Table 2.
A comparison of the electrical properties of hECTs.
| Ref | Electrical Measurement Conditions | Conduction Velocity | Action Potential Duration | Action Potential Amplitude | Depolarization Velocity (Vmax) | Other Measurements |
|---|---|---|---|---|---|---|
| Kensah et al [1] | Microelectrode Array: hECTs; spontaneous beating | 4.9 cm/s | ||||
| Mihic et al [2] | Optical Mapping: calcium-sensitive dye; spontaneous beating | 430–570 ms (Ca2+ cycle durations) | ||||
| Schaaf et al [3] | Patch clamp: spontaneous beating | 318–364 ms 816–958 ms |
62–70 mV (APD<500ms) 82–88 mV (APD>500ms) |
5–6 V/s (APD<500ms) 9–12 V/s (APD>500ms) |
MDP = −47–51 mV | |
| Turnbull et al [4] | Optical mapping: voltage-sensitive dye; 2Hz; field stimulation | 143–225 ms | ||||
| Thavandiran et al [5] | Optical Mapping: voltage-sensitive dye | 17–33cm/s | ||||
| Nunes et al [6] |
Ca2+ transients: single CMs; spontaneous beating Optical Mapping: voltage-sensitive dye; hECT; point stimulation Patch clamp: 1Hz |
~11.5–18.5 cm/s (optical mapping) | 100–150 ms (patch clamp) | ~70 mV (patch clamp) | ~125V/s (patch clamp) | RMP ≈ −100mV (patch clamp) Capacitance = 18–21 pF (patch clamp) |
| Zhang et al [7] | Optical Mapping: voltage-sensitive dye; 0.5Hz; point stimulation | 25.1 cm/s | 308–368 ms |
G. Kensah, I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, U. Martin, A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation, Tissue Eng. Part C. Methods 17 (2011) 463–473.
A. Mihic, J. Li, Y. Miyagi, M. Gagliardi, S.H. Li, J. Zu, R.D. Weisel, G. Keller, R.K. Li, The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes, Biomaterials 35 (2014) 2798–2808.
S. Schaaf, A. Shibamiya, M. Mewe, A. Eder, A. Stohr, M.N. Hirt, T. Rau, W.H. Zimmermann, L. Conradi, T. Eschenhagen, A. Hansen, Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology, PLoS One 6 (2011) e26397.
I.C. Turnbull, I. Karakikes, G.W. Serrao, P. Backeris, J.J. Lee, C. Xie, G. Senyei, R.E. Gordon, R.A. Li, F.G. Akar, R.J. Hajjar, J.S. Hulot, K.D. Costa, Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium, FASEB J. 28 (2014) 644–654.
N. Thavandiran, N. Dubois, A. Mikryukov, S. Masse, B. Beca, C.A. Simmons, V.S. Deshpande, J.P. McGarry, C.S. Chen, K. Nanthakumar, G.M. Keller, M. Radisic, P.W. Zandstra, Design and formulation of functional pluripotent stem cell-derived cardiac microtissues, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E4698–707.
S.S. Nunes, J.W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M.A. Laflamme, K. Nanthakumar, G.J. Gross, P.H. Backx, G. Keller, M. Radisic, Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes, Nat. Methods 10 (2013) 781–787.
D. Zhang, I.Y. Shadrin, J. Lam, H.Q. Xian, H.R. Snodgrass, N. Bursac, Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes, Biomaterials 34 (2013) 5813–5820.