Skip to main content
. Author manuscript; available in PMC: 2017 Jan 15.
Published in final edited form as: Adv Drug Deliv Rev. 2015 May 5;96:110–134. doi: 10.1016/j.addr.2015.04.019

Table 2.

A comparison of the electrical properties of hECTs.

Ref Electrical Measurement Conditions Conduction Velocity Action Potential Duration Action Potential Amplitude Depolarization Velocity (Vmax) Other Measurements
Kensah et al [1] Microelectrode Array: hECTs; spontaneous beating 4.9 cm/s
Mihic et al [2] Optical Mapping: calcium-sensitive dye; spontaneous beating 430–570 ms (Ca2+ cycle durations)
Schaaf et al [3] Patch clamp: spontaneous beating 318–364 ms
816–958 ms
62–70 mV (APD<500ms)
82–88 mV (APD>500ms)
5–6 V/s (APD<500ms)
9–12 V/s (APD>500ms)
MDP = −47–51 mV
Turnbull et al [4] Optical mapping: voltage-sensitive dye; 2Hz; field stimulation 143–225 ms
Thavandiran et al [5] Optical Mapping: voltage-sensitive dye 17–33cm/s
Nunes et al [6] Ca2+ transients: single CMs; spontaneous beating
Optical Mapping: voltage-sensitive dye; hECT; point stimulation
Patch clamp: 1Hz
~11.5–18.5 cm/s (optical mapping) 100–150 ms (patch clamp) ~70 mV (patch clamp) ~125V/s (patch clamp) RMP ≈ −100mV (patch clamp)
Capacitance = 18–21 pF (patch clamp)
Zhang et al [7] Optical Mapping: voltage-sensitive dye; 0.5Hz; point stimulation 25.1 cm/s 308–368 ms
[1]

G. Kensah, I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, U. Martin, A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation, Tissue Eng. Part C. Methods 17 (2011) 463–473.

[2]

A. Mihic, J. Li, Y. Miyagi, M. Gagliardi, S.H. Li, J. Zu, R.D. Weisel, G. Keller, R.K. Li, The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes, Biomaterials 35 (2014) 2798–2808.

[3]

S. Schaaf, A. Shibamiya, M. Mewe, A. Eder, A. Stohr, M.N. Hirt, T. Rau, W.H. Zimmermann, L. Conradi, T. Eschenhagen, A. Hansen, Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology, PLoS One 6 (2011) e26397.

[4]

I.C. Turnbull, I. Karakikes, G.W. Serrao, P. Backeris, J.J. Lee, C. Xie, G. Senyei, R.E. Gordon, R.A. Li, F.G. Akar, R.J. Hajjar, J.S. Hulot, K.D. Costa, Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium, FASEB J. 28 (2014) 644–654.

[5]

N. Thavandiran, N. Dubois, A. Mikryukov, S. Masse, B. Beca, C.A. Simmons, V.S. Deshpande, J.P. McGarry, C.S. Chen, K. Nanthakumar, G.M. Keller, M. Radisic, P.W. Zandstra, Design and formulation of functional pluripotent stem cell-derived cardiac microtissues, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E4698–707.

[6]

S.S. Nunes, J.W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M.A. Laflamme, K. Nanthakumar, G.J. Gross, P.H. Backx, G. Keller, M. Radisic, Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes, Nat. Methods 10 (2013) 781–787.

[7]

D. Zhang, I.Y. Shadrin, J. Lam, H.Q. Xian, H.R. Snodgrass, N. Bursac, Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes, Biomaterials 34 (2013) 5813–5820.