomiasis was at 6q22-q23, close to the gene for the IFNGR1 chain [108]. Six
polymorphisms in the IFNGR1 promoter region associated with pulmonary mycobacterial dis-
ease [163]. Two (−611 and −56) were polymorphic in all study populations, which included
African Americans, Europeans, and Koreans. The −611 polymorphism associated with
decreased IFNGR1 expression was approximately 1.5 times more common in African Ameri-
cans than in European Americans. Similar differences in frequency among YRI, ASW, and
CEU were seen in 1,000 Genomes (Table 3). A polymorphic allele in IFNGR2 associated with
increased IgE was also more common in Africans and African Americans than in Europeans
(Table 3) [164].

Differentiation between African and European Populations with
Respect to Th2, Th1 and TGFβGenes
As documented above, selection has enhanced Th2 gene expression in populations from sub-
Saharan Africa that, we argue, is in response to a greater burden of helminthic infections. As a
further consequence of this selection, we predict that Th2 alleles will vary more between sub-
Saharan populations and European populations than the genomic background. We tested this
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assumption using the metric, Fst, which represents a measure of genetic differentiation (Fig 2).
Consistent with our hypothesis, Th2 gene SNPs represent an enrichment of variants that differ
more between sub-Saharan and European populations than does the genetic background (Fig
2A). Differentiation among Th1 gene SNPs appears to follow more closely the genome-wide
patterns (Fig 2B and 2C). This comparison includes all SNPs in Th1 and Th2 genes without
considering their function. In contrast to the findings for Th2 and to a lesser extent for Th1
genes, differentiation of TGFβ genes and their receptors between populations appears to be
identical to the genomic background (Fig 2D).

In summary, individuals of African ancestry have an increased incidence of fibrotic disor-
ders. While the distribution of these diseases supports a genetic contribution, the disorders
themselves do not confer a selective advantage. We argue that this pattern of variation can be
explained by selection for resistance to diseases caused by helminthic worms prevalent in sub-
Saharan Africa. Resistance is achieved by a shift in the immune system toward an enhanced
Th2 response to injury that coincidentally results in fibrosis. The exaggerated response to tissue
injury resulting in fibrosis can be accounted for in large part by genes that cause increased
expression or functionality of Th2 cytokines and their receptors, decreased expression of IL10,
and decreased activity of antifibrotic cytokines and receptors of the Th1 system. The allelic dis-
tribution of variants that affect the Th2 response are highly concordant with this hypothesis;
there is greater differentiation in variants in Th2-related genes compared to the genetic back-
ground between African and non-African populations, an observation consistent with selection
favoring Th2 enrichment in Africa. While the fibrotic side effects of an increased Th2/Th1
cytokine ratio are a serious consequence, in regions where helminths are common, these side
effects are less dangerous than the diseases they protect against. Moreover, chronic helminth
infections mute the Th2 response, limiting the fibrotic side effects. Recent migration out of
Africa to regions with fewer helminths has, therefore, resulted in a less regulated Th2 pattern,
in which frequency and severity of many Th2-related diseases are increased in African
Americans.

We hypothesize that genotypes that favor a skewed Th2 response in individuals of African
ancestry account for the pattern of multiple fibroproliferative diseases. The increased preva-
lence of Th2 genotypes that increase resistance to helminthic infection and the increased fre-
quency and severity of a subset of fibrotic disorders in individuals of African ancestry are
consistent with a skewed Th2 response; however, more research is needed to determine
whether healthy Africans and African Americans exhibit a skewed Th2 response.

Other immunologic differences selected in response to bacterial, viral, and other parasitic
challenges in Africa also exist. For example, differences in response to evoked inflammation
[165], TLR signaling [166], and stimulation of Th17 expression [167] have been reported
which may contribute to increased inflammation and/or fibrosis in African Americans. Our
hypothesis is not meant to explain all prevalence differences seen even in the disorders listed in
Table 1. However, the high likelihood that helminthic selection for an enhanced Th2 profile
contributes to all of the diseases mentioned is based, to a large extent, on the global distribution
of helminths, as shown in Fig 1, and the strong evidence for an ancestral genotype that pro-
motes high Th2 expression, decreased IL10 expression, and variably decreased Th1 expression
in individuals of African ancestry. This hypothesis, which is testable, is a reasonable starting
point for further study.

Supporting Information
S1 Fig. Pattern of differences between HapMap populations as determined by FST between
SNPs in Th1 and Th2 genes. A) Th2 variants compared to background (18 genes and 256
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SNPs) between CEU and LWK; B) Th1 variants compared to background (14 genes and 207
SNPs) between CEU and LWK; C) Th2 variants compared to background (18 genes and 256
SNPs) between CEU and JPT; D) Th1 variants compared to background (14 genes and 207
SNPs) between CEU and JPT. CEU—Northern andWestern European, Utah; LWK—Luhya,
Kenya; JPT—Japanese, Tokyo
(DOCX)

S1 Table. Genes used in Fst analyses.
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