Table 5.
A comparison of the pharmacological responses of human adult and fetal CMs/myocardium and hPSC-CMs.
| Drug Name | Target | Effect in Human Adult CMs/Myocardium | Effect in Human Fetal CMs/Myocardium | Effect in hPSC-CMs |
|---|---|---|---|---|
| Epinephrine (EPI) Norepinephrine (NOR) Isoproterenol (ISO) |
β-adrenergic receptor agonist |
|
||
| Carbachol | Cholinergic agonist |
|
||
| Verapamil | KV11.1 (hERG) & CaV1.2 channel antagonist |
|
|
|
| Nifedipine | L-type Ca2+ channel antagonist |
|
||
| Nisoldipine | CaV1.2 channel antagonist |
|
|
|
| Thapsigargin | SERCA antagonist | |||
| Caffeine | Ryanodine receptor agonist |
|
||
| E-4031 | KV11.1 (hERG) channel antagonist | |||
| Terfenadine | K+, Na+, and Ca2+ cardiac ion channel antagonist |
|
|
|
| Tetrodotoxin | NaV1.5 channel antagonist | |||
| Lidocaine | Na+ channel antagonist |
LV = left ventricle; RV = right ventricle; RA = right atria; AP = action potential; APD = action potential duration; FPD = field potential duration; FFR = force-frequency relationship; +dF/dt = maximal rate of force increase; EAD = early afterdepolarization; Vmax = depolarization velocity; MDP = maximum diastolic potential
S. Weiss, S. Oz, A. Benmocha, N. Dascal, Regulation of cardiac L-type Ca(2)(+) channel CaV1.2 via the beta-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties, Circ. Res. 113 (2013) 617–631.
E.G. Kranias, R.J. Solaro, Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart, Nature 298 (1982) 182–184.
J.K. Gwathmey, R.J. Hajjar, Relation between steady-state force and intracellular [Ca2+] in intact human myocardium. Index of myofibrillar responsiveness to Ca2+, Circulation 82 (1990) 1266–1278.
M. Flesch, R.H. Schwinger, F. Schiffer, K. Frank, M. Sudkamp, F. Kuhn-Regnier, G. Arnold, M. Bohm, Evidence for functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in failing human myocardium, Circulation 94 (1996) 992–1002.
C. Holubarsch, R. Schneider, B. Pieske, T. Ruf, G. Hasenfuss, G. Fraedrich, H. Posival, H. Just, Positive and negative inotropic effects of DL-sotalol and D-sotalol in failing and nonfailing human myocardium under physiological experimental conditions, Circulation 92 (1995) 2904–2910.
M. Bohm, I. Morano, B. Pieske, J.C. Ruegg, M. Wankerl, R. Zimmermann, E. Erdmann, Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium, Circ. Res. 68 (1991) 689–701.
M. White, R. Roden, W. Minobe, M.F. Khan, P. Larrabee, M. Wollmering, J.D. Port, F. Anderson, D. Campbell, A.M. Feldman, Age-related changes in beta-adrenergic neuroeffector systems in the human heart, Circulation 90 (1994) 1225–1238.
M. Bohm, K. La Rosee, R.H. Schwinger, E. Erdmann, Evidence for reduction of norepinephrine uptake sites in the failing human heart, J. Am. Coll. Cardiol. 25 (1995) 146–153.
D.J. Coltart, B.A. Spilker, Development of human foetal inotropic responses to catecholamines, Experientia 28 (1972) 525–526.
M. Toraason, D.E. Richards, P.I. Mathias, Ca2+ mobilization in fetal-human cardiac myocytes is stimulated by isoproterenol and inhibited by ryanodine, In Vitro Cell. Dev. Biol. Anim. 34 (1998) 19–21.
B.A. Resch, J.G. Papp, Effect of adrenaline, noradrenaline, isoproterenol and tyramine on the isolated surviving human fetal heart, Zentralbl. Gynakol. 104 (1982) 1451–1461.
F. Pillekamp, M. Haustein, M. Khalil, M. Emmelheinz, R. Nazzal, R. Adelmann, F. Nguemo, O. Rubenchyk, K. Pfannkuche, M. Matzkies, M. Reppel, W. Bloch, K. Brockmeier, J. Hescheler, Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy, Stem Cells Dev. 21 (2012) 2111–2121.
I.C. Turnbull, I. Karakikes, G.W. Serrao, P. Backeris, J.J. Lee, C. Xie, G. Senyei, R.E. Gordon, R.A. Li, F.G. Akar, R.J. Hajjar, J.S. Hulot, K.D. Costa, Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium, FASEB J. 28 (2014) 644–654.
C. Mummery, D. Ward-van Oostwaard, P. Doevendans, R. Spijker, S. van den Brink, R. Hassink, M. van der Heyden, T. Opthof, M. Pera, A.B. de la Riviere, R. Passier, L. Tertoolen, Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells, Circulation 107 (2003) 2733–2740.
M. Brito-Martins, S.E. Harding, N.N. Ali, Beta(1)- and Beta(2)-Adrenoceptor Responses in Cardiomyocytes Derived from Human Embryonic Stem Cells: Comparison with Failing and Non-Failing Adult Human Heart, Br. J. Pharmacol. 153 (2008) 751–759.
R.L. Biegon, A.J. Pappano, Dual mechanism for inhibition of calcium-dependent action potentials by acetylcholine in avian ventricular muscle. Relationship to cyclic AMP, Circ. Res. 46 (1980) 353–362.
A.J. Pappano, P.M. Hartigan, M.D. Coutu, Acetylcholine inhibits positive inotropic effect of cholera toxin in ventricular muscle, Am. J. Physiol. 243 (1982) H434–41.
W. Von Scheidt, M. Bohm, A. Stablein, G. Autenrieth, E. Erdmann, Antiadrenergic effect of M-cholinoceptor stimulation on human ventricular contractility in vivo, Am. J. Physiol. 263 (1992) H1927–31.
J. Koglin, M. Bohm, W. von Scheidt, A. Stablein, E. Erdmann, Antiadrenergic effect of carbachol but not of adenosine on contractility in the intact human ventricle in vivo, J. Am. Coll. Cardiol. 23 (1994) 678–683.
D.J. Coltart, B.A. Spilker, S.J. Meldrum, An electrophysiological study of human foetal cardiac muscle, Experientia 27 (1971) 797–799.
S. Zhang, Z. Zhou, Q. Gong, J.C. Makielski, C.T. January, Mechanism of block and identification of the verapamil binding domain to HERG potassium channels, Circ. Res. 84 (1999) 989–998.
K. Harris, M. Aylott, Y. Cui, J.B. Louttit, N.C. McMahon, A. Sridhar, Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays, Toxicol. Sci. 134 (2013) 412–426.
B.S. Freeze, M.M. McNulty, D.A. Hanck, State-dependent verapamil block of the cloned human Ca(v)3.1 T-type Ca(2+) channel, Mol. Pharmacol. 70 (2006) 718–726.
Y.A. Kuryshev, A.M. Brown, E. Duzic, G.E. Kirsch, Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays, Assay Drug Dev. Technol. 12 (2014) 110–119.
K. Yamazaki, T. Hihara, H. Kato, T. Fukushima, K. Fukushima, T. Taniguchi, T. Yoshinaga, N. Miyamoto, M. Ito, K. Sawada, Beat-to-Beat Variability in Field Potential Duration in Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters for Assessment of Arrhythmogenic Risk, and a Case Study of Its Application, Pharmacology and Pharmacy 5 (2014) 117–128.
R.H. Schwinger, M. Bohm, E. Erdmann, Different negative inotropic activity of Ca2(+)-antagonists in human myocardial tissue, Klin. Wochenschr. 68 (1990) 797–805.
D. Sarsero, T. Fujiwara, P. Molenaar, J.A. Angus, Human vascular to cardiac tissue selectivity of L- and T-type calcium channel antagonists, Br. J. Pharmacol. 125 (1998) 109–119.
L. Guo, R.M. Abrams, J.E. Babiarz, J.D. Cohen, S. Kameoka, M.J. Sanders, E. Chiao, K.L. Kolaja, Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes, Toxicol. Sci. 123 (2011) 281–289.
A. Mehta, Y. Chung, G.L. Sequiera, P. Wong, R. Liew, W. Shim, Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes, Toxicol. Sci. 131 (2013) 458–469.
J. Kang, X.L. Chen, J. Ji, Q. Lei, D. Rampe, Ca(2)(+) channel activators reveal differential L-type Ca(2)(+) channel pharmacology between native and stem cell-derived cardiomyocytes, J. Pharmacol. Exp. Ther. 341 (2012) 510–517.
T. Godfraind, C. Egleme, M. Finet, P. Jaumin, The actions of nifedipine and nisoldipine on the contractile activity of human coronary arteries and human cardiac tissue in vitro, Pharmacol. Toxicol. 61 (1987) 79–84.
T.K. Chin, K.S. Graham, C. Calendine, Y.H. He, Neuroregulation of Calcium Channel Function in Human Fetal Cardiac Myocyte Clusters, Pediatric Research 45 (1999) 21A.
G. Bkaily, N. El-Bizri, M. Bui, R. Sukarieh, D. Jacques, M.L. Fu, Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors, Can. J. Physiol. Pharmacol. 81 (2003) 234–246.
X. Sheng, M. Reppel, F. Nguemo, F.I. Mohammad, A. Kuzmenkin, J. Hescheler, K. Pfannkuche, Human pluripotent stem cell-derived cardiomyocytes: response to TTX and lidocain reveals strong cell to cell variability, PLoS One 7 (2012) e45963.
J.K. Gibson, Y. Yue, J. Bronson, C. Palmer, R. Numann, Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents, J. Pharmacol. Toxicol. Methods 70 (2014) 255–267.
I. Splawski, K.W. Timothy, L.M. Sharpe, N. Decher, P. Kumar, R. Bloise, C. Napolitano, P.J. Schwartz, R.M. Joseph, K. Condouris, H. Tager-Flusberg, S.G. Priori, M.C. Sanguinetti, M.T. Keating, Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism, Cell 119 (2004) 19–31.
L. Chen, N. El-Sherif, M. Boutjdir, Unitary current analysis of L-type Ca2+ channels in human fetal ventricular myocytes, J. Cardiovasc. Electrophysiol. 10 (1999) 692–700.
M. Boutjdir, L. Chen, Z.H. Zhang, C.E. Tseng, F. DiDonato, W. Rashbaum, A. Morris, N. el-Sherif, J.P. Buyon, Arrhythmogenicity of IgG and anti-52-kD SSA/Ro affinity-purified antibodies from mothers of children with congenital heart block, Circ. Res. 80 (1997) 354–362.
S. Schaaf, A. Shibamiya, M. Mewe, A. Eder, A. Stohr, M.N. Hirt, T. Rau, W.H. Zimmermann, L. Conradi, T. Eschenhagen, A. Hansen, Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology, PLoS One 6 (2011) e26397.
B.J. Poindexter, J.R. Smith, L.M. Buja, R.J. Bick, Calcium signaling mechanisms in dedifferentiated cardiac myocytes: comparison with neonatal and adult cardiomyocytes, Cell Calcium 30 (2001) 373–382.
K. Davia, C.H. Davies, S.E. Harding, Effects of inhibition of sarcoplasmic reticulum calcium uptake on contraction in myocytes isolated from failing human ventricle, Cardiovasc. Res. 33 (1997) 88–97.
I. Itzhaki, S. Rapoport, I. Huber, I. Mizrahi, L. Zwi-Dantsis, G. Arbel, J. Schiller, L. Gepstein, Calcium handling in human induced pluripotent stem cell derived cardiomyocytes, PLoS One 6 (2011) e18037.
J. Liu, J.D. Fu, C.W. Siu, R.A. Li, Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation, Stem Cells 25 (2007) 3038–3044.
M.G. Khana, Chapter 31: Caffeine and the Heart, in: M.G. Khana (Ed.), Encyclopedia of Heart Diseases, Elsevier Academic Press, Burlington, MA, 2006, pp. 189–191.
A. D’Agnolo, G.B. Luciani, A. Mazzucco, V. Gallucci, G. Salviati, Contractile properties and Ca2+ release activity of the sarcoplasmic reticulum in dilated cardiomyopathy, Circulation 85 (1992) 518–525.
L. Guo, J.Y. Qian, R. Abrams, H.M. Tang, T. Weiser, M.J. Sanders, K.L. Kolaja, The electrophysiological effects of cardiac glycosides in human iPSC-derived cardiomyocytes and in guinea pig isolated hearts, Cell. Physiol. Biochem. 27 (2011) 453–462.
G.R. Li, J. Feng, L. Yue, M. Carrier, S. Nattel, Evidence for two components of delayed rectifier K+ current in human ventricular myocytes, Circ. Res. 78 (1996) 689–696.
C. Danielsson, J. Brask, A.C. Skold, R. Genead, A. Andersson, U. Andersson, K. Stockling, R. Pehrson, K.H. Grinnemo, S. Salari, H. Hellmold, B. Danielsson, C. Sylven, F. Elinder, Exploration of human, rat, and rabbit embryonic cardiomyocytes suggests K-channel block as a common teratogenic mechanism, Cardiovasc. Res. 97 (2013) 23–32.
L. Nalos, R. Varkevisser, M.K. Jonsson, M.J. Houtman, J.D. Beekman, R. van der Nagel, M.B. Thomsen, G. Duker, P. Sartipy, T.P. de Boer, M. Peschar, M.B. Rook, T.A. van Veen, M.A. van der Heyden, M.A. Vos, Comparison of the IKr blockers moxifloxacin, dofetilide and E-4031 in five screening models of pro-arrhythmia reveals lack of specificity of isolated cardiomyocytes, Br. J. Pharmacol. 165 (2012) 467–478.
D.K. Jones, F. Liu, R. Vaidyanathan, L.L. Eckhardt, M.C. Trudeau, G.A. Robertson, hERG 1b is critical for human cardiac repolarization, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 18073–18077.
D. Rampe, B. Wible, A.M. Brown, R.C. Dage, Effects of terfenadine and its metabolites on a delayed rectifier K+ channel cloned from human heart, Mol. Pharmacol. 44 (1993) 1240–1245.
A.E. Lacerda, J. Kramer, K.Z. Shen, D. Thomas, A.M. Brown, Comparison of block among cloned cardiac potassium channels by non-antiarrhythmic drugs, European Heart Journal 3 (2001) K23–K30.
H.R. Lu, A.N. Hermans, D.J. Gallacher, Does terfenadine-induced ventricular tachycardia/fibrillation directly relate to its QT prolongation and Torsades de Pointes? Br. J. Pharmacol. 166 (2012) 1490–1502.
W.J. Crumb Jr, B. Wible, D.J. Arnold, J.P. Payne, A.M. Brown, Blockade of multiple human cardiac potassium currents by the antihistamine terfenadine: possible mechanism for terfenadine-associated cardiotoxicity, Mol. Pharmacol. 47 (1995) 181–190.
L. Hove-Madsen, A. Llach, C.E. Molina, C. Prat-Vidal, J. Farre, S. Roura, J. Cinca, The proarrhythmic antihistaminic drug terfenadine increases spontaneous calcium release in human atrial myocytes, Eur. J. Pharmacol. 553 (2006) 215–221.
M. Baruscotti, A. Bucchi, D. Difrancesco, Physiology and pharmacology of the cardiac pacemaker (“funny”) current, Pharmacol. Ther. 107 (2005) 59–79.
Y.K. Ju, P.W. Gage, D.A. Saint, Tetrodotoxin-sensitive inactivation-resistant sodium channels in pacemaker cells influence heart rate, Pflugers Arch. 431 (1996) 868–875.
L. Barandi, L. Virag, N. Jost, Z. Horvath, I. Koncz, R. Papp, G. Harmati, B. Horvath, N. Szentandrassy, T. Banyasz, J. Magyar, A. Zaza, A. Varro, P.P. Nanasi, Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations, Basic Res. Cardiol. 105 (2010) 315–323.
W.A. Catterall, A.L. Goldin, S.G. Waxman, International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels, Pharmacol. Rev. 57 (2005) 397–409.
A.L. Goldin, Resurgence of sodium channel research, Annu. Rev. Physiol. 63 (2001) 871–894.
D. Jacques, G. Bkaily, G. Jasmin, D. Menard, L. Proschek, Early fetal like slow Na+ current in heart cells of cardiomyopathic hamster, Mol. Cell. Biochem. 176 (1997) 249–256.
D. Walker, Functional development of the autonomic innervation of the human fetal heart, Biol. Neonate 25 (1974) 31–43.
K.A. Kane, Comparative electrophysiological effects of Org 6001, a new orally active antidysrhythmic agent, and lignocaine on human ventricular muscle, Br. J. Pharmacol. 68 (1980) 25–31.
P.B. Bennett, C. Valenzuela, L.Q. Chen, R.G. Kallen, On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III–IV interdomain, Circ. Res. 77 (1995) 584–592.