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Summary

A diurnal rhythm of eating-fasting promotes health, but humans’ eating pattern is rarely assessed. 

Using a mobile app, we monitored ingestion events in healthy adults with no shift-work for 

several days. Most subjects ate frequently and erratically throughout wakeful hours and overnight 

fasting duration paralleled time in bed. There was a bias toward eating late, with estimated <25% 

calories being consumed before noon and >35% after 6pm. “Metabolic jetlag” resulting from 

weekday/weekend variation in eating pattern akin to travel across time-zones was prevalent. The 

daily intake duration (95% interval) exceeded 14.75 h for half the cohort. When overweight 

individuals with >14 h eating duration ate for only 10–11 h daily for 16 weeks assisted by a data 

visualization (raster plot of dietary intake pattern, “feedogram”) that we developed, they reduced 

body weight, reported being energetic, and improved sleep. Benefits persisted for a year.
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INTRODUCTION

Life on earth has evolved in the context of a 24-hour periodicity in environmental conditions 

and a dependent daily rhythm in food availability and predator avoidance. Consequently, 

organisms have evolved endogenous circadian oscillators that allow them to anticipate and 

prepare for activity, sleep, and food intake at a specific time of the day. Both food ingestion 

and fasting can alter the metabolic state. Therefore, molecular responses to feeding and 

fasting exhibit temporal dynamics with a 24 h period. The circadian oscillator and time-of-

feeding act together to drive daily rhythms in gene expression and protein function such that 

the anticipation of and responses to feeding events are properly timed (Adamovich et al., 

2014; Vollmers et al., 2009) every day. Genetic disruption of circadian rhythms in 

experimental animals and behavioral disruption of circadian rhythm among shift workers 

likely perturbs such temporal regulation and predisposes to metabolic diseases (Asher and 

Schibler, 2011). Frequent caloric intake in animal models of diet induced obesity also 

dampens molecular circadian rhythms (Kohsaka et al., 2007). Conversely, recent studies in 

both nocturnal (mice) and diurnal (Drosophila melanogaster) model organisms have 

demonstrated that restricting the time of caloric intake to a window of 8–12 hours without 

altering of the quantity or quality of diet can impart pleiotropic physiological benefits (Chaix 

et al., 2014; Gill et al., 2015; Hatori et al., 2012; Sherman et al., 2012; Zarrinpar et al., 

2014). Such ‘time-restricted feeding’ (TRF) supports a robust circadian rhythm and is 

associated with reduced adiposity, elevated lean mass, longer sleep duration, increased 

endurance, reduced systemic inflammation, decelerated cardiac aging, gut homeostasis, and 

improvement in other clinically-relevant biomarkers.

Despite these observed benefits in model organisms, the applicability of TRF for human 

health has remained unknown because the temporal aspect of human eating pattern is rarely 

measured. A lack of methods and parameters to describe the daily eating pattern in humans 

makes it difficult to ascertain whether eating events in humans are spread over a long 
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enough segment of the 24 h day such that there is an opportunity to reduce this duration. 

Furthermore, differences between metabolic properties of humans and those of small model 

organisms make it difficult to predict whether an 8–12 h eating window will impart 

physiological benefits in humans. Nevertheless, accumulating data indicate that the temporal 

aspect of food intake, in addition to total caloric intake, can be important determinant of 

predisposition to chronic diseases (Mattson et al., 2014), which now are the predominant 

cause of morbidity and mortality in developed nations (Bauer et al., 2014). Therefore, the 

objective longitudinal assessment of the content and the daily temporal pattern of human 

nutrition could have a major public health impact in terms of finding at-risk individuals for 

chronic disease and subsequent corrective action through lifestyle interventions.

Current methods to monitor human nutrition are subjective (such as questionnaires), remove 

subjects from their usual spatiotemporal niche (e.g., in-lab videography with limited food 

choices) or provide negative feedback that interferes with subjects’ behavior (food diaries). 

Moreover, these methods gather information on the quantity and quality of nutrition and 

generally do not seek information regarding the time at which the food or beverage was 

consumed. The availability of smartphones presents an opportunity to objectively monitor 

human nutrition along with the advantage of complete control over feedback. The wide-

ranging adoption of smartphones across age, gender, and socioeconomic segments can be 

leveraged to study behaviors of free-living individuals at scale in heterogeneous populations.

In this study, we developed and used a smartphone-based monitoring method with minimal 

feedback to collect the natural daily eating pattern of free-living healthy adults. In contrast to 

the conventional wisdom that modern humans eat 3 meals a day within a 12 h interval, 

eating pattern was found to be largely erratic and differing between weekdays and 

weekends. In a pilot feasibility study, we tested whether reducing the eating interval to 10–

12 h without an overt attempt to change nutrition could lead to weight loss in healthy 

overweight individuals. Overall, the results presented here show that a large segment of the 

human adult population displays an erratic daily rhythm of eating-fasting, which can be 

manipulated to obtain desirable health benefits.

Results

A smartphone app to monitor daily eating patterns

We built a smartphone software application (“app”) to longitudinally monitor the daily 

temporal pattern of caloric intake in free-living humans. To record an ingestive event, the 

participants used the camera function of the smartphone to take a picture of the food or 

beverage. Food pictures taken in the JPEG format were downscaled to 1/10 their original 

size on the device itself to reduce network data usage. Participants also had the option for 

textual entries to substitute for food/drink pictures, when picture taking was difficult or 

when subjects forgot to log their picture entries. Immediately after data logging, the food 

picture, and text entries along with time-stamp and geolocation were immediately 

transferred to a server. Upon confirmation of successful data transfer, the data and the 

associated metadata (i.e., the time-stamp and geolocation) were erased from the subject’s 

device, eliminating the possibility for the ‘feedback effect’ of prior-recorded information 

upon present behavior.
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We made use of push notifications as an orthogonal measurement technique for assessing 

the time of diet intake. These push notifications were manually triggered at a random time of 

the day, during the stated wakeful period of the subject and numbered 1–2 per day. The 

specific push notification query presented to the subject was dependent on the time when 

he/she responds to it, not when it was originally dispatched from the server. The push 

notification presented a query on the user’s device inquiring whether they ate/drank 

anything in the past 30 minutes. Subjects had to push a “Yes” or “No” button displayed on 

their screen, and their responses were recorded on the server. From such responses to push 

notifications sent at a random time during wakeful hours, we estimated the false negative 

rate (i.e., when the subject consumed food/beverage/water, but forgot to log the event) for 

our methodology to be 10.34 %.

We monitored healthy, non-shift-worker adult males and females (Fig. 1a and b, Table S1) 

for 3 weeks. After meeting the inclusion and exclusion criteria (Table S2) and signing an 

informed consent document during an office visit, subjects used the custom mobile 

application (“Salk Metabolic App”) installed on their smartphone to take pictures of every 

food, beverage or water item they consumed, irrespective of volume or calorie just prior to 

consumption (Fig. S1, S2). Appending a textual annotation describing the amount and the 

item(s) consumed to the pictures was optional.

The food pictures or occasional text entries (2.1% of all events) were further annotated by 

looking up the reference nutrition values from Calorie King or FNDDS (Six et al., 2011). 

Out of the 26676 events recorded, 22% (5846) were water, 28% (7420) consisted of pre-

packaged items with readily accessible nutrition information and 50% (13410) were mixed 

meals with multiple items. We hypothesized that the reported caloric intake should at least 

meet the resting energy expenditure or maintenance caloric (MC) intake (Roza and Shizgal, 

1984). The average daily estimated caloric intake for the group (mean 1947 Kcal; 95% CI: 

1917–1977) was more than their respective maintenance caloric intake (mean 1.233 fold 

over MC; 95% CI: 1.214–1.251). From push notifications, we had measured a false negative 

rate or underreporting of food/beverage/water to be 10.34%. Therefore, the actual caloric 

intake was likely little higher. The extra caloric intake likely accounts for activity above 

resting metabolism. There was no significant change in body weight during the 3 weeks 

reporting period (Table S1) indicating any potential ‘feedback effect’ on weight-loss due to 

recording food intake was absent.

Daily eating pattern in humans

The time-stamp of every ingestion event allowed analyses of the temporal aspect of eating. 

Aggregate data from three weeks of monitoring was used to assess eating pattern of the 

cohort. Caloric (i.e., >5kcal) events populated a large segment of the 24 h day (Fig. 1c,d) 

and there were only 5 h between 1–6 am when the number of events/h were <1% of total 

events (Fig 2a). The fraction of events with estimated energy content >5kcal also reached its 

nadir (Fig 2b) in that interval. Because at the population level, human digital activity reaches 

the trough between 2–4 am (Golder and Macy, 2011), none of the subjects was a self-

reported shift-worker, and the reporting trough was close to 4 am (Fig 2a,b), we considered 
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4 am as the onset of “metabolic day” (i.e. events between 00:00:00 and 03:59:59 h were 

included in the previous calendar day).

Surprisingly, in contrast to the self-reported 3 meals/day structure of meals from most of the 

participants, a breakfast-lunch-dinner temporal pattern was largely absent (Fig 2c). At the 

individual level, the number of events/day showed wide variation ranging from 4.22±0.1 

(mean+s.e.m) for the bottom decile to 15.52±0.34 for the top decile of which 3.33±0.07 and 

10.55±0.24 respectively were caloric events (Fig. 2d).

From a subset of events that marked the beginning and end of an eating report (i.e., pictures 

of food at the start and of leftovers at the end of the meal), we calculated the average meal 

duration to be 14 min 36 sec. Therefore, “events” from an individual with <15 minutes inter-

event interval were combined into one “meal”. At the group level, 25% of all meals were 

within 1 h 25 min of another meal and the median inter-meal interval was 3 h 6 min. Only 

25% of the meals occurred after > 6 h 41 min of fasting (Fig 2e).

The fraction of total calories consumed (starting at 4 am) showed that less than 25% of 

caloric intake occurs before noon (Fig 2f). The percentage of total calories consumed after 6 

pm, 9 pm and 11 pm (and before 4 am of the next day) were 37.5%, 12.2% and 3.9% 

respectively (Fig 2f). After adjusting for Maintenance Calories (MC) for each individual 

(Roza and Shizgal, 1984), the average cumulative percentage of MC ingested over diurnal 

time showed the average time by which 50%, 70%, 90% and 100% of MC were consumed 

to be 3:32 pm, 5:04 pm, 6:11 pm, and 6:36 pm respectively (see Fig 2g for median values). 

In summary, there is a systematic bias towards consuming a larger portion of the daily 

caloric intake towards the late afternoon and evening hours. At the cohort level, in general, 

food consumed after 6:36 pm exceeded the maintenance calories requirement.

Eating pattern relative to wakeful hours

To compare the eating pattern with diurnal activity period, wrist actigraphy (Blood et al., 

1997) data was collected from 47 randomly selected participants using a CamNTech 

Motionwatch 8, a device that measured both activity and light. A nighttime drop in activity 

and an absence of light was scored as time in bed. Integration of activity, light, and ingestion 

events allowed analyses of eating time relative to activity period (Fig. 3a). The average time 

of activity onset and of time to bed showed large variation even among this non-shift worker 

cohort (Fig. 3b). The median time interval between daily activity onset and first caloric 

intake was 1 h 18 min, while the median time between the last caloric intake and going to 

bed was 2 h 22 min (Fig. 3c). Therefore, the total overnight fasting duration paralleled the 

time of inactivity (sleep) at night.

The day-to-day variation in the time of first or last caloric intake was spread over a few 

hours (Fig S3). Feeding after several hours of fasting is known to affect neuroendocrine-, 

metabolic- pathways and adjust the phase of the circadian clock in peripheral organs 

(Vollmers et al., 2009) so that physiological state transitions from the fasting to the fed state. 

Changes in the sleep-wake cycle between social/work days and free/weekend days is similar 

to the circadian desynchrony arising from jet travel between time zones and is called social 

jetlag (Roenneberg et al., 2012). By analogy, we postulated that the variation in breakfast 
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time between working/week days and free/weekend days likely affects the peripheral clocks 

in metabolic organs causing metabolic desynchrony or “metabolic jetlag”. The median 

breakfast (i.e., the first caloric intake event) time for the entire population changed on 

Saturday and Sunday (Fig. 3d, Fig. S3), so we considered those two days as the “metabolic 

weekend”. The time of last caloric intake did not significantly change in any of the days, but 

the variability was relatively large on Friday and Saturday (Fig. 3e, Fig S3). At the 

population level, the mean times of first caloric intake during weekdays and weekend were 

9:21 am (95% CI: 9:15–9:27 am) and 10:26 am (95% CI:10:15–10:37 am) respectively. 

Delaying breakfast was more common than advancing it, with 40% of the subjects delaying 

breakfast by 1 h or longer and 25% by 2.18h, while only 7% advanced their breakfast time 

by >1h. The time of last caloric intake was more variable than breakfast. The average last 

caloric intake time was advanced by >1 h in 17%, while only 15% delayed the time of last 

caloric intake by >1 h in the weekend.

Eating duration and eating pattern

Having observed a large variance in the first and last caloric intake (Fig. S3) and the absence 

of a clear 3 meals/day eating pattern (Fig. 2c,d ) for most subjects, a potentially better 

description of an individual’s eating pattern could be the daily duration of caloric intake. 

Because food intake triggers post-prandial changes in neuroendocrine state that can take 

minutes to hours to return to resting or fasting state, eating too often could clamp the 

physiological state between frequent meals to the post-prandial state. Therefore, we defined 

the daily eating duration as the time interval (4 am onwards) that contained 95% (2.5%ile–

97.5%ile) of all intake events during the monitoring period (Fig. 4a). This approach for 

arriving at the eating duration from aggregate data over several days is tolerant of occasional 

non-reporting of some random eating events. Breakfast time weakly positively correlated 

with the last caloric intake (r2= 0.379), so that individuals with earlier breakfast also had 

their last caloric intake earlier in the evening (Fig. 4b). The eating duration better correlated 

with the time of last caloric intake (r2= 0.215) than the time of breakfast (r2= 0.035) (Fig. 

4c,d), or with BMI (r2=0.017) (Fig. 4e). The median daily eating duration was 14 h 45 min, 

and only 9.7% of the subjects had a daily eating duration <12 h (Fig. 4f) long. The weak 

correlation (r2= 0.017) between the eating duration and BMI could be due to the limited 

sample size, the heterogeneity of the participants in terms of gender and age, and the fact 

that the eating pattern recorded in the monitoring period is a short-term snapshot of a 

person’s long term diet related behaviors.

Restricting eating duration reduces body weight

Many factors including nutrition quality, quantity, physical activity and genetics contribute 

to obesity. Although we did not find a simple correlation between BMI and eating duration, 

we wanted to test whether longer eating duration and erratic eating pattern are contributing 

factors in subjects with co-occurrence of >25 BMI and >14 h eating duration. We tested if 

reducing the eating duration and metabolic jetlag associated with weekday/weekend 

differences in a subset of individuals would lead to reduction in body weight. We recruited 8 

individuals with >14h eating duration for a 16 weeks pilot intervention study, such that each 

individual’s own baseline data served as the control (Fig. 5a) condition. Individualized 

“feedogram” graphics representing a temporal raster plot of ingestion events in successive 
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days were constructed (Fig. 5b). After obtaining informed consent for intervention, the 

participants were provided data regarding their eating pattern accrued in the 3 weeks 

baseline period (95% eating duration, variance in first and last caloric intake and weekday-

weekend metabolic jetlag) and were shown their own baseline “feedogram” prior to the 

intervention. Because in rodents, a daily eating period of up to 12 h improves metabolic 

fitness (Chaix et al., 2014), the participants were requested to reduce their caloric containing 

eating duration to a self-selected window of 10–12 h, and to consistently follow this duration 

both during weekdays and weekends so that the metabolic jetlag could be minimized. No 

overt suggestion concerning nutrition quality, quantity or caloric content was provided. The 

individuals continued logging their food pictures using the same app as used in the baseline 

period for the next 16 weeks and also received a weekly summary of their feedograms and 

daily eating duration.

All subjects reduced their eating duration (average reduction: 4 h 35 min; 95% CI: 3 h 30 

min–5 h 40 min; p<0.001) and their weekday/weekend metabolic jetlag was also reduced to 

<1h (Fig. 5b,c). The participants showed a reduction in total body weight (average loss 3.27 

kg; 95% CI: 0.9081–5.624 kg) and accordingly, excess body weight (Fig. 5d–e, Table S3), 

and BMI (average reduction 1.15 kg/m2; 95% CI: 0.3247–1.980 kg/m2). In a subjective self-

assessment of sleep satisfaction, hunger at bedtime and energy level (in the mornings, and 

overall over the past few days), statistically significant improvement was observed (Fig. 5f). 

All participants voluntarily expressed an interest in continuing unsupervised with the 10–11 

time-restricted eating regimen after the conclusion of the 16 weeks supervised intervention. 

After 36 weeks (1 year since the intervention began), the participants maintained weight 

loss, sleep improvement, and felt more energetic (Fig. 5d–f, Table S3).

Although the participants were not overtly asked to change nutrition quality or quantity, 

reducing the eating duration led to reduced estimated caloric intake. Unlike mice where 

reducing the eating duration to ~10 h does not alter total caloric intake (Hatori et al., 2012), 

our human intervention cohort reduced the estimated daily caloric intake (average reduction 

20.26%, 95% CI 4.92%–35.6%; paired t-test p<0.05). Humans consume heterogeneous food 

types in a time-of-the-day dependent manner (Fig. S4), e.g., coffee is almost always 

consumed in mornings, while alcohol at night. As a result, during the intervention, it was not 

the case that items that would have otherwise (in the baseline period) been consumed in the 

designated 14 h nighttime fasting hours had been moved to the self-selected 10 h feeding 

period during the intervention. Instead, the person would simply not consume such an item 

rather than consume it at the wrong time of day. This could be one potential explanation for 

the reduction in caloric intake.

Discussion

Collecting human nutrition information in the free-living condition has been a persistent 

challenge. Recording dietary intake using text entries, selecting from a large library of food 

items, and specifying the portion size is a ubiquitous feature found in most nutrition apps. 

Although such apps improve adherence relative to the traditional diary log (Carter et al., 

2013), data logging can be cumbersome for mixed meals, and consequently, users may not 

bother to log small snacks. Furthermore, portion size reporting can be subjective. By 
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adopting an approach centered on food pictures with an optional user-side annotation 

together with infrequent but randomly timed push notifications, we reduced the barrier to 

data recording. Server side annotation of the picture metadata ensured uniformity across the 

cohort. Supervised crowd-sourced annotation can make this approach scalable to large 

cohorts.

By overlaying the daily patterns of food and beverage intake, activity-rest, and light 

exposure, we could uncover relationships among them (Fig 3a–c). Data integration from 

multiple such longitudinal data-streams has immense promise for disease prognosis. 

Although the subjects did not have any chronic medical conditions, they also logged their 

consumption of vitamin, supplement and occasional over-the-counter medications for minor 

ailments, thus offering a temporal pattern of drug and supplement use (Fig. S4). More than 

50% of the mammalian transcriptome exhibits diurnal rhythms in a tissue-specific manner 

(Zhang et al., 2014), the gut microbiome shows daily rhythms (Thaiss et al., 2014), the 

timing of food affects these rhythms in peripheral organs (Vollmers et al., 2009), and the 

targets of a large number of FDA approved drugs show circadian expression (Zhang et al., 

2014). Therefore, by monitoring the timing of drug intake relative to the sleep-wake or 

feeding-fasting cycle can have significant impact on disease prognosis and unraveling 

interactions among food, sleep and drugs in free-living individuals.

Formally, our work introduces a method and the critical defining parameters for describing 

the diurnal and longer-term temporal characteristics of nutrition in humans. By creating a 

scalable method to longitudinally monitor human nutrition in an evidence-based manner, we 

discovered that the daily eating pattern even among healthy non-shift young workers is 

highly variable from day to day. For more than a half of the participants in the baseline 

monitoring study, the eating pattern is erratic, energy intake events span over a large fraction 

of a 24 h day, with a relatively short fasting period (Fig. 4). Although the first caloric intake 

after leaving the bed happened within 1h 18m (median value) (Fig. 3c), less than 25% of the 

daily caloric intake occurred before noon while 37.5% was consumed after 6pm (Fig. 2f). 

This suggests that breakfast is relatively small in terms of energetic input and that major 

caloric intake is delayed until later in the afternoon or evening, in this set of relatively young 

(Table S1) non-shift-worker subjects. To address the universality of our observations 

concerning eating patterns, this method may be extended to a larger population spread over 

different geographical regions, work schedules (e.g. shift-workers, retired individuals, 

nurses, pilots), agegroups, and/or cultures. It would also be useful to describe the diurnal 

patterns of caloric intake in humans that do not have a modern lifestyle influenced by 

electricity, such as hunter-gather societies.

Individuals in our study largely ate throughout the wakeful hours (Fig. 3). Consequently, 

sleep duration and quality largely dictated the eating pattern. Furthermore, since the sleep 

pattern changes between weekdays (workdays) and weekends leading to social jetlag 

(Roenneberg et al., 2012; Wittmann et al., 2006), the breakfast time also changes between 

weekdays and weekends. These changes in breakfast time are analogous to a person 

traveling across time zones every weekend and can be described as metabolic jetlag. The 

intricate connection we observed between sleep and overnight fasting duration suggests that 

the observed relationship between a short sleep duration and predisposition to metabolic 
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diseases (Cappuccio et al., 2011; Copinschi et al., 2014) may be partly explained by the 

reduced duration of overnight fasting. Similarly, the reported correlation between social 

jetlag and BMI may also involve metabolic jetlag. The increased daily eating duration likely 

contributes to increased caloric intake. A change in eating pattern between days (e.g. 

weekday vs. weekend) can affect time-of-day/night specific changes in food intake from 

specific food groups (Fig. S4). Therefore, one mode by which reduced sleep duration 

contributes to the increased risk for metabolic diseases could be the increased daily eating 

duration and associated changes in caloric intake and nutrition quality.

We did not find a simple positive correlation between the daily eating duration and BMI in 

our cohort. This may be for several reasons including a limited sample size, heterogeneity of 

the cohort and a likely scenario that individuals with long eating duration may also have 

more physical activity. Nevertheless, reducing the temporal eating period in a feasibility 

study imparted measurable benefits of clinically relevant magnitude in terms of body weight 

reduction and sleep improvement without increasing the subjective sense of hunger. This 

relatively large effect on body weight reduction even in the small intervention cohort implies 

that the benefits might result from multiple changes: restoration of the diurnal rhythm of 

feeding/fasting, reduction of the weekday/weekend metabolic jetlag and a reduction in the 

daily caloric intake. Some benefits of TRF might arise from caloric reduction (CR). At the 

same time we cannot rule out the possibility that some benefits of CR in vertebrates 

including humans might be from TRF, as most CR studies involve caloric intake within a 

defined time-frame. Nevertheless, if time restriction under free-living condition 

inadvertently leads to caloric reduction, TRF as a method to reduce caloric intake is more 

attractive option as the individuals, caregiver, case managers, physicians, and scientists do 

not have to adapt expensive and laborious methods to accurately track caloric count. Hence, 

irrespective of mechanism, time restriction offers an effective approach to improve health.

While the relative contribution of daily eating pattern, calories, and nutrition quality to 

multifaceted health improvement in humans should be examined in detail in future studies, 

our results highlight that suitable manipulation of the diurnal temporal pattern of caloric 

intake is a feasible therapeutic approach for improving human health in the free-living 

condition, in spite of the vast variety of food and beverage types consumed by the average 

person from day to day. This opens up the possibility for utilizing this strategy by itself or in 

combination with existing approaches for health improvement.

Materials and Methods

This study was approved by the IRB of the Salk Institute. Participants were recruited during 

2012–2013 through a newspaper advertisement, paper flyers, and online advertisements. 

Inclusion and exclusion criteria were determined by an online questionnaire and an in-

person interview. All subjects provided written informed consent during the first office visit 

and were asked to record all of their food, beverage and water intake using the smartphone 

app. Subjects’ height and weight were measured using a calibrated scale and tape measure at 

the beginning and end of the 3 weeks baseline period. Participants were nominally 

compensated for their time and effort.
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For the baseline study aimed at observing eating patterns in free living adults, data were 

collected from a Tuesday/Wednesday midnight to another Tuesday/Wednesday midnight 21 

days later. Subjects received instructions to record every item consumed (food, drink, water) 

regardless of its size using the app on their smartphone. The leftovers from items that were 

not completely consumed were to be recorded again, but described as such in the annotation. 

Days with less than 3 total events (including non-caloric content items) were flagged and 

verified with the participants for any observed fasting day or whether they forgot to log data.

Subjects from the baseline study with BMI >25 kg.m−2 and whose intake interval exceeding 

14h were offered the opportunity to participate in the intervention study. After a detailed 

presentation on the known benefits of time-restricted feeding in rodents, data on their own 

eating pattern and what the intervention study would entail, subjects chose a 10-h eating 

interval of their choice, and were to limit all non-water intake (including coffee and tea) to 

that 10-h interval. Eight subjects entered the study; 5 males (age 34.4 ± 2.9 years, weight 

96.7 ± 4.8 kg, BMI 31.77 ± 2.05 kg/m2), 3 females (age 36.3 ± 4.3 years, weight 91.8 ± 15 

kg, BMI 34.91 ± 3.84 kg/m2; average ± s.e.m.). Ethnicity: 2 Hispanics, 6 Non Hispanic or 

Latino. Race: 3 Asian, 4 White, 1 More than one race. To identify undiagnosed fasting 

hypoglycemia, a fasting blood metabolic panel was performed at a certified clinic prior to 

the intervention study for every subject. During the 16 weeks long intervention study, the 

participants were instructed to log in to a personalized website every week to check their 

eating duration. Anthropometrics were performed prior to the start of the intervention, just 

after the completion of the 16-week long intervention and 1 year after the start of the 

intervention. As the eligibility criteria for this feasibility pilot study was to test TRF in 

healthy overweight subjects with no recent history of fasting blood sugar, cholesterol, and 

triglycerides outside the reference range, we did not thoroughly follow clinical biomarkers 

of metabolic diseases.

Software

The smartphone application was coded in Objective-C. When the application is run for the 

first time, it generates a unique 20 character alphanumeric code to identify the device, as 

well as records the user’s Push Notification Service identifier in a database. Access to the 

application was restricted to study participants by a one-time username-based validation 

procedure. Food pictures taken in JPEG format were downscaled to 1/10 their original size 

on the device itself to reduce data usage. The functionality of each app tab is shown in Fig 

S1. Push notifications were manually triggered at a random time of the day during the stated 

wakeful period of the subject and numbered 1–2 per day. The specific push notification 

based query presented to the subject is dependent on the time when he/she sees it, not when 

it was originally initiated from the server. The presented query and the response were 

recorded on the server.

The “Salk Metabolic Study” app was available from the Apple Appstore during the study 

period. To limit usage to subjects who provided a written informed consent, the app 

activation required a randomly generated unique activation key for each participant. 

Recently, the app was revised, upgraded, and re-written to run on the latest operating 

systems in iOS and Android devices under the name “myCircadianClock”. Under Salk IRB 
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approved study the app is available to adults living in the US. Potential users can visit the 

website http://mycircadianclock.mycircadianclock.org/ to review the ongoing study 

objectives and consent document. If they consent to participate through electronic-

consenting, they are sent an activation key to use the app.

Data annotation and analysis

Duplicate pictures were first automatically removed by comparing MD5 checksums, which 

serve as a fingerprint of a file. A second round of de-duplication was performed by manually 

inspecting the contents of sequentially received food/drink pictures. De-duplicated data were 

then independently annotated by two researchers, for multiple characteristics that describe 

each item. The items and estimated portion size were also looked up in FNDDS or 

CalorieKing website for estimated caloric content. A third researcher tallied the annotations 

and where discrepancies existed, all three individuals conferred and arrived at a consensus 

description. In recognition of the fact that lifestyles and work schedules are controlled more 

by conventional time than solar time, the time data shown herein referred to as ‘local time’ 

incorporate daylight savings time when applicable. In other words, according as daylight 

savings time was in effect (March–November) or not (November–March), a local time of 

9.5 would refer to 9:30 am PDT or 9:30 am PST for an event recorded in California. Polar 

plots were generated using Mathematica 9 (Wolfram Inc.). All other plots and statistical 

analysis were prepared using Prism 5 (GraphPad Software).

Feedogram

To generate a feedogram raster plot, events were binned into 15-minute intervals starting at 

midnight. Corresponding to each such bin, if an event was recorded in it, the segment in the 

raster plot was colored black. If no event was present, the segment was colored gray if it is 

between 6 pm and 6 am, and yellow otherwise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• The daily eating pattern in healthy adults is highly variable from day to day

• More than a half of the adults eat for 15 h or longer everyday

• Sleep duration parallels the fasting duration

• Reducing the daily eating duration can contribute to weight loss
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Figure 1. 
A scalable method to monitor daily patterns of dietary intake in humans. (a) Schematic of 

the smartphone-based approach to monitor human eating pattern used to monitor all 

ingestion events for (b) three week period in healthy adults. Polar plot of (c) all or (d) calorie 

containing (≥5 kcal) ingestion events of each individual plotted against time of the day 

(radial axis) in each concentric circle. Data from 156 individuals are shown.
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Figure 2. 
Human eating lacks 3-meals-a-day structure. (a) Percentage of all ingestion events in 1 h bin 

shows the nadir at 4 am. (b) The fraction of events with <5kcal also reaches its peak at 4am. 

Therefore we considered 4 am (instead of the midnight) as the beginning of the metabolic 

day. (c) Representative scatter plot of ingestion events of 11 subjects during the observation 

period shows the lack of clustering of events into three principal bins for most individuals 

and a large variation in the total number of events. (d) Number of ingestion events/day in all 

subjects binned into 10 deciles show a wide distribution of number of total and calorie 

containing events every day. (e) Frequency distribution and cumulative frequency of inter-

meal-interval for the entire cohort. (f) Percentage of calories remaining to be consumed in 

each hourly bin shows >75% of all calories are consumed after mid-day. (g) Time (median + 
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25%–50% range and 10–90% interval) at which percentage of maintenance calories 

consumed in 10% increments are shown.
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Figure 3. 
Activity and eating duration in adult humans. (a) Representative actogram and light 

exposure pattern (from a wrist-worn device) of a subject for 3 weeks overlaid with ingestion 

events (from smartphone app) shows that the latter occur erratically throughout the active 

period. (b) Wakeful activity duration in a subset of the subjects is shown. Each horizontal 

bar shows the interval between average wake up and bedtime (+ s.e.m., up to 21 days of 

monitoring). (c) Time interval between waking up and the first caloric ingestion or the last 

caloric ingestion and going to bed. Bars (orange and blue, y-axis) indicate the percent of the 

individuals for whom actigraphy was performed with the indicated number of hours (x-axis, 

1 h bins) from waking up to the first caloric intake or from the last caloric intake to sleep. 

Cumulative percentages (secondary y-axis) are shown in color-matched lines. Median time 

of (d) first and (e) last caloric event of all individuals on different days of the week. Median 

(25–75% interval in box, 10–90% interval in lines) local time is shown.
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Figure 4. 
Daily duration of caloric intake.

(a) Eating duration of all individuals is shown in the order of late (top) to early (bottom) 

nighttime fasting onset time. (b) The time of last caloric intake weakly positively correlates 

with the time of first caloric intake. (c) The daily duration of eating does not correlate with 

the time of first caloric intake (d) but weakly positively correlates with the time of the last 

caloric intake. The subjects’ daily eating duration does not correlate with their (e) body mass 

index (BMI, kg/m2) (f) Frequency distribution (red bars) and cumulative percentage (black 

line and blue filled area) of eating duration (hours).
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Figure 5. 
Improved eating pattern reduces body weight in healthy overweight individuals. (a) 

Schematic of the study design to test the effect of eating pattern on body weight. (b) 

Representative “feedogram” of a participant during baseline and during intervention. The 

times of ingestion events are denoted as prominent black rectangles along the 24 h day 

represented in each horizontal line (x-axis). Yellow represents the time between 6 am and 6 

pm. Eating duration during baseline and intervention are shown as broken lines. (c) The 

daily eating duration of each individual during baseline (red) and intervention (blue) plotted 

against the local time (y-axis). (d) Scatter plot and average (± s.e.m.) change in body weight 

in 8 participants during 3 weeks of baseline monitoring, after 16 weeks of intervention and 

after 1 year. (e) Average (+ s.e.m.) body weight at the end of 3 weeks baseline, after 16 

weeks of monitored intervention and at 1 y. (f) Average (+ s.e.m.) of subjective measures of 

energy level, hunger and sleep in subjects. These subjective measures were assessed on a 

scale of 1 to 10, with 10 being the preferred (healthier) end of the range. Higher numbers 
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thus indicated healthier values for the quantity, i.e., more energetic, less hunger at bedtime 

and more sleep satisfaction. *: p<0.05, T-test.
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