Table 4.
A comparison of the pharmacological responses of hECTs.
| Reference | Measurement Conditions | Catecholamines | Calcium | L-type Ca2+ channel blocker | Other |
|---|---|---|---|---|---|
| Kensah et al [1] |
Microelectrode Array: hECT; spontaneous beating Custom-Made Reactor: field stimulation (25V, 10ms) |
Isoproterenol: 0.1μM ↑rate (MEA) ↑rate, ↑force (custom-made reactor) | Carbachol: 10μM added after isoproterenol ↓rate (custom-made reactor) | ||
| Streckfuss-Bömeke et al [2] | Custom-Made Reactor: field stimulation (1.5Hz, 5ms, V = ET+10%) | Isoproterenol: 1μM ↑force, ↑relaxation velocity (custom-made reactor) | 0.2–2.8mM ↑force EC50 = 0.4mM (custom-made reactor) | ||
| Schaaf et al [3] |
Post-deflection: spontaneous Patch clamping: spontaneous |
Isoproterenol: 100nM ↑rate (post-deflection) | 0.2–3.0mM ↑force EC50 = 0.8–1.0mM (post-deflection) | Nisoldipine: 1μM ↓amplitude (patch clamp) |
Carbachol: 10μM after isoproterenol ↓rate (post-deflection) E-4031: 300nM ↑APD (patch clamp) 1–30nM ↓force, ↓Vmax, ↑beat-to-beat variability (post-deflection) Tetrodotoxin: 3μM ↓Vmax, ↑APD, ↑DI (patch clamp) |
| Turnbull et al [4] |
Post-Deflection: spontaneous Physiological Muscle Bath: field stimulation (2Hz, 5ms) |
Isoproterenol: 1nM–1μM ↑rate (post-deflection) 1nM–10μM ↑force EC50 = 750nM (muscle bath) |
0.5–2.5mM ↑force EC50 = 1.8mM (muscle bath) | Verapamil: 1nM–10μM ↓force IC50 = 0.61μM (muscle bath) | |
| Thavandiran et al [5] |
Optical Mapping: voltage sensitive dye; point stimulation (1Hz) Optical Mapping: calcium-sensitive dye |
Epinephrine: 500nM ↑rate (AP propagation) | Verapamil: 500nM ↓amplitude (Ca2+ transient) | Lidocaine: 8.5uM after epinephrine ↓rate (AP propagation) | |
| Nunes et al [6] | Optical Mapping: calcium-sensitive dye; spontaneous |
Verapamil: 1mM no Ca2+ transients Nifidipine: 10μM no Ca2+ transients |
Caffeine: 5mM ↑Ca2+ amplitude Thapsigargin: 2μM no Ca2+ transients |
||
| Zhang et al [7] | Custom-Made Reactor: field stimulation (1Hz) | Isoproterenol: 0.1nM–1μM ↑rate, ↑force EC50 = 95.1 nM | |||
| Lu et al [8] |
Optical Mapping: calcium-sensitive dye (spontaneous) Force Transducer: field stimulation (1.5Hz, 5ms, V = ET+20%) |
Isoproterenol: 1nM–5μM ↑rate = 10-EC50 100nM (Ca2+ transient) | 5mM ↑force (force transducer) | E-4031: 1μM ↓amplitude, pulsus alternans (Ca2+ transient) | |
| hPSC-CMs | Isoproterenol: EC50 = 12.9nM [9] | EC50 = 0.4–1.8mM [2, 4] | Nifedipine: IC50 = 39nM [10] | E-4031: IC50 = 17nM [10, 11] | |
| Human Adult | Isoproterenol: EC50 = 11–80nM [12– 15] | EC50 = 3.0mM [16] |
Verapamil: IC50 = 143 nM (hERG) [11, 17] IC50 = 0.24–4.3μM (Cav1.2) [18–20] IC50 = 123.0nM (inotropic) [21] Nifedipine: IC50 = 16–24 nM [19] Nisoldipine: IC50 = 67–81 nM [22] |
Carbachol: EC50 = 140nM [23] E-4031: IC50 = 7–32nM [11, 20] Tetrodotoxin: IC50 ≥ 1 μM [27, 28] Lidocaine: IC50 = 34–38μM [29] |
G. Kensah, I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, U. Martin, A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation, Tissue Eng. Part C. Methods 17 (2011) 463–473.
K. Streckfuss-Bomeke, F. Wolf, A. Azizian, M. Stauske, M. Tiburcy, S. Wagner, D. Hubscher, R. Dressel, S. Chen, J. Jende, G. Wulf, V. Lorenz, M.P. Schon, L.S. Maier, W.H. Zimmermann, G. Hasenfuss, K. Guan, Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts, Eur. Heart J. 34 (2013) 2618–2629.
S. Schaaf, A. Shibamiya, M. Mewe, A. Eder, A. Stohr, M.N. Hirt, T. Rau, W.H. Zimmermann, L. Conradi, T. Eschenhagen, A. Hansen, Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology, PLoS One 6 (2011) e26397.
I.C. Turnbull, I. Karakikes, G.W. Serrao, P. Backeris, J.J. Lee, C. Xie, G. Senyei, R.E. Gordon, R.A. Li, F.G. Akar, R.J. Hajjar, J.S. Hulot, K.D. Costa, Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium, FASEB J. 28 (2014) 644–654.
N. Thavandiran, N. Dubois, A. Mikryukov, S. Masse, B. Beca, C.A. Simmons, V.S. Deshpande, J.P. McGarry, C.S. Chen, K. Nanthakumar, G.M. Keller, M. Radisic, P.W. Zandstra, Design and formulation of functional pluripotent stem cell-derived cardiac microtissues, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E4698–707.
S.S. Nunes, J.W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M.A. Laflamme, K. Nanthakumar, G.J. Gross, P.H. Backx, G. Keller, M. Radisic, Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes, Nat. Methods 10 (2013) 781–787.
D. Zhang, I.Y. Shadrin, J. Lam, H.Q. Xian, H.R. Snodgrass, N. Bursac, Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes, Biomaterials 34 (2013) 5813–5820.
T.Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, L. Yang, Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells, Nat. Commun. 4 (2013) 2307.
M. Brito-Martins, S.E. Harding, N.N. Ali, Beta(1)- and Beta(2)-Adrenoceptor Responses in Cardiomyocytes Derived from Human Embryonic Stem Cells: Comparison with Failing and Non-Failing Adult Human Heart, Br. J. Pharmacol. 153 (2008) 751–759.
J.K. Gibson, Y. Yue, J. Bronson, C. Palmer, R. Numann, Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents, J. Pharmacol. Toxicol. Methods 70 (2014) 255–267.
K. Harris, M. Aylott, Y. Cui, J.B. Louttit, N.C. McMahon, A. Sridhar, Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays, Toxicol. Sci. 134 (2013) 412–426.
M. Flesch, R.H. Schwinger, F. Schiffer, K. Frank, M. Sudkamp, F. Kuhn-Regnier, G. Arnold, M. Bohm, Evidence for functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in failing human myocardium, Circulation 94 (1996) 992–1002.
C. Holubarsch, R. Schneider, B. Pieske, T. Ruf, G. Hasenfuss, G. Fraedrich, H. Posival, H. Just, Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions, Circulation 92 (1995) 2904–2910.
M. Bohm, I. Morano, B. Pieske, J.C. Ruegg, M. Wankerl, R. Zimmermann, E. Erdmann, Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium, Circ. Res. 68 (1991) 689–701.
M. White, R. Roden, W. Minobe, M.F. Khan, P. Larrabee, M. Wollmering, J.D. Port, F. Anderson, D. Campbell, A.M. Feldman, Age-related changes in beta-adrenergic neuroeffector systems in the human heart, Circulation 90 (1994) 1225–1238.
B.S. Cain, D.R. Meldrum, X. Meng, B.D. Shames, A. Banerjee, A.H. Harken, Calcium preconditioning in human myocardium, Ann. Thorac. Surg. 65 (1998) 1065–1070.
S. Zhang, Z. Zhou, Q. Gong, J.C. Makielski, C.T. January, Mechanism of block and identification of the verapamil binding domain to HERG potassium channels, Circ. Res. 84 (1999) 989–998.
B.S. Freeze, M.M. McNulty, D.A. Hanck, State-dependent verapamil block of the cloned human Ca(v)3.1 T-type Ca(2+) channel, Mol. Pharmacol. 70 (2006) 718–726.
Y.A. Kuryshev, A.M. Brown, E. Duzic, G.E. Kirsch, Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays, Assay Drug Dev. Technol. 12 (2014) 110–119.
K. Yamazaki, T. Hihara, H. Kato, T. Fukushima, K. Fukushima, T. Taniguchi, T. Yoshinaga, N. Miyamoto, M. Ito, K. Sawada, Beat-to-Beat Variability in Field Potential Duration in Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters for Assessment of Arrhythmogenic Risk, and a Case Study of Its Application, Pharmacology and Pharmacy 5 (2014) 117–128.
D. Sarsero, T. Fujiwara, P. Molenaar, J.A. Angus, Human vascular to cardiac tissue selectivity of L- and T-type calcium channel antagonists, Br. J. Pharmacol. 125 (1998) 109–119.
I. Splawski, K.W. Timothy, L.M. Sharpe, N. Decher, P. Kumar, R. Bloise, C. Napolitano, P.J. Schwartz, R.M. Joseph, K. Condouris, H. Tager-Flusberg, S.G. Priori, M.C. Sanguinetti, M.T. Keating, Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism, Cell 119 (2004) 19–31.
J. Koglin, M. Bohm, W. von Scheidt, A. Stablein, E. Erdmann, Antiadrenergic effect of carbachol but not of adenosine on contractility in the intact human ventricle in vivo, J. Am. Coll. Cardiol. 23 (1994) 678–683.
W.A. Catterall, A.L. Goldin, S.G. Waxman, International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels, Pharmacol. Rev. 57 (2005) 397–409.
A.L. Goldin, Resurgence of sodium channel research, Annu. Rev. Physiol. 63 (2001) 871–894.
P.B. Bennett, C. Valenzuela, L.Q. Chen, R.G. Kallen, On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III–IV interdomain, Circ. Res. 77 (1995) 584–592.