
immunomodulatory and antiviral agent and its clinical 
significance in the future treatment of patients with 
hepatitis C virus (HCV) infection are reviewed. RBV 
up-regulates type 1 and/or 2 cytokines to modulate 
the T helper (Th) 1/2 cell balance to Th1 dominance. 
Examination of co-stimulatory signaling indicated that 
RBV down-modulates inducible co-stimulator on Th 
cells, which contributes to differentiating naïve Th 
cells into Th2 cells while reducing their interleukin-10 
production. The effects on T-regulatory (Treg) cells were 
also investigated, and RBV inhibited the differentiation 
of naïve Th cells into adaptive Treg cells by down-
modulating forkhead box-P3. These findings indicate 
that RBV mainly down-regulates the activity of Th2 
cells, resulting in the maintenance of Th1 activity that 
contributes to abrogating HCV-infected hepatocytes. 
Although an interferon-free treatment regimen exhibits 
almost the same efficacy without serious complications, 
regimens with RBV will be still be used because of 
their ability to facilitate the cellular immune response, 
which may contribute to reducing the development of 
hepatocellular carcinogenesis in patients infected with 
HCV. 
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Core tip: Ribavirin has the potential to regulate the 
T-helper (Th) 1/2 cell balance into Th1 dominance 
by modulating the co-stimulatory signaling between 
antigen-presenting cells and naïve Th cells as well 
as the inhibitory activity of T-regulatory cells. These 
are considered useful in treating hepatitis C virus 
infection, especially to inhibit hepatocellular carcinoma 
development. 
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Abstract
The mechanism of action of ribavirin (RBV) as an 
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TOPIC HIGHLIGHT

Ribavirin contributes to eradicate hepatitis C virus through 
polarization of T helper 1/2 cell balance into T helper 1 
dominance
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INTRODUCTION
About 185 million people worldwide are estimated 
to be infected with hepatitis C virus (HCV)[1]. Eighty 
percent of HCV-infected patients will progress to 
persistent infection[2,3], and 15%-30% of these will 
develop cirrhosis over a 25- to 30-year period[4]. In 
addition, hepatocellular carcinoma (HCC) occurs in 8% 
of cirrhotic patients annually[5-7]. Because persistent 
HCV infection is closely related to the development of 
HCC[8,9], the elimination of HCV contributes markedly to 
preventing the development of this form of cancer[10,11].

The treatment strategy for HCV infection has im-
proved during the 25 years since the introduction 
of interferon (IFN) therapy. In particular, the rate of 
persistent elimination of the HCV genotype 1, which was 
considered to be IFN resistant, improved markedly from 
8% to 45% with the introduction of pegylated (PEG)-
IFN treatment in combination with ribavirin (RBV)[12]. In 
addition, the administration of direct antiviral agents
(DAAs) with PEG-IFN plus RBV therapy greatly improv-
ed treatment efficacy[13-15]. Currently, about 90% of 
persistent HCV infection can be eliminated by admini-
stering the IFN/RBV/DAA regimen. 

In 2014, an IFN-free regimen featuring a combination 
of the HCV-NS5A inhibitor daclatasvir (DCV) and NS3/
4A protease inhibitor asnaprevir (ASV) was approved. 
This IFN-free regimen appears to have efficacy similar 
to that of the previous standard regimen without 
serious side effects[16,17]. Thus, IFN-free regimens will 
play a leading role in future HCV treatment. However, 
the potential of RBV to modulate the immune response 
is considered useful in treating HCV infection, especially 
to inhibit HCC development[18-22]. This paper reviews 
the immunological activity of RBV and considers the 
clinical significance of this antiviral agent in future HCV 
treatment.

IMPORTANCE OF THE HOST CELLULAR 
IMMUNE RESPONSE IN ELIMINATING 
HCV
Abrogation of infected cells is necessary to eliminate 
persistent viral infection, and up-regulation of the host 
cellular immune responses triggered by the activation 
of T helper (Th) 1 cells is thought to be essential for 
eliminating persistent HCV infection[23-26]. Among the 
various mechanisms by which IFN eradicates viruses, 
modulation of the host immune system may be critical, 
along with its antiviral activity[27]. IFN could enhance host 

immune responses via the activation of natural killer cells, 
CD4+ Th cells, and CD8+ cytotoxic T cells and the up-
regulation of major histocompatibility complex molecule 
expression to stabilize the presentation of antigeneic 
epitopes from the infected cells[28]. Unfortunately, although 
it has these abilities for modulating immune systems, 
IFN monotherapy shows only limited efficacy against 
HCV infection. Numerous investigations have attempted 
to elucidate why IFN alone fails to eliminate HCV, and 
it appears that HCV can escape[29] or inhibit[30] the host 
immune response to establish persistent infection. 
Hence, additional techniques were needed to enhance 
the host cellular immune response. 

EFFECTS OF RBV ON THE TH1/2 CELL 
BALANCE
The synthesized purine nucleotide analogue RBV, 
developed as antiviral reagent[31,32], is well known to 
contribute to HCV elimination in combination with IFN[33]. 
The mechanism of action of RBV is not fully understood, 
and it has been reported to: (1) induce viral RNA-
error catastrophe[34]; (2) inhibit RNA polymerase[35]; 
(3) reduce RNA pooling via nicotinamide adenine 
dinucleotide phosphate inhibition[36,37]; and (4) alter 
the Th1/2 balance to Th1 dominance[38,39]. Among 
the putative mechanisms of the enhancement of viral 
elimination by RBV, it is notable that RBV polarizes the 
Th cell balance into Th1 cell dominance because this 
supports the importance of the activation of the host 
cellular immune response in eliminating HCV. However, it 
remains unclear how RBV modulates the Th1/2 balance. 
Many groups examined the effects of RBV on type 1 
and 2 cytokine production from T lymphocytes. Some 
reported that RBV directly up-regulates Th1 cells through 
the activation of type 1 cytokines, such as interleukin 
(IL)-12[40-42]. In contrast, others indicated that RBV may 
maintain Th1 cell activity through interference with 
immunosuppressive cytokines such as IL-4 or IL-10[43-46]. 
From the viewpoint of type 1 and 2 cytokine profiles, it 
remains controversial whether RBV up-regulates Th1 
cells directly or indirectly through the inhibition of Th2 
cell activity. 

POTENTIAL OF RBV TO MODULATE CO-
STIMULATORY SIGNALING
The importance of co-stimulatory signaling to determine 
the differentiation of naïve Th cells into Th1 or 2 
cells is well established[47]. The signaling from CD80 
on professional antigen presenting cells (APCs) to 
its counterreceptor CD28 on CD4+ T cells promotes 
differentiation of naïve Th into Th1 cells[48]. On the 
other hand, the signaling from B7-H2 on APCs to its 
counterreceptor inducible co-stimulator (ICOS) on 
CD4+ T cells promotes differentiation into Th2[49]. It 
would be interesting to determine whether RBV exerts 
specific effects on co-stimulatory signaling, although 
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only a few reports have addressed this aspect. Cheng 
et al[50] reported that CD28 was up-regulated by IFN 
plus RBV therapy in both treatment responders and 
nonresponders. Atsukawa et al[51] demonstrated that 
RBV down-modulates ICOS on human CD4+ T cells, 
which is associated with decreased IL-10 production. 
They also examined the modulation of type 1/2 cytokine 
fluctuations in the small cohort of patients who received 
IFN plus RBV treatment and their results indicated that 
IL-10 production from CD4+ T-cells was decreased in 
patients whose ICOS were down-modulated by the 
therapy, which was closely associated with persistent 
HCV elimination without changing CD28 expression and 
IFN-γ secretion levels. These results indicated that RBV 
mainly contributes to inhibiting the differentiation of 
naïve Th cells into Th2 cells to maintain the activity of 
Th1 cells by inhibiting stimulation-inducible molecules 
on the surface of CD4+ T cells. However, these results 
do not fully explain the role of RBV because other 
important factors play a role in Th1/2 cell modulation. 

POTENTIAL OF RBV FOR MODULATING 
T-REGULATORY CELL ACTIVITY
It is well known that the activation of host T-regulatory 
(Treg) cells is critical to allow persistent HCV infection[52]. 
Treg cells, found at first as antigen-specific inhibitors 
of autoreactive T lymphocytes[53,54], can identify as 
CD4+CD25+, and intracellular forkhead box-P3 (FOXP3)-
expressing T cells. Subsequent detailed examina-
tions revealed that the Treg family includes various 
subpopulations such as naturally occurring Treg (Trnat), 
adaptive Treg (Tradapt), Treg, and Th3 cells[55-58]. Trnat cells 
differentiate in the thymus and exhibit inhibitory activity 
against autoreactive Th cells in a cell contact-dependent 
fashion, which plays an important role in regulating the 
autoimmune response[59]. Tradapt cells differentiate from 
naïve Th cells under the influence of Trnat cells in the 
periphery and exhibit inhibitory activity in a humoral 
element-dependent fashion[60]. The orchestration of 
these Treg cells could modulate antigen-specific Th1 
activity in the later phase of exogenous pathogen 
infections to switch the dominant immune response 
from cellular to humoral[61]. These phenomena play a 
role in the termination of excessive activation of the Th1 
response against exogenous antigens[62]. In addition, 
Tr1 and Th3 cells exhibit inhibitory activity against Th1 
cells in a humoral element-dependent fashion[56-58]. 

According to previous reports, the effect of antiviral 
therapy on the activity of Treg cells remains uncer-
tain[63,64]. Recently, Kobayashi et al[65] examined the 
effects of RBV on the inhibitory activity of Treg cells in 
vitro and found that it down-modulates the inhibitory 
activity of peripheral CD4+CD25+CD127- T cells (= 
FOXP3+ Treg cells). Intracellular FOXP3 expression of 
CD4+CD25- T cells decreased when they were incubated 
with RBV-preincubated Treg cells. In addition, RBV 
reduced the inhibitory effect of Treg cells in an IL-10-
dependent, but not tumor growth factor (TGF)-β-

dependent, manner[65]. These data indicate that RBV-
treated Treg cells would lose their ability to differentiate 
naive Th cells into Tradapt cells. Moreover, the activity of 
IL-10-dependent Treg cells such as Tradapt and Tr1 was 
mostly inhibited in the presence of RBV. Although that 
in vitro study clearly indicated the effects of RBV against 
Treg cells, it remained controversial whether RBV 
could regulate Treg cells in clinical studies. Langhans et 
al[66] showed that the activity of Treg cells was down-
modulated in the clinical course of HCV treatment with 
PEG-IFN and RBV. In contrast, Lee et al[67] found that 
RBV did not impair the inhibitory activity of Treg cells. 
More detailed studies are needed to confirm the effects 
of RBV on Treg-cell activity in vivo.

Based on these findings, RBV may indirectly main-
tain and/or up-regulate Th1 activity by inhibiting the 
differentiation of naive Th cells into Th2 cells. The 
potential to down-modulate the inhibitory activity of Treg 
cells would be closely associated with this regulatory 
cascade. The potential mechanism by which RBV 
modulates the Th1/2 balance-regulatory cascade is 
shown in Figure 1. Because both ICOS and FOXP3 are 
enhanced after cell stimulation, it is also possible that 
RBV affects the expression of these inducible factors. 
Further studies are needed to elucidate how RBV is 
associated with these intracellular signaling pathways.

RBV MAY MODULATE INTRACELLULAR 
SIGNALING TO INHIBIT EXPRESSION OF 
FOXP3
The results of various studies indicated that RBV affects 
intracellular signaling, contributing to the elimination of 
HCV. However, it remains unclear how RBV modulates 
intracellular signaling to inhibit the differentiation of 
Th cells into Tradapt cells. Some investigators reported 
that RBV promotes signal transducer and activator of 
transcription (STAT) 1 and 3 phosphorylation[68,69]. In 
addition, overexpression of STAT-3 in suppressor of 
cytokine signaling (SOCS)-1-knockout murine Treg cells 
led to the down-modulation of FOXP3 expression[70]. 
Although no report directly demonstrated the relationship 
between SOCS-1 and FOXP3, one possible hypothesis 
is that RBV promotes STAT3 phosphorylation via inter-
ference with SOCS1, which leads to the suppression of 
FOXP3, with resultant inhibition of the differentiation 
of naïve Th cells into Tradapt cells. RBV can also reduce 
intracellular RNA pooling by suppressing inosine-5’-
monophosphate dehydrogenase activity[71], which appears 
to support this hypothesis.

CLINICAL USEFULNESS OF RBV IN THE 
FUTURE TREATMENT OF HCV 
As described above, the agonistic effects of RBV on 
the cellular immune response plays a major role in the 
elimination of HCV-infected hepatocytes in combination 
with IFN and protease inhibitors. Because this effect 
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