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Abstract A piece-wise linear planar neuron model,

namely, two-dimensional McKean model with periodic

drive is investigated in this paper. Periodical bursting

phenomenon can be observed in the numerical simulations.

By assuming the formal solutions associated with different

intervals of this non-autonomous system and introducing

the generalized Jacobian matrix at the non-smooth

boundaries, the bifurcation mechanism for the bursting

solution induced by the slowly varying periodic drive is

presented. It is shown that, the discontinuous Hopf bifur-

cation occurring at the non-smooth boundaries, i.e., the

bifurcation taking place at the thresholds of the stimulation,

leads the alternation between the rest state and spiking

state. That is, different oscillation modes of this non-au-

tonomous system convert periodically due to the non-

smoothness of the vector field and the slow variation of the

periodic drive as well.

Keywords Piece-wise linear planar neuron model �
Bursting � Periodic drive � Non-smooth bifurcation

mechanism � Generalized equilibrium state

Introduction

The biological nervous system is a very complex infor-

mation network composed of innumerable coupling neu-

rons, and it can encode, transfer and integrate information

by firing activities. The firing activities of nervous system

are mainly embodied in generation and processing of

action potential pulses by neurons, and thus neural infor-

mation coding is reflected by time rhythms and oscillating

patterns of impulse firing sequences (Yang and Lu 2008;

Du et al. 2010). Neurons often exhibit bursting phe-

nomenon, which distinctly characterized by alternating

phases of spiking and rest state. Sometimes the bursting

behavior is referred to as ‘‘mixed-mode oscillations’’ in

some literatures (Marszalek and Trzaska 2010). Its

dynamical behavior and classification have been investi-

gated in many neural firing experiments (Harris-Warrick

and Flamm 1987; Johnson et al. 1992) and theoretical

studies (Zhang et al. 2014; Xu and Wang 2014).

A series of neuron models has been built which can

accurately reflect corresponding action potential shapes for

different neuronal cell types (Hodgkin and Huxley 1952;

Rinzel and Lee 1987; Chay et al. 1995; Izhikevich 2003;

Dong et al. 2014). Typically suchmodels, being based around

that of Hodgkin and Huxley (1952), are high dimensional and

usually need to be analyzed using singular perturbation the-

ory. Besides, a class of one dimensional integrate-and-fire

(IF) type model is often advocated since it is easy to analyze

(Tiesinga 2002). However, disadvantages of both cases are

existed. For example, the high dimensional models do not

necessarily pave the way for tractable network studies, while

the IF models do not quite capture the dynamics of a truly

excitable systemwith gating variables (Coombes 2008). Thus

a search for planar models possessing one voltage and one

gating variable that can mimic the behavior of high
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dimensional conductance based models is naturally operated.

Perhaps the most famous example of such a model is the

FitzHugh–Nagumo model (Fitzhugh 1961; Nagumo et al.

1962), which has many of the same characteristics as the

Hodgkin–Huxley model. Inspired by this, piece-wise linear

(PWL) nullclines is introduced to build a broader class of

PWLmodels that can describe the rich dynamical behavior of

many common cell types (Yamashita and Torikai 2014).

As far as theoretical analysis is concerned, analysis of

bursting has been studied by many authors, for example

Rinzel (1985), Sherman and Rinzel (1992) and Smolen

et al. (1993). They revealed the inherent dynamical nature

of bursting by some crucial bifurcations. On the basis of

these works, Izhikevich (2000) considered more compre-

hensive bifurcations associated with bursting and provided

a more complete theoretical classification, that is top–down

fast–slow dynamical bifurcation analysis, which has been

extended to be used in non-autonomous system recently.

However, up to now, most of the work is confined to the

smooth systems. Because of the non-smoothness of the

vector field of non-smooth systems, there’s an obvious dif-

ference between the bifurcation mechanism of non-smooth

systems and that of smooth system (Qin and Lu 2009).

Besides, the analysis method applied to smooth systems

could not be appropriate for non-smooth systems (Simpsona

and Meiss 2012). The bursting phenomena of non-smooth

systems especially under non-autonomous condition are still

the open problems. In recent years, a class of planar models

possessing one voltage and one gating variable that can

mimic the behavior of high dimensional neuron models is

extensive studied (Jaume et al. 2013). In this case the PWL

element has been introduced to mathematical models. This

gives rise to the so-called McKean model (McKean 1970;

Tonnelier 2003). How to understand the behavior of these

PWL systems is very important to study the effect of

bursting in fundamental functions of the brain such as

information transmission, encoding and processing.

In this paper, the two-dimensional McKean model of a

single neuron activity, which is a piecewise linear model is

explored. The non-smooth model with a periodic drive is

focused on. Specifically, we analyze this non-smooth model

with a slowly varying periodic drive and study the interaction

of the fast-slow dynamics with the non-smooth bifurcation.

The model and numerical simulations

The McKean model is a planar PWL models that can

mimic the firing response of several different cell types. It

can be written as system (1) (Coombes 2008),

C _v ¼ f ðvÞ � wþ I;

_w ¼ gðv;wÞ ¼ v� cw;
ð1Þ

where f(v) is given by

f ðvÞ ¼
�v; v\a=2
v� a; a=2� v�ð1þ aÞ=2
1� v; v[ ð1þ aÞ=2

8
<

:

Here, v is membrane potential, C[ 0, c[ 0 and f(v) is a

piecewise linear caricature of the cubic FitzHugh–Nagumo

nonlinearity f ðvÞ ¼ vð1� vÞðv� aÞ, whilst g(v, w)

describes the linear dynamics of the gating variable and I is

an external drive (Coombes 2008). For the neuronal sys-

tems, the stimulation may be constant or not, for example,

a periodic stimulation. Thus, the external drive is let in the

form as I ¼ cosðx0tÞ here.
In order to reveal the dynamical behavior of this system,

these parameters are fixed at C = 0.1, a = 0.25, c = 0.55

as Ref. Coombes (2008) shows, meanwhile x0 is set as

x0 = 0.05. The periodic bursting can be observed by

numerical simulation (seen in Fig. 1).

In order to explore the interior relation between the

behavior of bursting and the periodic stimulation, time-de-

pendence of stimulation is overlaid on the time series of the

system. During each longest period demonstrated in the time

series, which is the same as the period of the external drive,

another frequency can be observed from the time series,

which is much higher than the frequency of stimulation (see

Fig. 1). The co-existence of these two frequencies leads the

dynamics of the system exhibit fast–slow effect. In the fol-

lowing, we will investigate the mechanism of this periodic

bursting based on non-smooth bifurcation in details.

Non-smooth bifurcation mechanism

Firstly, for the autonomous case, that is, the value of I is

fixed, system (1) can be described as follows,

C _v ¼ f ðvÞ � wþ I0

_w ¼ v� cw;
ð2Þ

where f ðvÞ ¼
�v; v\a=2
v� a; a=2� v�ð1þ aÞ=2
1� v; v[ ð1þ aÞ=2

8
<

:
.

Two switching boundaries exist, denoted by R1: v = a/2

and R2: v = (1 ? a)/2. Thus, three equilibria can be observed

for different certain values of current, which expressed as

E0: v ¼ cI0=ðcþ 1Þ; w ¼ I0=ðcþ 1Þf g for v\a=2;

E1: v ¼ cða� I0Þ=ðc� 1Þ; w ¼ ða� I0Þ=ðc� 1Þf g
for a=2� v�ð1þ aÞ=2;

E2: v ¼ cð1þ I0Þ=ðcþ 1Þ; w ¼ ð1þ I0Þ=ðcþ 1Þf g
for v[ ð1þ aÞ=2:

It is worth pointing out that, only one equilibrium point

could be obtained for one certain fixed drive under the above
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parameters due to the piecewise linearity of f(v). For example,

Fig. 2a shows the distribution of the equilibria with different

values of I0. It could be found that, the w-nullcline intersects

different branches of the v-nullcline only once. The stabilities

of these crossing points, i.e., the equilibria of the associated

autonomous systems, are determined by the eigenvalues of the

related linearization matrix. Specifically, the stability of E0

{v = 0, w = 0} for I0 = 0 is determined by the eigenvalues

of J0, while the stabilities of E1 {v = 0.3055,w = 0.5556} for

I0 = 0.5 and E2 {v = 0.7097, w = 1.2903} for I0 = 1.0 are

determined by the eigenvalues of J1 and J2 respectively. J0 and

J1, J2 are expressed as follows with the above parameters,

J1 ¼
1=C �1=C

1 �c

�
�
�
�

�
�
�
� ¼

10:0 �10:0

1 �0:55

�
�
�
�

�
�
�
�

with eigenvalues k1 ¼ 8:9470; k2 ¼ 0:5029;

J0 ¼ J2 ¼
�1=C �1=C

1 �c

�
�
�
�

�
�
�
� ¼

�10:0 �10:0

1 �0:55

�
�
�
�

�
�
�
�

with eigenvalues k
0

1 ¼ �1:7642; k
0

2 ¼ �8:7858:

Obviously, the equilibria E0 and E2 are stable nodes,

while E1 is an unstable node. And because the equilibrium

for I0 = 0.5 is unstable, it can be observed from numerical

simulation that the behavior of the autonomous system

exhibits periodic oscillation for I0 = 0.5 (see Fig. 2).

Now we turn to the non-autonomous case with the input

varies periodically, i.e., I ¼ cosðx0tÞ. Though system (1) is

a non-autonomous system, it can be looked as an autono-

mous system at any certain moment and we can regard the

time-dependent external drive as a bifurcation parameter

that moves the system through three distinct states.

To investigate the bifurcation mechanism, we introduce

the transformation x0t ¼ h, which leads the vector field to

a ‘‘generalized autonomous’’ form, described as system (3),

and f(v) here has the same form as it in system (1).

C _v ¼ f ðvÞ � wþ cosðhÞ;
_w ¼ v� cw;

ð3Þ

Because of the linear structure of the system, though

non-smooth, we now assume the ‘‘solution’’ of system (3)

can be written as

ðv;wÞ v ¼ k11 sin hþ k12 cos hþ k10;jf
w ¼ k21 sin hþ k22 cos hþ k20g

ð4Þ

By substituting this ‘‘solution’’ (4) into the system (3),

one may obtain three types of coefficients in the ‘‘solution’’

corresponding to different conditions. The details can be

described as:

1. for a/2 B vB(1 ? a)/2,

k11 ¼ x0 Cx2
0 þ Cc2 � 1

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k12 ¼ � x2
0 þ c2 � c

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k21 ¼ x0ðCc� 1Þ
�

C2x4
0 þ C2x2

0c
2

�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k22 ¼ � Cx2
0 þ c� 1

� ��
C2x4

0 þ C2x2
0k

2
�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k10 ¼ ac=ðc� 1Þ; k20 ¼ a=ðc� 1Þ;

Fig. 1 Phase portraits and time series of system (1)

Fig. 2 Distribution of the equilibria of system (2) with different

values of I0
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2. for v[ (1 ? a)/2,

k11 ¼ x0 Cx2
0 þ Cc2 � 1

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 þ 2cþ 1
�
;

k12 ¼ x2
0 þ c2 þ c

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 þ 2cþ 1
�
;

k21 ¼ x0ðCcþ 1Þ
�

C2x4
0 þ C2x2

0c
2

�

�2Cx2
0 þ x2

0 þ c2 þ 2cþ 1
�
;

k22 ¼ � Cx2
0 � c� 1Þ

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 þ 2cþ 1
�
;

k10 ¼ c=ðcþ 1Þ; k20 ¼ 1=ðcþ 1Þ;

3. for v\ a/2,

k11 ¼ x0 Cx2
0 þ Cc2 � 1

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k12 ¼ � x2
0 þ c2 � c

� ��
C2x4

0 þ C2x2
0c

2
�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k21 ¼ x0ðCc� 1Þ
�

C2x4
0 þ C2x2

0c
2

�
;

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k22 ¼ � Cx2
0 þ c� 1

� ��
C2x4

0 þ C2x2
0k

2
�

�2Cx2
0 þ x2

0 þ c2 � 2cþ 1
�
;

k10 ¼ 0; k20 ¼ 0:

The ‘‘solution’’ expressed by Eq. (4) can be regarded as

‘‘generalized equilibrium point’’ of system (3), which is

described as a ‘‘generalized autonomous system’’ above.

And the stability of these solutions can be determined by

the eigenvalues associated with the linearized matrix of the

vector field. Further computation reveals that these Jaco-

bian matrixes and the eigenvalues related to the ‘‘solution’’

can be expressed in the same forms expressed above for the

autonomous case because of the piecewise linear structure

of the equation. That is, while the parameters are still fixed

at those values in above, the ‘‘solution’’ is a stable node for

v[ (1 ? a)/2 or v\ a/2, i.e., for I[ ½aðcþ 1Þ � cþ 1�
=2c or I\aðcþ 1Þ=2c. While a=2� v�ð1þ aÞ=2, the

‘‘solution’’ is an unstable node for aðcþ 1Þ=2c� I�
½aðcþ 1Þ � cþ 1�=2c. The distribution of the ‘‘solutions’’

of system (3) is presented in Fig. 3, where the pink solid

lines (the solid curves in region I and region III) denote the

stable ‘‘solutions’’ while the pink dash lines (the diagonal

dash lines) represent the unstable ‘‘solutions’’. The green

line (the diagonal straight line) wn is the nullcline of

w. Above (below) wn, we have _w\0 ( _w[ 0).

However, the classical continuous Jacobian matrix

cannot be obtained because the vector field of this system is

non-smooth. According to differential inclusions, we can

use the generalized differential of Clarke to set up a gen-

eralized Jacobian matrix to explore the bifurcation of the

equilibrium at the switch boundary (Leine and van Campen

2006; Leine 2006). The generalized Jacobian of system (3),

expressed by JGðqÞ ¼ fqJ1 þ ð1� qÞJ0; 8q 2 ½0; 1�g, at the
bifurcation point is the closed convex hull of the Jacobians

on each side of the switching boundary (Leine 2006). The

eigenvalues of JG(q), denoted by kG1;2, are set-valued and

form a path in the complex plane with q as path parameter

(see Fig. 4).

The path in Fig. 4, from which it may be found that, the

eigenvalues of JG(q) are purely imaginary for q = 0.4725.

The path of the eigenvalues of JG(q) shows that discontinuous

Hopf bifurcation occurring at the switch boundaries (Leine

and van Campen 2006; Leine 2006). According to bifurcation

theory, the absolute value of this purely imaginary implies the

oscillating frequency generated from this bifurcation,which is

calculated at xt = 3.032 (shown in Fig. 4).

Now we explain the mechanism of the periodic bursting

based on non-smooth bifurcation theory. Real solution of

system (1), that is, the phase portraits shown in Fig. 1 is

projected onto the distribution diagram of the ‘‘generalized

equilibrium’’ of the non-autonomous system which is

demonstrated in Fig. 3 (shown in Fig. 5).

In Fig. 5, we see that the ‘‘generalized solution’’ located

in regions (I) and (III) is quite close to the actual solution.

However, there is less similarity between the generalized

and real solutions in region (II), which is due to the slowly

varying input current.

The ‘‘generalized equilibrium points’’ are stable nodes

in region (I) as well as region (III), and they lose their

stability at the switch boundaries R1 and R2 respectively

via discontinuous Hopf bifurcation. Thus, the trajectory

will be disengaged from these stable attractors and tend to

move along the limit cycles generating from the bifurca-

tion. Because the value of the drive is variable, this kind of

Fig. 3 The ‘‘generation solution’’ of system (3)
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periodic oscillation has been maintained within the corre-

sponding value range of the drive until the trajectory is

drawn to the stable ‘‘solution’’ again. Meanwhile, the

periodicity of the variation of the drive may lead the

behavior of the system transfer between these two different

states periodically and slowly. The slow-fast effect appears

due to the order gap between the two frequencies, i.e., the

frequency of the periodic drive and the frequency gener-

ated from discontinuous Hopf bifurcation. To be specific,

the frequency of the periodic drive is related to the slow-

rest state and the frequency generated from discontinuous

Hopf bifurcation is related to the fast-spiking state. Based

on the analysis above, the motion of system (1) in one

period is described in detail as follows.

Point N1 is set as the starting point, which is located at

the switching boundary R1. Notice that point N1 is above

the nullcline wn, the value of w will decrease since _w\0.

That is to say, the orbit runs downward at point N1 as the

arrow on the phase path shows. The anticlockwise

direction of the trajectory can be demonstrated by the

time series plotted in Fig. 1. The trajectory may move

exactly along the stable ‘‘solution’’ with the angular fre-

quency of stimulation (x0 = 0.05) until it reaches to the

switching boundary R1 at the point N
0
1 when the ampli-

tude of the current I reaches the threshold, which is given

by I ¼ aðcþ 1Þ=2c � 0:3523. The value of angular fre-

quency of the oscillations obtained from simulation, i.e.,

x0S ¼ 2p=T0 � 0:050 matches the frequency found in the

analysis. Note that the passage remaining on the ‘‘solu-

tion’’ is relatively slow, which can be called as rest state

(RS1).

Fig. 4 Set of eigenvalues of the generalized Jacobian of system (3)

Fig. 5 Overlap of the ‘‘solution’’ and the real solution

Fig. 6 Phase portraits and time

series of system (1) for a
I ¼ 0:3 cosðx0tÞ and b
I ¼ 0:5 cosðx0tÞ
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Once the slowly-varying current passes through the

bifurcation value, namely, discontinuous Hopf bifurcation,

the trajectory crosses the switching boundary R1 at the

point N
0
1 and circles with the angular frequency xt = 3.032

determined by this bifurcation. The value of xt is much

higher than x0, so the passage related to xt is relatively

fast, called as spiking (SP1). The frequency of SP1 also can

be verified by the numerical simulation above. Based on

time series shown in Fig. 1, the associated angular fre-

quency can be computed as xS ¼ 2p=T � 2:920, which is

very asymptotic to the frequency xt generated from dis-

continuous Hopf bifurcation. Then the trajectory evolves

close to this frequency until the amplitude of I reaches a

second critical value of 0.7614 obtained from the above

analysis. The orbits converge to the stable nodes quickly at

N2 and move along these stable attractors again until it

meet the switching boundary R2. Like the pervious status,

this passage also can be called as rest state (RS2). After that

the ‘‘solution’’ loses its stability via discontinuous Hopf

bifurcation at N
0
2, which is similar to that of N

0
1, and then

the spiking state (SP2) appears again until the trajectory

reaches the point N1 to begin another period.

It is worth pointing out that, as the analysis presented

above, there exists two threshold values of the external

drive, i.e., I1 ¼ aðcþ 1Þ=2c and I2 ¼ ½aðcþ 1Þ � cþ 1�
=2c. It means that, when and only when the value of the

drive could reach these two threshold values periodically

and relatively slowly, the type of periodic bursting

demonstrated above will be observed. That is, if the

amplitude of the drive AI\minf I1j j; I2j jg, bursting phe-

nomenon will not be observed. If minf I1j j; I2j jg\AI

\maxf I1j j; I2j jg, bursting can be obtained when one of the

rest state branch of the phase portrait disappeared. For

instance, we consider the two input currents of different

amplitude expressed as I ¼ 0:3 cosðx0tÞ and I ¼
0:5 cosðx0tÞ. The associated dynamical behaviors, i.e., the

limit cycle and the periodic bursting with one rest state can

be seen in Fig. 6.

Conclusions

Bursting phenomenon can be observed for the PWL planar

McKean model with periodic stimulation. The stimulation

acts as a control parameter varying periodically and rela-

tively slowly, which induces the dynamical behavior of the

system exhibits a transition between the rest state and the

spiking state. Since the vector field is non-smooth, it is

discontinuous Hopf bifurcation occurring at the non-

smooth boundaries that connect the two states. The fre-

quency generated by discontinuous Hopf bifurcation is

related to the fast-spiking passage while the frequency of

stimulation is associated with the slow-rest passage. The

nature of the external drive, i.e., amplitude and frequency is

important to the fire pattern of the neuron model. It might

be interesting to explore the relationship between the

periodic input and the neuron’s spiking output.
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