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Abstract

Purpose of review—Natural killer (NK) cells are innate lymphoid cells specialized to eliminate 

malignant cells via direct cytotoxicity and immunoregulatory cytokine production. As such, NK 

cells are ideal as cellular therapy for cancer patients, and a number of studies have provided proof-

of-principle that adoptively transferred NK cells can induce remissions in patients with leukemia. 

A clear understanding of the mechanisms underlying NK cell anti-tumor responses, including 

target cell recognition, activation status, and negative regulatory signals will improve NK cellular 

therapy for cancer patients.

Recent findings—Clinical studies have demonstrated the safety and preliminary efficacy of NK 

cell adoptive transfer, especially in hematologic malignancies. A variety of NK cell sources, 

isolation techniques, activation approaches, and ex vivo expansion strategies are under 

investigation. New approaches have been developed and are being tested to optimize NK cell 

therapy, including ways to better target NK cells to malignant cells, increase their functional 

competence, facilitate expansion in patients, and limit inhibitory signals or cells.

Summary—NK cells represent a promising cellular immunotherapy for the treatment of cancer. 

In addition to adoptive cellular therapy, adjunct treatments that optimize NK cell targeting and 

function will enhance their potency and broaden their potential use to many cancer types.
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Introduction

For over a century it has been understood that the immune system is involved in controlling 

tumor growth [1]. Cancer immunotherapy strategies seek to harness the immune system’s 

implicit ability to recognize and eliminate malignant cells, mediated by T cells, natural killer 

(NK) cells, NK-T cells, B cells, dendritic cells, and macrophages [2]. As the original 

immune-based cellular therapy, allogeneic hematopoietic cell transplantation (HCT) has 

provided long-term, disease-free survival to patients with hematologic cancers [3]. This 
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procedure suppresses a patient’s immune system to allow engraftment of the allogeneic 

donor’s immune system, which in turn eliminates “foreign” cancer cells, commonly referred 

to as a graft versus leukemia effect (GVL). The drawback of this treatment approach is the 

recognition of normal patient cells as “foreign,” thereby causing graft versus host disease 

(GVHD) – a major life-threatening complication. Thus, one rational approach to improve 

allogeneic HCT is to isolate specific anti-tumor immune cells, primarily T and NK cells, and 

utilize them for cell-based therapy. Indeed, the success of chimeric antigen receptor (CAR) 

modified T cells for the treatment of B cell malignancies has demonstrated the promise of 

this reductionist cellular immunotherapy approach. Similarly, NK cells have been isolated 

from allogeneic donors, and utilized to induce remissions, primarily in patients with acute 

myeloid leukemia (AML).

NK cells are innate lymphoid cells that circulate through most tissues, and are specialized to 

eliminate virus-infected and malignantly transformed target cells [4,5]. NK cells contribute 

to cancer immunoediting [6], and are frequently deficient or dysfunctional in cancer patients 

[7–9], suggesting that NK cells represent a significant immunoevasion requirement for 

cancer genesis and progression. Further, a large epidemiologic study demonstrated that low 

NK cell function predicted for an increased risk of developing cancer [10]. In the setting of 

allogeneic HCT, HLA-haploidentical NK cells can recognize AML blasts, which predicts 

for improved outcomes in high risk AML [11–14]. Adoptive NK cell therapy studies 

utilizing the HLA-disparity between the donor NK cells and patient AML to target NK cells 

to blasts show promise [15,16]. Further, immunogenetic studies of killer-cell 

immunoglobulin-like receptors (KIR) in patients who have undergone HCT have correlated 

certain KIR haplotypes or activating receptor expression with disease relapse [17–19]. A 

number of parameters are currently being investigated to improve NK cell adoptive 

immunotherapy, including the donor cell source, the use of large-scale ex vivo expansion, 

use of off-the-shelf cell lines, and NK cell differentiation from progenitors [20–23]. 

Moreover, strategies are now being tested to optimize NK cell responses, including targeting 

NK cells more effectively to the tumor, enhancing NK cell anti-tumor functional status, and 

removing inhibitory signals or cells [23] . The focus of this review is to summarize recent 

advancements in the adoptive NK cellular therapy of cancer, and highlight promising NK 

cell immunotherapy combination strategies.

What is an NK Cell?

NK cells are innate lymphoid cells that can recognize and eliminate malignant cells. NK cell 

functions that are responsible for tumor surveillance and clearance include cytokine/

chemokine secretion and cytotoxicity [4,5,24]. These cytokines (e.g. IFN-γ and TNF) and 

chemokines (e.g., MIP-1α) are important for shaping the immune response to the tumors 

and for recruiting additional effector cells to the site of malignancy [4]. NK cells also release 

perforin and granzymes into specialized cytotoxic synapses to induce target cell death. 

Following activation, NK cells may also express the death receptor ligands TRAIL and 

FasL, which bind to their receptors on target cells to trigger apoptosis. Human NK cells are 

phenotypically identified as CD56+ cells lacking T (CD3, TCR) and B (CD19) cell lineage 

markers, constitute approximately 10% of human blood lymphocytes, and consist of two 
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developmentally-related but functionally-distinct subsets of human NK cells, CD56dim and 

CD56bright NK cells [25].

In order to maintain proper tolerance to healthy tissues and effectively eliminate diseased 

cells, NK cells utilize germ-line encoded activating and inhibitory receptors [26]. During 

development, NK cells must express at least one inhibitory receptor specific for self MHC 

class I (MHC-I) to attain functional competence (e.g. licensing) [27]. In a mature, licensed 

NK cell, the balance of signals received through these receptors determines the fate of the 

engaged cell, where more activating receptor signaling results in target killing and cytokine 

production. NK cells recognize diseased cells that have lost inhibitory receptor ligand 

expression (“missing self”) and upregulated activating receptor ligands (“abnormal or 

induced self”). KIR and C-type lectin inhibitory receptors (CD94/NKG2A) recognize MHC-

I and MHC-I like molecules that are expressed on most normal healthy tissues, and provide 

the negative signals that prevent NK cell autoimmunity. Activating receptors expressed by 

NK cells, such as NKG2D, NKp46, and natural cytotoxicity receptors, recognize ligands 

that are upregulated on stressed or malignant cells [26]. NK cell receptors are variably and 

stochastically expressed on individual NK cells, resulting in thousands of NK cell 

specificities [28]. NK cell responses are not static; activated NK cells upregulate both 

inhibitory molecules (e.g., LAG-3, TIM-3, PD-1) and co-activating receptors (e.g., CD137). 

While induced inhibitory receptors are important in resolving a normal immune response 

and protecting healthy tissues, they also represent a means by which malignant cells evade 

NK cell responses [29–33]. Although immune checkpoints are well-defined in T cell anti-

tumor responses, relevant activation-induced NK cell inhibitory checkpoints remain under 

investigation. In addition, recent studies revealed that NK cells can exhibit memory of prior 

activation [34] and NK cell memory is an area of active investigation [35]. Thus, NK cells 

are specialized effectors poised to respond to malignant cells, but in many diseases require 

modulation of trigger/recognition, functional capacity, or negative regulators for an optimal 

response.

Adoptive NK cell Immunotherapy

Since donor NK cell alloreactivity against leukemia correlated with improved clinical 

outcomes in AML patients with HLA-haploidentical HCT [11–14], most studies of NK cell 

adoptive immunotherapy have been performed in this disease. The recognition of an AML 

blast was linked to functionally-competent NK cells triggered via missing-self or induced/

abnormal-self signaling [17–19]. In the first clinical trial investigating NK cell adoptive 

transfer outside of HCT, Miller et. al. enriched NK cells by depleting T cells (~40% NK 

cells in the final product), activated them overnight with IL-2, and administered them to 

lymphodepleted (fludarabine/cyclophosphamide) AML patients [15]. Key parameters of this 

and other reported studies of NK cellular therapy are summarized in Table 1. Overall, 5 of 

19 (26%) of AML patients achieved a complete remission (CR) on this trial. Curti et. al., 

administered purified CD56+CD3− NK cells from HLA-haploidentical donors selected for a 

KIR-KIR ligand mismatch using a similar treatment protocol. Of the 5 patients with active 

AML, 1 patient (20%) obtained a CR [14]. More recently, Bachanova et. al. reported a series 

of patients treated with modifications of the Miller et al. platform, and demonstrated that the 

provision of IL-2-diptheriatoxin to deplete regulatory T cells (Tegs) enhanced NK cell 
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expansion and increased the frequency of CR (50%). General conclusions from these studies 

included 1) lymphodepletion is important for donor NK cell expansion and resulted in 

increased host IL-15 production, 2) in vivo expansion of donor NK cells correlated with 

AML CR frequencies, 3) allogeneic NK cells did not cause GVHD, 4) patient Tregs limit 

NK cell expansion and anti-leukemia activity in vivo. Multiple groups are examining 

alternative sources of NK cells, such as ex vivo expansion, differentiation from progenitors, 

and even immortalized NK cell lines [21,36–39]. While these studies provide proof-of-

principle that allogeneic NK cell adoptive transfer may induce remissions in leukemia 

patients, it is clear that new, complementary approaches are needed to achieve lasting 

responses in patients (Table 2).

There remain a large number of open questions in the field, including the optimal setting in 

which to administer adoptive NK cell therapy. Although NK cell adoptive immunotherapy 

has the benefit of no GVHD, the “window of opportunity” for NK cells to clear leukemia is 

a few weeks, since host T cells eliminate allogeneic donor NK cells as they recover from 

Flu/Cy. In contrast, adding NK cell infusions to HCT procedures may allow for persistence 

in the host, enhance GVL and reduce GVHD, but does not address the key adverse events 

associated with the HCT per se. Thus, the most recent research efforts have investigated 

multiple approaches to enhance NK cell anti-tumor responses, which may have implications 

in NK cell adoptive immunotherapy in either setting, and may also be used to stimulate 

endogenous patient NK cell responses. The remainder of the review focuses on progress in 

the three major strategies to enhance NK cell-mediated tumor clearance.

Providing a trigger: enhancing NK cell tumor recognition

While initial studies utilized KIR ligand mismatch to facilitate donor NK cell recognition of 

recipient leukemias, advances in our understanding of NK cell triggering via CD16 by 

monoclonal antibody therapies has led to the development of novel single-chain variable 

fragments (scFv) fusion proteins designed to enhance targeting the NK cell to the tumor. 

Bispecific and trispecific killer cell engagers (BiKE and TriKE) that cross-link CD16 

expressed on NK cells and 1-2 tumor antigens on target cells have been reported in pre-

clinical studies [50]. The CD16xCD33 BiKE triggered NK cells via CD16 to kill and 

produce cytokines in response to CD33-expressing cell lines and primary leukemia samples 

in vitro [50]. Gleason et al. have recently tested the effectiveness of the CD16xCD33 BiKE 

to target NK cells to myelodysplastic syndrome (MDS) patient samples (CD33+ MDS 

targets) [40]. Moreover, it was demonstrated that the CD16xCD33 BiKE triggers patient NK 

cells to lyse CD33+ MDS blasts and immunosuppressive CD33+ myeloid derived suppressor 

cells (CD33+ MDSCs) in intact patient samples. Thus, CD33-scFv BiKEs could be utilized 

to limit endogenous myeloid regulators of NK cells, thereby enhancing allogeneic, and 

potentially autologous, NK cell responses. Rothe et al. reported a bispecific NK cell-specific 

targeting agent, AFM13, in a phase 1 study for treating rel/ref Hodgkin lymphoma [41,51]. 

AFM13 is a tetravalent chimeric antibody construct (TandAb) that contains two binding 

domains for CD16A, the NK cell specific isoform of the CD16 receptor, and CD30, which is 

expressed on hematologic malignancies, including Hodgkin lymphoma. In this study, 

patients were treated with escalating doses of AFM13 (0.01 to 7.0 mg/kg, three patients per 

dose) administered once a week for 4 weeks. AFM13 was well tolerated, and 3 of 26 
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patients experienced a partial response. Furthermore, the authors demonstrated enhanced 

activation marker expression on NK cells after AFM13 infusion providing a proof-of-

principle that NK cells can be targeted and enhanced by AFM13 in vivo. By specifically 

using the CD16A scFv the large sink of CD16+ non-NK cells is eliminated (e.g. CD16B+ 

neutrophils), potentially improving the potency of this class of agents. Finally, a number of 

clinical monoclonal antibodies partially rely on ADCC mediated tumor clearance, including 

trastuzumab, rituximab, and cetuximab [52–55]. Efforts are being made to optimize 

monoclonal antibodies to enhance ADCC and antibody-dependent cytokine release (ADCR) 

by NK cells [42,56]. Because these responses are dependent on IgG Fc interaction with Fc 

receptors, de Romeuf et al. generated a chimeric monoclonal antibody which promoted 

optimal FcγRIIIA (CD16A) binding and signaling [56]. In two separate studies, Le Garff-

Tavernier et. al., compared ADCC of CLL or lymphoplasmacytic lymphoma opsonized with 

the Fc-optimized anti-CD20 monoclonal antibody, ublituximab, or with the first-generation 

anti-CD20 antibody, rituximab [43,57]. In both studies, NK cell engagement with the 

ublituximab resulted in increased degranulation and target killing compared to rituximab 

[43,57]. All of these agents rely on CD16-triggered NK cell functions, however, a number of 

additional activating receptors (e.g. NKG2D) expressed by NK cells could be targeted in a 

similar fashion, thereby producing potent activating signals to enhance NK cell effector 

functions. Apart from these antibody-type targeting agents, there is interest in using CAR-

modified NK cells for enhancing tumor specificity [44,45,58,59]. Haploidentical NK cells 

could be enriched from donor PBMCs, transduced to express tumor-specific CAR with NK 

cell activating receptor signaling domains (i.e., DAP10 and DAP 12) [45]. Because aplasia 

of normal hematopoietic stem cells and progenitors induced by long-lasting CAR T cells is 

currently one of the major hurdles in successfully using this technology for treating cancers 

like AML [60,61], the shorter persistence of allogeneic CAR NK cells may provide a viable 

alternative to CAR T cells.

Press the gas pedal: function-enabling NK cells

NK cell functional capacity can be enhanced in a variety of ways to improve NK cell 

mediated tumor clearance. Constitutive and induced expression of cytokine receptors by NK 

cells provides opportunities to use cytokines for immunomodulation [62]. Classically, IL-2 

has been used to activate and support NK cells in vivo for patients receiving NK cell 

adoptive therapy. One major drawback is the exquisite sensitivity of Tregs to IL-2 via their 

high affinity IL-2Rαβγ, which may expand and limit NK cell responses [62]. IL-15 is the 

critical cytokine for NK cell homeostasis and function, and has been a long-standing 

attractive alternative to IL-2 to augment NK cell and CD8 T cell number and function 

[48,63,64]. Recently, the results of a first-in-human phase 1 clinical trial of rhIL-15 

administered to advanced cancer patients demonstrated safety with clear NK and T cell 

immunomodulation [65]. This study provides the first evidence that IL-15-based agents are 

feasible in the clinic with favorable adverse event profiles at biologically active doses. 

Alternative forms of IL-15 based therapy have also been developed and are now in clinical 

trials. ALT-803 is an IL-15 super agonist mutein complexed with a fusion of IL-15Rα sushi 

domains to an IgG1 Fc domain, resulting in increased stability and in vivo half-life of this 

protein complex [66]. ALT-803 is currently being evaluated in a number of clinical trials in 
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cancer patients, and more recently in combination with therapeutic mAbs. IL-12, IL-18, and 

IL-21 are also being explored as NK cell activating cytokine adjuvants [62]. Beyond the 

scope of this review, several groups are utilizing cytokines and artificial stimulator cells to 

expand and activate NK cells prior to adoptive transfer (Table 3) [62,67].

Recent advances in NK cell biology have identified that NK cells exhibit a memory of prior 

activation [34], which includes enhanced responses to leukemia. For example, brief IL-12, 

IL-15, and IL-18 combined pre-activation of human NK cells resulted in differentiation of 

memory-like NK cells [68,69], with enhanced IFN-γ secretion and cytotoxicity upon 

restimulation with cytokines or tumor targets [35,68]. This approach is now being tested in a 

first-in-human study of cytokine induced memory-like NK cells in patients with relapsed or 

refractory AML (NCT01898793). Phase 1 testing of haploidentical NK cells primed ex vivo 

with CTV-1 lysate has been completed, and preliminary reports show that this approach is 

safe (NCT01520558) [70]. Lenalidomide is an immunomodulatory agent that has been 

demonstrated to enhance ADCC by NK cells [46,71]. Multiple trials are utilizing 

lenalidomide in combination with anti-tumor monoclonal antibodies, in order to enhance 

NK cell mediated ADCC and to improve clinical outcomes for patients (Table 2). In 

addition to targeting NK cells to tumors, monoclonal antibodies can also signal through 

costimulatory receptors to improve NK cell function. Using anti-41BB agonistic antibodies 

is one such strategy which is currently being tested in the clinic (Table 2) [72].

Take your foot off the brake: blocking NK cell inhibition

Similar to all other immune cells, NK cells have endogenous checks on their activity. To 

fully optimize NK cell anti-tumor responses in vivo, approaches are required to limit NK 

cell suppression, either from inhibitory molecules expressed by the NK cell (i.e. KIR) [73], 

or by suppressor cell types (i.e. regulatory T cells, myeloid derived suppressor cells) [74,75] 

(Figure 1). As previously mentioned, Tregs represent one obstacle to proper NK cell 

expansion after adoptive therapy plus IL-2 [47]. In order to limit Tregs during IL-2 

administration, Bachanova et al. utilized an IL-2 diphtheria toxin fusion protein (IL2DT) to 

selectively deplete recipient Tregs [16]. In addition to extrinsic NK cell inhibition by 

regulatory cells, inhibitory receptors expressed by NK cells can also suppress their activities, 

such as the constitutively expressed KIR or NKG2A, as well as the induced co-inhibitory 

receptors (i.e. TIM-3, PD-1) [26,76]. IPH2101 is a mAb blocking common KIRs that bind to 

HLA-C alleles with the aim of disrupting the inhibitory HLA-KIR signal and enhancing NK 

cell function [77,78,49]. Initial clinical studies using IPH2101 did not demonstrate any 

major responses while using this as a single agent [77,78]. In a recent study, IPH2101 

combined safely with lenalidomide in the absence of steroids with objective responses 

observed in patients with rel/ref multiple myeloma [49], providing support for the concept 

that combined immunotherapy strategies are required to unleash the most potent NK cell 

response.

Conclusions

The great promise of NK cell anti-tumor immune effects continues to expand as basic 

aspects of their biology are unraveled and translated to the clinic. Adoptively transferred NK 
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cells mediate anti-leukemia responses and can result in remissions, but many open questions 

remain regarding optimal purification, ex vivo manipulations, and in vivo support tactics. 

New immunotherapy approaches that combine allogeneic NK cell therapy with strategies to 

1) improve targeting/triggering, 2) augment anti-tumor responses, and 3) limit inhibition will 

be the key to enhance the efficacy of NK cell adoptive therapy to a wider variety of 

malignancies.
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Key Points

• NK cell adoptive immunotherapy may induce complete remissions in patients 

with acute myeloid leukemia

• NK cell recognition and targeting may be enhanced using therapeutic mAbs, bi- 

and tri-specific agents, and chimeric antigen receptors

• NK cells are primed for anti-tumor responses by cytokines, activating receptor 

mAbs, and immunomodulatory agents

• Checkpoints on NK cell anti-tumor responses include inhibitory receptor signals 

and suppressive cells that may be targeted to enhance NK cell therapy
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Figure 1. Combinatorial strategies to improve NK cell adoptive immunotherapy
NK cell adoptive therapy can be improved by combination approaches aimed at enhancing 

NK cell tumor specificity, enhancing NK cell effector capacity, and by reducing NK cell 

inhibition. Tumor-specificity can be increased by utilizing bispecific killer engagers (BiKE) 

or ADCC-optimized, tumor-specific monoclonal antibodies. NK cell effector capacity can 

be improved by in vitro preactivation with cytokines as well as in vivo with cytokine 

support, either with recombinant cytokines or with cytokine receptor super-agonists (e.g. 

ALT-803). Furthermore, activating receptor agonists can also be employed in vivo to 

improve NK cell activation and effector responses. Antibody checkpoint blockade therapy 

specific for inhibitory receptors expressed by NK cells will limit cell intrinsic 

immunosuppression. Finally, efforts to deplete regulatory T cells during NK cell adoptive 

therapy, e.g., using IL-2 diphtheria toxin fusion protein (IL2DT), are promising and 

currently under investigation.
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