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Parkinson’s disease–related spatial covariance pattern
identified with resting-state functional MRI
Tao Wu1,2,4, Yilong Ma3,4, Zheng Zheng1,2, Shichun Peng3, Xiaoli Wu1,2, David Eidelberg3 and Piu Chan1,2

In this study, we sought to identify a disease-related spatial covariance pattern of spontaneous neural activity in Parkinson’s disease
using resting-state functional magnetic resonance imaging (MRI). Time-series data were acquired in 58 patients with early to
moderate stage Parkinson’s disease and 54 healthy controls, and analyzed by Scaled Subprofile Model Principal Component
Analysis toolbox. A split-sample analysis was also performed in a derivation sample of 28 patients and 28 control subjects and
validated in a prospective testing sample of 30 patients and 26 control subjects. The topographic pattern of neural activity in
Parkinson’s disease was characterized by decreased activity in the striatum, supplementary motor area, middle frontal gyrus, and
occipital cortex, and increased activity in the thalamus, cerebellum, precuneus, superior parietal lobule, and temporal cortex.
Pattern expression was elevated in the patients compared with the controls, with a high accuracy (90%) to discriminate the patients
from the controls. The split-sample analysis produced a similar pattern but with a lower accuracy for group discrimination in both
the derivation (80%) and the validation (73%) samples. Our results showed that resting-state functional MRI can be potentially
useful for identification of Parkinson’s disease–related spatial covariance patterns, and for differentiation of Parkinson’s disease
patients from healthy controls at an individual level.
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INTRODUCTION
Parkinson’s disease (PD) is a common neurodegenerative disorder.
The diagnosis of PD is based mainly on clinical assessments
but the diagnostic accuracy is low during early stages of PD.1

There is an increasing interest in finding viable biomarkers
that can be reliably used in identifying at risk individuals, aiding
early differential diagnosis, measuring disease progression, and
monitoring treatment effects in patients with PD.
Previous neuroimaging studies with 18F-fluorodeoxyglucose

(FDG) positron emission tomography (PET) and multivariate
network analysis have shown that PD is associated with a specific
disease-related spatial covariance pattern (PDRP) of regional
cerebral glucose metabolism.2,3 The expression of PDRP network
can be quantified prospectively with FDG PET in individual
subjects to distinguish PD patients from healthy controls,4–6

correlate with independent measures of disease severity,4

evaluate modulations by novel experimental therapeutics,5,6 and
discriminate PD patients from patients with multiple system
atrophy or progressive supranuclear palsy.7,8 PDRP can also be
reliably assessed by imaging regional cerebral blood flow with
other radiotracer techniques (PET and SPECT)2,9 and perfusion
magnetic resonance imaging (MRI).10,11

Functional MRI (fMRI) has been used to show changes in
neural activity12–14 and connectivity in the resting state in PD

patients.15–18 Regional differences in low-frequency fMRI signal in
the resting state were also reported to be reliable for discriminat-
ing PD patients from healthy controls.13 These findings show that
resting-state fMRI (rsfMRI) can be used to reveal the distribution
of PD-related neural activity and assess its correlations with
clinical symptoms. However, the majority of rsfMRI studies was
based chiefly on the group-level statistics and is less helpful in
prospective clinical applications with individual subjects. In this
study, we sought to identify an analogous spatial covariance
pattern of spontaneous neural activity in PD using rsfMRI, and
examine if this method can be potentially used to discriminate
PD patients from healthy controls at an individual level.

SUBJECTS AND METHODS
Subjects
We investigated 58 patients with idiopathic PD (age 61.4 ± 9.0 years,
range 45 to 78 years; 25 women, 33 men). The diagnosis of PD was based
on medical history, physical and neurologic examinations, response to
levodopa, and laboratory tests and MRI scans to exclude other diseases. All
patients presented motor symptoms of rigidity and bradykinesia at early to
moderate stages but were chosen to have at most a mild tremor to avoid
the disturbance of fMRI signal. The Unified Parkinson’s Disease Rating Scale
(UPDRS)19 motor score at off state was 24.8 ± 8.2. The Hoehn and Yahr
disability scale20 was 2.0 ± 0.6. All patients had participated in a recent
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study.21 The control group included 54 age- and gender-matched healthy
subjects (age 61.1 ± 9.4 years, range 45 to 78 years; 26 women, 28 men).
Mini-Mental State Examination was ⩾ 26 in all subjects, with no differences
between the patients and the controls. The primary analysis of network
identification was performed in these PD patients and healthy subjects
defined as cohort A. For the secondary analysis of network validation,
subjects in cohort A were randomly divided into a derivation sample
(cohort B) of 28 PD patients (age 59.9 ± 9.1 years, Hoehn and Yahr 1.9 ± 0.6,
and motor UPDRS 24.2 ± 7.9) and 28 normal controls (age 63.7 ± 9.6 years),
and a prospective validation sample (cohort C) of 30 PD patients (age
62.7 ± 8.9 years, Hoehn and Yahr 2.0 ± 0.5, and motor UPDRS 25.3 ± 8.6) and
26 normal controls (age 58.3 ± 8.4 years). Subject groups in these two
cohorts were matched for age and clinical symptoms. The experiments
were performed according to the Declaration of Helsinki and were
approved by the Institutional Review Board of Xuanwu Hospital in Beijing,
China. All subjects gave their written informed consent for the study.

Resting-state Functional Magnetic Resonance Imaging Protocols
and Processing
Functional MRI acquisition was performed on a 3 T Magnetom Trio system
(Siemens, Erlangen, Germany). Parkinson’s disease patients were scanned
after their medication had been withdrawn for at least 12 hours. High-
resolution anatomic images were acquired with a three dimensional
magnetization prepared rapid acquisition gradient echo sequence (repeti-
tion time (TR)/echo time (TE)= 2,530/3.39ms, 128 axial slices, 1.33mm
thickness, and field of view=256mm). Functional MRI data were collected
with a gradient-echo echo-planar sequence (TR/TE=2,000/30ms, flip
angle= 90°, 33 axial slices, 3.5 mm thickness, no gap, field of view=220mm,
and matrix size = 64×64). During rsfMRI, subjects were instructed to keep
their eyes closed, to remain motionless, and to not to think of anything in
particular. The rsfMRI scanning session lasted for 8minutes.
Functional MRI data were preprocessed using Statistical Parametric

Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Data Processing
Assistant for Resting-State fMRI (DPARSF) V2.0 advanced edition (http://
www.restfmri.net). Time-series data were first slice-time corrected and
aligned to the first image for motion correction. Each subject’s head
motion parameters were examined. No subject had more than 1.5 mm
maximum translation in x, y, or z, or 1.5° of maximum rotation about the
three axes. Functional images of each subject were coregistered to
anatomic images and spatially normalized into the standard Montreal
Neurological Institute brain space. All images were then resampled into
3 × 3× 3mm3 voxels, and smoothed with an 8-mm Gaussian kernel. After
the linear drift was removed, a temporal filter (0.01 Hzo fo0.08 Hz) was
also applied to remove very-low-frequency drifts and physiologic high-
frequency noise.22

To identify a specific pattern of neural activity, we analyzed rsfMRI
data with the amplitude of low-frequency fluctuation (ALFF) approach,
which measures the regional spontaneous activity at rest.23 Amplitude of
low-frequency fluctuation was calculated using the same procedures
reported previously,23 with Resting-State fMRI Data Analysis Toolkit (REST,
http://www.restfmri.net). The time courses of all voxels were first converted
to the frequency domain using a fast Fourier transform, and the power
spectrum was obtained. The square root of the power spectrum was
calculated at each frequency and then averaged across 0.01 to 0.08 Hz
for each voxel. This averaged square root was taken as an index of ALFF.
The ALFF of each voxel was divided by the global mean ALFF value within
the brain tissue mask to standardize data across subjects.

Network Analysis
Scaled subprofile model (SSM), which is one of the multivariate spatial
covariance techniques based on principal component analysis (PCA), was
applied to assess subject-by-voxel effects on ALFF maps in both PD
patients and control subjects with Scaled Subprofile Model Principal
Component Analysis (SSMPCA) toolbox (http://www.feinsteinneuroscience.
org). In contrast to PET or SPECT images, log-transformation was not used
for fMRI data because of its additive variability. A PD-related covariance
pattern was identified from a linear combination of principal components
whose expression in individual subjects maximized the separation
between the two groups. This was conducted by logistic regression
analysis in the set of contiguous principal components that accounted for
~ 50% of subject × voxel variance in the SSMPCA operation. The sign of
the resultant pattern was defined such that PD patients had elevated mean
expression compared with controls. The reliability of this pattern was

assessed on a voxel basis by a bootstrapping estimation algorithm.24 Brain
regions deemed reliable from this post hoc procedure were localized
anatomically in reference to a standard brain atlas in Talairach space
(http://www.talairach.org/daemon.html). The primary network analysis
used all ALFF images in cohort A. A split-sample analysis was also
conducted to identify PDRP again in cohort B and compute its scores
prospectively in cohort C to exam the reproducibility of this pattern.

Statistical Analysis
PDRP scores in all subjects were z-transformed with regard to the healthy
controls in the derivation sample. The resulting scores were compared
between the subject groups using Student’s two-sample t-tests with the
discriminating power between the groups evaluated using receiver
operating characteristic analysis. The difference in PDRP scores between
the gender and their dependence with age were also examined separately
in each group. All statistical analyses were performed with SPSS software
version 9.0 (SPSS, Chicago, IL, USA) and considered significant at
Po0.05.

RESULTS
Parkinson’s Disease–Related Covariance Pattern
SSMPCA analysis produced a spatial covariance pattern of neural
activity in PD (PDRP–ALFF) characterized by decreased activity in
the bilateral caudate nucleus and anterior putamen, bilateral
middle frontal gyrus, rostral supplementary motor area (pre-SMA),
right lingual and middle occipital gyri, left precuneus and inferior
temporal gyrus, and right supramarginal and posterior cingulate
gyri, and increased activity in the thalamus, bilateral cerebellum,
right medial frontal gyrus/rectus, bilateral precuneus, left superior
parietal lobule, and bilateral temporal cortices including posterior
insula (Figure 1A and Table 1). This pattern was defined from a set
of principal components accounting for a total subject × voxel
variance of 34.2% and found to be reliable (Po0.025) over the
whole brain based on the bootstrapping algorithm. PDRP–ALFF
expression was elevated (Figure 1B; Po0.000001) in the PD
patients compared with the controls. Receiver operating charac-
teristic analysis revealed an area under the curve = 0.968 and 95%
confidence intervals = 0.94 to 0.99 (Figure 1C) to discriminate the
PD patients from the controls. The optimal sensitivity/specificity was
91.4%/88.9% resulting in an accuracy of 90.2% (cutoff value= 1.16;
Table 2). In the control subjects, PDRP–ALFF scores were compar-
able between men and women (P=0.563) and did not correlate
with age (r=0.22, P=0.11). In the PD patients, however, PDRP–ALFF
scores were moderately greater (Po0.05) in men than in women
and correlated weakly (r=0.34, Po0.01) with age.

Reproducibility in the Split Sample
A PD-related spatial covariance pattern of neural activity was
produced in cohort B and characterized by decreased activity in
the pre-SMA, precuneus, bilateral caudate nucleus, and right
lingual and inferior temporal gyri, and increased activity bilaterally
in the middle temporal gyrus and cerebellum (Figure 2B). This
pattern was defined from a set of principal components accounting
for a total subject × voxel variance of 35.3% and found to be reliable
(Po0.05) over the whole brain according to the bootstrapping
algorithm. Parkinson’s disease–related spatial covariance pattern–
amplitude of low-frequency fluctuation expression was elevated
(Po0.001; Figure 2C) in the PD patients relative to the controls in
both the derivation and validation samples. Receiver operating
characteristic analyses disclosed an area under the curve of 0.921
(95% confidence intervals = 0.86 to 0.99) and 0.782 (95% confidence
intervals = 0.66 to 0.90) in these two samples to discriminate the PD
patients from the normal controls leading to a diagnostic accuracy
of 80.4% (cutoff value= 0.98) and 69.6% (cutoff value= 0.87),
respectively (Figure 2D; Table 2). The use of the cutoff value
defined in the derivation sample resulted in a sensitivity/specificity
of 66.7%/80.0% and an accuracy of 73.2% in the validation sample.
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DISCUSSION

This is the first study that used multivariate SSMPCA methodology
to investigate disease-related brain networks in rsfMRI time series.
The PD-related spatial covariance pattern we have identified is, to
a large part, topographically comparable to the previous results
with regional homogeneity,12 or cross-validation analysis of ALFF
in PD patients.13,14 Although the physiology of fMRI signal is not
fully understood, these related studies reveal local and system-

level abnormalities in a large number of widely distributed regions
and relay stations within the basal ganglia–thalamo–cortical and
cerebello–thalamo–cortical circuits.
The PDRP derived from FDG PET is characterized by increased

metabolic activity in the posterior putamen, globus pallidus,
thalamus, sensorimotor cortex, pons, and cerebellum, along with
decreased metabolic activity in the premotor, SMA, and parie-
tooccipital association cortices.25,26 Compared to the PDRP from
FDG PET, the PDRP derived from rsfMRI not only shows some

Figure 1. Parkinson’s disease–related spatial covariance pattern–amplitude of low-frequency fluctuation (PDRP–ALFF) identified with resting-
state functional magnetic resonance imaging (fMRI). (A) The pattern was defined using ALFF images from 58 patients with PD and 54 normal
controls in cohort A. This network topography was reliable at Po0.025 (see Table 1 for more information). (B) Group discrimination by PDRP–
ALFF expression in patients with PD and normal controls. The expression of PDRP–ALFF significantly discriminated the PD patients from the
normal controls (Po0.000001). (C) Receiver operating characteristic curve for discriminating the PD patients from the normal controls. The
discriminatory power in cohort A was greater than that in cohort B or cohort C (see Figure 2D). The covariance pattern is superimposed on a
standard T1-weighted MRI brain template and displayed with a height threshold of ± 0.5 and an extent threshold of 30 voxels (240mm3).
Voxels with positive region weights (increased activity) are color-coded red and those with negative region weights (decreased activity) are
color-coded blue. Error bars represent the s.d. plotted around the mean of each subject group. CB, cerebellum; MFG, medial frontal gyrus;
MTG, middle temporal gyrus; SMA, supplementary motor area; SPL, superior parietal lobule; STG, superior temporal gyrus.
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overlap, i.e., decreased activity in the SMA and occipital cortex,
and increased activity in the thalamus and cerebellum but also
exhibits important differences. For example, neural activity is
decreased in the caudate nucleus and anterior putamen, and
increased in the parietal cortex but does not change in the globus

pallidus, sensorimotor cortex, and premotor areas in the PDRP
from rsfMRI (Figure 1A). These differences should be due mostly to
methodological factors. 18F-fluorodeoxyglucose PET data measure
synaptic neural activity via regional cerebral glucose metabolism,
whereas ALFF may reflect the variability of local spontaneous
neural activity in fMRI signal. The relationship between fMRI signal
and FDG uptake is likely to be very complex and may be better
understood by multimodal neuroimaging, neurophysiologic, and
pathologic studies in animal models.
Several rsfMRI studies have investigated PD-related sponta-

neous neural activity or network connectivity.12–18,27 These studies
have provided useful information on understanding the neural
correlates of clinical symptoms in PD, like tremor,15 apathy,
depression and motor dysfunction,14 and cognitive impairment,27

indicating that rsfMRI is useful in the investigation of neurophy-
siologic mechanisms underlying PD. Our findings further show
that rsfMRI may be used to identify PDRP for possible assessment
of network abnormality in individual subjects even though our
study sample consisted mostly of patients at early to moderate
stages.
Most regions in our PDRP–ALFF are involved in the corticobasal

ganglia–thalamo–cortical loops, like the SMA, thalamus, caudate
nucleus, putamen, temporal cortex, and limbic lobe, which include
several parallel circuits such as sensorimotor, associative, and
limbic circuits. The sensorimotor circuit projects somatotopically

Table 1. Anatomic regions of PDRP–ALFF derived from resting-state fMRI

Brain region MNI coordinates Peak value Cluster size (mm3)

x y z

Decreased activity
L caudate nucleus − 6 3 12 3.11 1,350
R caudate nucleus 9 − 3 18 2.78 756
L anterior putamen − 21 9 3 0.97 2,754
R anterior putamen 25 11 − 4 0.59 1,107
L middle frontal gyrus (BA 8) − 27 18 51 1.39 729
L middle frontal gyrus (BA 10) − 30 51 21 1.49 540
R middle frontal gyrus (BA 46) 48 33 18 1.65 729
R supplementary motor area (BA 6) 2 12 51 3.10 11,232
L precuneus (BA 7) − 6 − 66 63 4.03 567
R lingual (BA 18) 24 − 93 − 15 6.46 16,308
R middle occipital gyrus (BA 19) 48 − 72 9 1.74 540
L inferior temporal gyrus (BA 20) − 54 − 57 − 18 1.50 567
R supramarginal gyrus (BA 40) 57 − 54 24 1.55 594
R posterior cingulate gyrus (BA 31) 3 − 42 27 1.82 837

Increased activity
Thalamus (medial dorsal nucleus) 0 − 12 6 3.50 1,566
L posterior cerebellum (declive) − 42 − 75 − 27 3.48 4,050
R posterior cerebellum (declive) 12 − 87 − 27 3.38 17,901
L posterior cerebellum (tuber) − 36 − 84 − 39 3.72 3,024
R medial frontal gyrus/rectus (BA 11) 6 60 − 18 4.29 999
L postcentral gyrus (BA 2) − 21 − 39 72 1.96 837
L precuneus (BA 19) − 30 − 81 39 3.08 3,284
R precuneus (BA 7) 9 − 78 33 2.40 837
L superior parietal lobule (BA 7) − 29 − 51 60 3.01 2,025
R inferior parietal lobule (BA 40) 66 − 36 30 1.78 756
L middle temporal gyrus (BA 20) − 57 − 33 − 18 1.28 756
R middle temporal gyrus (BA 21) 69 − 12 − 6 2.29 6,210
L superior temporal gyrus (BA 41)/insula − 51 − 27 6 2.29 1,701
R superior temporal gyrus (BA 22)/insula 48 − 18 9 3.21 3,564
L superior temporal pole (BA 38) − 33 9 − 36 2.58 4,860
R superior temporal pole (BA 38) 33 12 − 30 4.26 1,485
R hippocampus (BA 21) 42 − 9 − 15 2.38 864

Abbreviations: BA, Brodmann area; fMRI, functional magnetic resonance imaging; MNI, Montreal Neurological Institute; PDRP–ALFF, Parkinson’s disease–
related spatial covariance pattern–amplitude of low-frequency fluctuation. The anatomic structures were defined from the covariance pattern in cohort A (see
Figure 1A) in which the region weights were reliable at P= 0.025 according to the bootstrapping estimation on a voxel basis.

Table 2. Subject scores of PDRP–ALFF networks and ROC parameters
in patients with PD and normal controls

Subject scores ROC parameters

Normal PD AUC Sensitivity/
specificity (%)

Cohort A 0.00 ± 0.14 2.02 ± 0.10 0.968 ± 0.013 91.4/88.9
Cohort B 0.00 ± 0.19 1.49 ± 0.09 0.921 ± 0.034 82.1/78.6
Cohort C 0.55± 0.12 1.08± 0.08 0.782±0.061 70.0/69.2

Abbreviations: ALFF, amplitude of low-frequency fluctuation; AUC, the area
under the curve; PDRP, Parkinson’s disease–related pattern; ROC, receiver
operating characteristic. Subject scores and AUC values are presented as
mean± s.e.m. The values marked in italics indicate the cohorts used to
identify the PDRP–ALFF brain networks. In each cohort, subject scores for
the corresponding brain network were elevated in the PD patients
compared with the normal controls (Po0.00001).
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from the primary motor cortex, premotor area, and SMA to the
putamen, then through the thalamus projects back to these
cortical motor areas.28 The dysfunction of the sensorimotor circuit
has been reported to cause motor difficulties in PD, like akinesia
and bradykinesia.29 The associative circuit projects from associa-
tive cortical areas, like the prefrontal cortex, and the temporal
regions to the caudate nucleus and the putamen,30 whereas the
limbic circuit projects from the limbic cortices, the amygdala and
the hippocampus to the ventral striatum.31 It has been shown that
some nonmotor signs in PD, like cognitive decline, could be linked
to the reduced 18F-fluorodopa uptake in the associative circuit,32

as well as in the limbic circuit.33

The PDRP–ALFF reported in this study also contains areas
outside the corticobasal ganglia–thalamo–cortical loops, e.g., the

cerebellum. The cerebellum is known to influence motor and
cognitive operations via the cerebello–thalamo–cortical circuit.34

Increasing evidence suggests that this circuit is an important
mechanism underlying pathophysiology of the PD resting
tremor.15,35 However, as all patients in this study have mild
tremor at most, the results reported here were not likely to be
influenced by the factors related to resting tremor. The increased
activity in the cerebellum is possibly a compensation for basal
ganglia dysfunction.36

The PDRP–ALFF expression from rsfMRI showed a high accuracy
of ~ 90% to discriminate PD patients from healthy controls in the
large sample of cohort A (91% sensitivity and 89% specificity).
Despite methodological differences between studies this finding
was in line with several previous reports,13,18 suggesting that

Figure 2. The comparison of Parkinson’s disease–related spatial covariance pattern–amplitude of low-frequency fluctuation (PDRP–ALFF) brain
networks and group discrimination in patients with PD and healthy controls in the split-sample analysis. (A) The pattern in the whole sample
identified using ALFF images in cohort A was characterized by increased/decreased activity in the cortical and subcortical regions and reliable
at Po0.025 (Table 1). (B) The pattern in the split sample was derived using ALFF images from 28 PD patients and 28 normal controls in cohort
B (reliable at Po0.05) and validated prospectively in 30 PD patients and 26 normal controls in cohort C. (C) The expression of PDRP–ALFF
from cohort B significantly discriminated the PD patients from the control subjects (Po0.001) in both the derivation and validation cohorts.
(D) Receiver operating characteristic curves for discriminating the PD patients from the normal controls. The discriminatory power was lower
in cohort B and cohort C than that in cohort A (see Figure 1C). Both covariance patterns are overlaid on a standard T1-weighted magnetic
resonance imaging (MRI) brain template and displayed side by side with a height threshold of ± 0.5 and an extent threshold of 30 voxels
(240mm3). Red/blue color indicates increased/decreased covariation in local spontaneous neural activity among a large number of brain
regions present in the PDRP. Error bars represent the s.d. plotted around the mean of each subject group. CB, cerebellum; IFT, inferior frontal
triangular parts; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; SMA, supplementary motor area; STG, superior temporal gyrus.
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rsfMRI could be potentially useful for differentiating PD patients
from healthy controls at an individual level. Although the subject
scores of the PDRP–ALFF did not change with regard to gender
and age in the normal controls, they were higher in men and
correlated positively with age in the patients. The latter confirmed
with our patient sample in which men were slightly older and had
marginally more severe motor symptoms than women.
We assessed the reproducibility of PDRP–ALFF in the split-

sample analysis, which gave rise to a topographic pattern very
similar to that from the entire cohort. Pattern expression was
abnormally elevated (Po0.001) in PD patients in both the
derivation and prospective validation samples, but with inferior
group discrimination (Figure 2; Table 2) compared with the large
sample in cohort A. We found that voxel weights on this ALFF-
derived pattern had different degrees of reliability relative to
those for the analogous PET–derived topography (ALFF: Po0.05;
PET: Po0.001; bootstrap resampling estimation).3 In addition, the
smaller group difference in pattern expression in both samples
resulted in a lower accuracy for single-case classification. Relative
to the corresponding results obtained with FDG PET imaging,
these performance metrics were similar to the finding in a smaller
sample of predominately hemi-PD patients,8 but worse than
those achieved consistently in both derivation and validation
samples of comparable sizes and patient characteristics.3,4 Of note,
the discrimination power of the PDRP–ALFF derived in the entire
sample of cohort A was lower but approaching that from FDG PET
with smaller sample sizes (sensitivity/specificity ⩾ 93%) despite
the equally low reliability of PDRP–ALFF. Such differences could
be attributed mainly to lower signal-to-noise ratio characteristics
of fMRI relative to FDG PET on the level of individual basis.
Nonetheless, these results suggest that accurate discrimination
of PD is likely by assessing subject score prospectively using
PDRP–ALFF derived from a large sample (e.g., cohort A) as
described above.
Research over the last decade has shown that FDG PET and fMRI

provide unique and complementary information in measuring
changes in local neural activity. Despite currently inferior signal-to-
noise ratio compared with FDG PET, fMRI modality does offer
several unique advantages. In addition to higher spatial and
temporal resolutions, MRI scanners are more widely available and
do not involve ionizing radiation. This allows a single subject to be
scanned repeatedly, and more subjects to be scanned to increase
statistical power. Compared to the conventional task-based fMRI
methods, rsfMRI is easy to perform and not too demanding on the
participants, and can circumvent task-related confounds, increase
signal-to-noise ratio, and expand patient populations. It is now
possible to use rsfMRI to evaluate neuronal activity instead of FDG
PET as shown by many studies cited in this paper and elsewhere
(see the reviews by Prodoehl et al37 and Fox and Raichle38). Our
findings highlight the feasibility of using rsfMRI to identify and
validate disease-related spatial covariance topographies. However,
major efforts are still needed to optimize the stability and accuracy
of disease-related patterns derived using this imaging method.
Additional work may also be necessary to conduct FDG PET and
rsfMRI in the same cohort of patients to compare the performance
of each measure as an optimal biomarker in PD.
It is unclear whether our findings can be generalized to all PD

patients because of some limitations in this study. First,
our patients had mild tremor at most to facilitate rsfMRI. The
FDG PET study has shown that tremor-dominant PD patients have
a distinct spatial covariance pattern of regional cerebral glucose
metabolism.35 Further rsfMRI studies are necessary to explore
tremor-related spatial covariance pattern of brain activity. Second,
our patients exhibited typical motor symptoms of rigidity and
bradykinesia mostly at early to moderate stages. This narrow
range of disease severity resulted in part from the recruitment of a
large PD cohort with mild tremor. Extensive work in parkinsonian
patients at early stage, and with atypical symptoms is still needed

before rsfMRI can be used as a biomarker to identify PD patients at
an individual level. It is also necessary to examine the relationship
between the PDRP–ALFF scores and clinical symptoms by
studying patients with a wide spread of UPDRS motor ratings or
Hoehn and Yahr stages. Third, nonmotor symptoms like cognitive,
psychiatric, and emotional impairments were not examined in our
patients. It is well recognized that nonmotor problems are present
in most PD patients and their neuroimaging correlates can be
assessed by rsfMRI.14 Thus, the influences of these nonmotor
symptoms on PDRP and corresponding cognitive-related patterns
need to be investigated in the future.
An inherent limitation in using rsfMRI on PD is that tremor can

disturb fMRI signal. Thus, up to now, most fMRI studies have
excluded patients with obvious tremor. Some improvement in
data acquisition and analysis can be helpful in overcoming this
problem. For example, simultaneous electromyography monitor-
ing during scanning is helpful to regress out the influence of
tremor on fMRI signal. Motion correction during data analysis
also has benefits in reducing movement artifacts. With continued
improvement in imaging and data analysis techniques, the
application of rsfMRI to tremor-dominant PD is increasingly
becoming feasible.
In summary, we have shown that rsfMRI can be used for

identification of disease-related covariance patterns, and has
the potential for differentiation of PD patients from healthy
controls on a single-case basis. It is critically important to further
develop and validate this technique, and optimize imaging
protocols ranging from innovations in coil design and acquisition
sequences/parameters to advances in signal-processing strategies
and data analytical methodologies. Further studies are needed to
test the replicability of PDRP–ALFF prospectively in new patient
samples, validate its test–retest stability and reproducibility with
different MRI scanners, and assess its clinical correlation and
modulation by antiparkinsonian therapies. Such comprehensive
technical improvement in the rsfMRI method and more rigorous
validation in independent patient populations can be helpful for
establishing a simple and noninvasive imaging biomarker for PD
and related disorders.
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