Table 3.
A comparison of the contractile properties of hECTs.
| Ref | Force Measurement Conditions | Force-Frequency Relationship (FFR) & Frank-Starling Curve (FSC) | Contractile Force | Contractile Stress | Excitation Threshold (ET) & Maximum Capture Rate (MCR) | Spontaneous Beat Rate | Maximum Rate of Force Increase (+dF/dt) & Decrease (−dF/dt) | Time to Peak Force (TPF) & Time to 90% Relaxation (RT90) |
|---|---|---|---|---|---|---|---|---|
| Tulloch al et [1] | Force Transducer: spontaneous | Positive FSC | 0.02 mN | ~0.1 mN/m m2 | 60 bpm | |||
| Kensah et al [2] | Custom-Made Reactor: field stimulation (25V, 10ms) | Positive FSC | 1.2–1.6 mN | 4.4 mN/m m2 | 51–58 bpm | TPF = 47–59 ms RT90 = 63–69 ms |
||
| Mihic et al [3] | Optical Mapping: calcium-sensitive dye | 63–78 Ca2+ transient cycles/min | ||||||
| Streckfuss-Bömeke et al [4] | Custom-Made Reactor: field stimulation (1.5Hz, 5ms, V = ET+10%) | Positive FSC | 0.2 mN | |||||
| Schaaf et al [5] | Post-Deflection: spontaneous | 0.05–0.07 mN | ~0.1 mN/m m2 | 40–70 bpm | +dF/dt = 10 mN/s −dF/dt = 6 mN/s |
TPF = 200 ms RT90 = 300 ms |
||
| Turnbull et al [6] |
Post-Deflection: field stimulation (2Hz, 5ms) Physiological Muscle Bath: field stimulation |
Negative FFR Positive FSC |
0.6 mN | 0.5–0.6 mN/m m2 (muscle bath, 1Hz) 0.03–0.2 mN/m m2 (post-deflection, 1Hz) |
ET = 0.4–2.2 V/cm (post-deflection) MCR = 3Hz (post-deflection) |
42–100 bpm (post-deflection) | +dF/dt = 7–8 mN/mm2/s −dF/dt = 4–6 mN/mm2/s (post-deflection) |
TPF = 80–96 ms RT90 = 106–127 ms (post-deflectio n) |
| Thavandiran et al [7] | Post-Deflection: field stimulation (2ms, 1–2Hz or 12V) | ET = 1.8–2.4 V/cm MCR = 6.1–6.5 Hz |
30–60 bpm | |||||
| Nunes et al [8] | Optical Mapping: voltage-sensitive dye | ET ≈ 0.8–2.3 V/cm (field stimulation) MCR = 2.8–4.8 Hz (point simulation) MCR = 5.2 Hz (field stimulation) |
||||||
| Hirt et al [9] | Post-Deflection: spontaneous | 0.08 mN | ~2.2 mN/m m2 | 74–90 bpm | ||||
| Zhang et al [10] | Custom-Made Reactor: field stimulation (1Hz) | Positive FSC | 1.9–4.1 mN | 7.3–16.3 mN/m m2 | MCR = 2.4–2.8 Hz (optical mapping, point stimulation) | |||
| Lu et al [11] | Force Transducer: field stimulation (1Hz, 5ms, V = ET+20%) | Negative FFR | 0.2 mN | 40–50 bpm |
N.L. Tulloch, V. Muskheli, M.V. Razumova, F.S. Korte, M. Regnier, K.D. Hauch, L. Pabon, H. Reinecke, C.E. Murry, Growth of engineered human myocardium with mechanical loading and vascular coculture, Circ. Res. 109 (2011) 47–59.
G. Kensah, I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, U. Martin, A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation, Tissue Eng. Part C. Methods 17 (2011) 463–473.
A. Mihic, J. Li, Y. Miyagi, M. Gagliardi, S.H. Li, J. Zu, R.D. Weisel, G. Keller, R.K. Li, The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes, Biomaterials 35 (2014) 2798–2808.
K. Streckfuss-Bomeke, F. Wolf, A. Azizian, M. Stauske, M. Tiburcy, S. Wagner, D. Hubscher, R. Dressel, S. Chen, J. Jende, G. Wulf, V. Lorenz, M.P. Schon, L.S. Maier, W.H. Zimmermann, G. Hasenfuss, K. Guan, Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts, Eur. Heart J. 34 (2013) 2618–2629.
S. Schaaf, A. Shibamiya, M. Mewe, A. Eder, A. Stohr, M.N. Hirt, T. Rau, W.H. Zimmermann, L. Conradi, T. Eschenhagen, A. Hansen, Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology, PLoS One 6 (2011) e26397.
I.C. Turnbull, I. Karakikes, G.W. Serrao, P. Backeris, J.J. Lee, C. Xie, G. Senyei, R.E. Gordon, R.A. Li, F.G. Akar, R.J. Hajjar, J.S. Hulot, K.D. Costa, Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium, FASEB J. 28 (2014) 644–654.
N. Thavandiran, N. Dubois, A. Mikryukov, S. Masse, B. Beca, C.A. Simmons, V.S. Deshpande, J.P. McGarry, C.S. Chen, K. Nanthakumar, G.M. Keller, M. Radisic, P.W. Zandstra, Design and formulation of functional pluripotent stem cell-derived cardiac microtissues, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E4698–707.
S.S. Nunes, J.W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M.A. Laflamme, K. Nanthakumar, G.J. Gross, P.H. Backx, G. Keller, M. Radisic, Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes, Nat. Methods 10 (2013) 781–787.
M.N. Hirt, J. Boeddinghaus, A. Mitchell, S. Schaaf, C. Bornchen, C. Muller, H. Schulz, N. Hubner, J. Stenzig, A. Stoehr, C. Neuber, A. Eder, P.K. Luther, A. Hansen, T. Eschenhagen, Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation, J. Mol. Cell. Cardiol. 74 (2014) 151–161.
D. Zhang, I.Y. Shadrin, J. Lam, H.Q. Xian, H.R. Snodgrass, N. Bursac, Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes, Biomaterials 34 (2013) 5813–5820.
T.Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, L. Yang, Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells, Nat. Commun. 4 (2013) 2307.