Skip to main content
. Author manuscript; available in PMC: 2017 Jan 15.
Published in final edited form as: Adv Drug Deliv Rev. 2015 May 5;96:110–134. doi: 10.1016/j.addr.2015.04.019

Table 3.

A comparison of the contractile properties of hECTs.

Ref Force Measurement Conditions Force-Frequency Relationship (FFR) & Frank-Starling Curve (FSC) Contractile Force Contractile Stress Excitation Threshold (ET) & Maximum Capture Rate (MCR) Spontaneous Beat Rate Maximum Rate of Force Increase (+dF/dt) & Decrease (−dF/dt) Time to Peak Force (TPF) & Time to 90% Relaxation (RT90)
Tulloch al et [1] Force Transducer: spontaneous Positive FSC 0.02 mN ~0.1 mN/m m2 60 bpm
Kensah et al [2] Custom-Made Reactor: field stimulation (25V, 10ms) Positive FSC 1.2–1.6 mN 4.4 mN/m m2 51–58 bpm TPF = 47–59 ms
RT90 = 63–69 ms
Mihic et al [3] Optical Mapping: calcium-sensitive dye 63–78 Ca2+ transient cycles/min
Streckfuss-Bömeke et al [4] Custom-Made Reactor: field stimulation (1.5Hz, 5ms, V = ET+10%) Positive FSC 0.2 mN
Schaaf et al [5] Post-Deflection: spontaneous 0.05–0.07 mN ~0.1 mN/m m2 40–70 bpm +dF/dt = 10 mN/s
−dF/dt = 6 mN/s
TPF = 200 ms
RT90 = 300 ms
Turnbull et al [6] Post-Deflection: field stimulation (2Hz, 5ms)
Physiological Muscle Bath: field stimulation
Negative FFR
Positive FSC
0.6 mN 0.5–0.6 mN/m m2 (muscle bath, 1Hz)
0.03–0.2 mN/m m2 (post-deflection, 1Hz)
ET = 0.4–2.2 V/cm (post-deflection)
MCR = 3Hz (post-deflection)
42–100 bpm (post-deflection) +dF/dt = 7–8 mN/mm2/s
−dF/dt = 4–6 mN/mm2/s (post-deflection)
TPF = 80–96 ms
RT90 = 106–127 ms (post-deflectio n)
Thavandiran et al [7] Post-Deflection: field stimulation (2ms, 1–2Hz or 12V) ET = 1.8–2.4 V/cm
MCR = 6.1–6.5 Hz
30–60 bpm
Nunes et al [8] Optical Mapping: voltage-sensitive dye ET ≈ 0.8–2.3 V/cm (field stimulation)
MCR = 2.8–4.8 Hz (point simulation)
MCR = 5.2
Hz (field
stimulation)
Hirt et al [9] Post-Deflection: spontaneous 0.08 mN ~2.2 mN/m m2 74–90 bpm
Zhang et al [10] Custom-Made Reactor: field stimulation (1Hz) Positive FSC 1.9–4.1 mN 7.3–16.3 mN/m m2 MCR = 2.4–2.8 Hz (optical mapping, point stimulation)
Lu et al [11] Force Transducer: field stimulation (1Hz, 5ms, V = ET+20%) Negative FFR 0.2 mN 40–50 bpm
[1]

N.L. Tulloch, V. Muskheli, M.V. Razumova, F.S. Korte, M. Regnier, K.D. Hauch, L. Pabon, H. Reinecke, C.E. Murry, Growth of engineered human myocardium with mechanical loading and vascular coculture, Circ. Res. 109 (2011) 47–59.

[2]

G. Kensah, I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, U. Martin, A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation, Tissue Eng. Part C. Methods 17 (2011) 463–473.

[3]

A. Mihic, J. Li, Y. Miyagi, M. Gagliardi, S.H. Li, J. Zu, R.D. Weisel, G. Keller, R.K. Li, The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes, Biomaterials 35 (2014) 2798–2808.

[4]

K. Streckfuss-Bomeke, F. Wolf, A. Azizian, M. Stauske, M. Tiburcy, S. Wagner, D. Hubscher, R. Dressel, S. Chen, J. Jende, G. Wulf, V. Lorenz, M.P. Schon, L.S. Maier, W.H. Zimmermann, G. Hasenfuss, K. Guan, Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts, Eur. Heart J. 34 (2013) 2618–2629.

[5]

S. Schaaf, A. Shibamiya, M. Mewe, A. Eder, A. Stohr, M.N. Hirt, T. Rau, W.H. Zimmermann, L. Conradi, T. Eschenhagen, A. Hansen, Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology, PLoS One 6 (2011) e26397.

[6]

I.C. Turnbull, I. Karakikes, G.W. Serrao, P. Backeris, J.J. Lee, C. Xie, G. Senyei, R.E. Gordon, R.A. Li, F.G. Akar, R.J. Hajjar, J.S. Hulot, K.D. Costa, Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium, FASEB J. 28 (2014) 644–654.

[7]

N. Thavandiran, N. Dubois, A. Mikryukov, S. Masse, B. Beca, C.A. Simmons, V.S. Deshpande, J.P. McGarry, C.S. Chen, K. Nanthakumar, G.M. Keller, M. Radisic, P.W. Zandstra, Design and formulation of functional pluripotent stem cell-derived cardiac microtissues, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E4698–707.

[8]

S.S. Nunes, J.W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M.A. Laflamme, K. Nanthakumar, G.J. Gross, P.H. Backx, G. Keller, M. Radisic, Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes, Nat. Methods 10 (2013) 781–787.

[9]

M.N. Hirt, J. Boeddinghaus, A. Mitchell, S. Schaaf, C. Bornchen, C. Muller, H. Schulz, N. Hubner, J. Stenzig, A. Stoehr, C. Neuber, A. Eder, P.K. Luther, A. Hansen, T. Eschenhagen, Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation, J. Mol. Cell. Cardiol. 74 (2014) 151–161.

[10]

D. Zhang, I.Y. Shadrin, J. Lam, H.Q. Xian, H.R. Snodgrass, N. Bursac, Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes, Biomaterials 34 (2013) 5813–5820.

[11]

T.Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, L. Yang, Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells, Nat. Commun. 4 (2013) 2307.