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The open reading frame 45 (ORF45) of the Kaposi’s sarcoma-associated herpesvirus (KSHV) is

an immediate-early phosphorylated tegument protein critical for viral escape from host immune

surveillance. Its expression is upregulated by the viral replication and transcription activator

(RTA), a key protein that controls the switch from latency to lytic replication. We report here that

ORF45 expression was not only upregulated by RTA, but ORF45 could also be degraded by

RTA in a proteasome-dependent manner. The ORF45 was activated by RTA via activation of

the ORF45 promoter, and the promoter region from nt 69 271 to nt 69 026 was involved.

In chronic KSHV infected TRE-BCBL-1 RTA cells, the endogenous ORF45 protein increased

dramatically after the induction of RTA expression, but then decreased rapidly after 8 h post-

induction. Our study suggests that RTA might control the kinetics of viral replication through

fine-tuning of the level of ORF45 and other viral/host proteins.
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Kaposi’s sarcoma-associated herpesvirus (KSHV), also
known as human herpesvirus 8, is the aetiological agent of
Kaposi’s sarcoma, the most common neoplasm in AIDS
patients (Chang et al., 1994). The open reading frame 45
of KSHV is an immediate–early viral gene, which encodes
a multifunctional phosphorylated tegument protein
(ORF45) (Kuang et al., 2008; Zhu et al., 1999; Zhu et al.,
2005; Zhu&Yuan, 2003). It functions as amodulator to pro-
mote viral escape from immune surveillance by interacting
with the inhibitory domain of the cellular interferon-regu-
latory factor 7 (IRF-7) (Lacoste et al., 2004; Sathish et al.,
2011) and inhibits virus-induced type I interferon pro-
duction by blocking IRF-7 phosphorylation and nuclear
translocation (Zhu et al., 2002; Zhu et al., 2010). ORF45
can also interact with other viral proteins such as viral tegu-
ment proteins (Rozen et al., 2008). It can also interact with
cellular proteins such as the p90 ribosomal S6 kinase, to
mediate the phosphorylation of eukaryotic translation
initiation factor 4B to facilitate protein translation (Kuang

et al., 2011). ORF45 can interact with motor protein
KIF3A to play a role in viral maturation and egress (Sathish
et al., 2009), and is also required at the early stage of primary
infection since ORF45-null virus can neither express any
viral gene nor establish latency (Zhu et al., 2006). Recently,
KSHV ORF45 was also found to help recruit RNA polymer-
ase II to the HIV-1 LTR to enhance HIV-1 transcription
(Karijolich et al., 2014).

The ORF45 expression and function are modulated by both
cellular and viral proteins. Its transcription is regulated by
cellular chromatin-organizing factor cohesins (Chen et al.,
2012), and ORF45 can be ubiquitinated by a cellular ubi-
quitin E3 ligase known as the seven in absentia homologue
to lead to its degradation via the proteasome pathway
(Abada et al., 2008). Interestingly, ORF45 is also activated
by the KSHV replication and transcription activator (RTA)
(Chang et al., 2013). Since RTA controls the switch of
KSHV from latency to lytic replication (Gradoville et al.,
2000; Lukac et al., 1998; Sun et al., 1998), it is important
to determine the interaction between ORF45 and RTA
during early viral replication.

One supplementary table is available with the online Supplementary
Material.
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We first detected the endogenous RTA and ORF45 protein
levels in TRE6BCBL-1 RTA cells upon induction of viral
replication. The RTA gene is integrated into the genome
of TRE6BCBL-1 RTA cells and its expression is tightly
regulated by tetracycline (Nakamura et al., 2003; Wang
et al., 2005). The TRE6BCBL-1 RTA cells were collected
at 0, 1, 2, 4, 8, 24, 48, 72 or 96 h post tetracycline treat-
ment, and the expression of RTA and ORF45 were moni-
tored by Western blots (Fig. 1a). The expression levels of
RTA and ORF45 were quantified using ImageJ software
and normalized to their peak levels, respectively (Fig. 1b).
At 1 h post tetracycline treatment, enhanced RTA
expression (35 %) was detected as expected. The accumu-
lation of endogenous RTA could be observed (76 %, 87 %
and 99 % at 2 h, 4 h and 8 h, respectively), with the high-
est expression level detected at 24 h (100 %), then followed
by a gradual decrease (70 %, 52 % and 33 % at 48 h, 72 h
and 96 h, respectively). For ORF45, it was hardly detectable
before 4 h, but increased dramatically in the presence of
RTA (33 % at 4 h), and peaked at 8 h (100 %) post tetra-
cycline treatment. This increase supports previous reports
that suggested that RTA could activate the ORF45 promo-
ter. Interestingly, ORF45 was found to decrease rapidly
after peaking at 8 h (30 % at 24 h), and this decrease cor-
related with the accumulation of RTA expression. The
ORF45 was completely undetectable at 48 h and beyond

post-induction. These results demonstrated that the
expression of ORF45 correlated with RTA levels; the
expression of RTA was followed by an increase in
ORF45, and supports the hypothesis that RTA can activate
ORF45 expression in vivo. However, once ORF45 reached a
threshold level it then decreased rapidly, whether this
decrease was due to the accumulation of RTA needs to
be further analysed. The expression of another lytic pro-
tein, ORF57, was also detected. The endogenous ORF57
started to express and peaked at 24 h (100 %), and
decreased gradually afterward (96 %, 77 % and 37 % at
48, 72 and 96 h, respectively) (Fig. 1).

As the initial ORF45 expression appeared to be dependent
on the presence of RTA, which was shown to activate
ORF45 expression, we then investigated how RTA could
activate ORF45 molecularly by further characterizing the
activation of the ORF45 promoter by RTA. The ORF45
promoter fragments were amplified using primers listed
in Table S1 (available in the online Supplementary
Material), and each fragment was inserted into the pGL3-
basic vector. The reporter construct, which contains a
region upstream of the ORF45 coding region spanning
from nt 70 576 to nt 68 577, was constructed and desig-
nated pGL3-orf45p-2k (intact fragment). A series of del-
etion promoter reporter constructs were also made and
designated pGL3-orf45p-1k, -750, -695, -500, -450, -431,
-400, -350, -300 and -250 bp (Fig. 2a). The 293T cells
were transfected with each of the promoter-derived lucifer-
ase reporter construct (100 ng), and the relative basal
activity was measured for each construct (Fig. 2a, right
panel). The 293T cells were co-transfected with 1 mg of
the RTA expression plasmid and the luciferase activities
were measured and normalized to the basal activities of
each reporter construct. As expected, RTA activated
pGL3-orf45p-2k by 10.7-fold, and for reporters pGL3-
orf45p-1k, pGL3-orf45p-750 and pGL3-orf45p-695, the
activations were 12.9-, 10.4-, and 12.3-fold, respectively.
However, RTA transactivation decreased to 4.7-fold with
construct pGL3-orf45p-500, with2500 bp of the promoter
sequence. Further deletion of the ORF45 promoter to
2450 bp almost completely abolished RTA transactivation
activities. These results demonstrated that the ORF45 pro-
moter region from 2450 to 2695, or from nt 69 271 to nt
69 026, is necessary for its responsiveness to RTA transac-
tivation (Fig. 2b).

A predicted consensus binding sequence of RTA has been
found in the ORF45 promoter from nt 69 231 to nt
69 238 (Liu et al., 2008). In addition, the RTA direct bind-
ing site on the ORF45 promoter was mapped to between nt
69 000 and nt 69 480 using a ChIP-on-chip approach
(Chen et al., 2009). We have now mapped the RTA-respon-
sive element located in the region between nt 69 271 and nt
69 026, which covered the predicted RTA binding consen-
sus sequence proposed by Liu et al. (2008) and is within
the previously mapped RTA direct binding site reported
by Chen et al. (2009). Recently Chang et al. reported
that the ORF45 promoter could be activated by both
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Fig. 1. ORF45 expression in the TRE6BCBL-1 RTA cells. (a)
Detection of endogenous RTA, ORF45 and ORF57 in the
TRE6BCBL-1 RTA cells. TRE6BCBL-1 RTA cells were col-
lected at 0, 1, 2, 4, 8, 24, 48, 72 and 96 h post treatment with
tetracycline (5 mg ml21), and lysates were analysed by Western
blot to detect the endogenous RTA, ORF45, ORF57 and b-tubu-
lin. (b) Quantification of the data from (a). The expressions of
each protein were quantified using ImageJ software and were
normalized to their peak levels.
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RTA-dependent and -independent mechanisms (Chang

et al., 2013). They showed that two RBP-Jk binding sites

(nt 69 018 to nt 69 012 and nt 69 510 to nt 69 504) in

the ORF45 promoter confer RTA-dependent responsive-

ness via RBP-Jk, whereas the NF-Y and Sp1-binding sites

mediate RTA-independent response to sodium butyrate.

Interestingly, the RTA-responsive element we mapped to

the ORF45 promoter in this study does not cover these

RBP-Jk binding sites, suggesting that our promoter con-

struct was activated by an RBP-Jk independent mechanism.

To further analyse what contributes to the rapid decrease of

ORF45 after reaching its threshold level at 8 h upon RTA

activation and whether RTA plays a role in the decrease,

we then studied the effects of RTA on the ORF45 protein

level. It has been shown that RTA possesses E3 ubiquitin

ligase activities and can also recruit other cellular ubiquitin

E3 ligase for the proteasome-dependent degradation of a

number of cellular and viral proteins to regulate viral

replication and host antiviral responses (Ehrlich et al.,
2014; Izumiya et al., 2013; Yang et al., 2008; Yu & Hayward,
2010; Yu et al., 2005). It is possible that ORF45 levels may
also be regulated by RTA via a similar mechanism. There-
fore, Western blot analyses were conducted using 293T
cells co-transfected with the ORF45 expression plasmid
(200 ng) and an increasing amount of the RTA expression
plasmid (from 0 to 1000 ng). Indeed, the ORF45 protein
level decreased when increasing amounts of RTA were
expressed (Fig. 3a). This experiment was repeated three
times and the ORF45 protein levels were quantified using
ImageJ software, by first normalizing the ORF45 to the
b-tubulin levels and then to the ORF45 levels without
RTA (Fig. 3b). In the presence of 100, 200, 500 or
1000 ng RTA expression plasmid, the ORF45 protein
levels decreased to 52 %, 43 %, 27 % and 10 %, respect-
ively, when compared to control in the absence of RTA.
Our results thus suggest that RTA downregulates ORF45
protein level in a dose-dependent manner.
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Fig. 2. RTA activates ORF45 promoter. (a) Schematic representation of ORF45 promoter constructs used in transient trans-
fection analyses. The basal relative activity of each promoter construct is shown on the right. (b) Responsiveness of each
reporter to RTA activation. The 293T cells were transfected with each reporter plasmid, with or without RTA expression plas-
mid. Luciferase activities were measured at 48 h post-transfection, and transfection efficiency was normalized by using the
pCMV-b expression plasmid as an internal control. The activation fold was normalized to control in the absence of RTA (white
columns). The levels of activation when the reporters were co-transfected with RTA expression plasmid are shown (shaded
columns). Results are averages of three independent experiments, and the standard deviations are shown.
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The effect of RTA on the kinetics of ORF45 protein levels
was then investigated. In the absence of RTA expression,
the ORF45 protein levels remained constant at 0, 1, 4,
and 8 h, but increased slightly at 24 h post-transfection.
However, when 200 ng of RTA expression plasmid was
co-transfected with the ORF45 plasmid, the ORF45 protein
levels decreased with time. Moreover, ORF45 was
expressed much lower at each time point in the presence
of RTA as compared to those without RTA (Fig. 3c).
When quantified, the ORF45 protein levels in the presence
of RTA were 45 % (0 h), 38 % (1 h), 41 % (4 h), 31 %
(8 h) and 13 % (24 h) of the 0 h ORF45 level without
RTA (Fig. 3d).

When protein synthesis inhibitor cycloheximide (CHX)
was added to block de novo protein synthesis, ORF45 pro-
tein levels decreased with time both in the presence and
absence of RTA. However, in the absence of RTA, ORF45
protein levels decreased to 32 % at 24 h post-transfection,
whereas in the presence of RTA expression the ORF45
levels decreased much more rapidly, from 66 % (0 h)
to undetectable levels at 8 and 24 h post-transfection
(Fig. 3e, f). These results suggested that the downregulation
of ORF45 protein level by RTA was not attributed to the
decrease of protein synthesis, but was due to enhanced
ORF45 degradation.

To investigate whether the enhanced degradation of ORF45
protein in the presence of RTA was mediated by proteaso-
mal degradation, an inhibitor MG132, which blocks the
26S proteasome complex proteolytic activity was utilized.
In the absence of RTA, the ORF45 protein level increased
to 133 % and 158 % of untreated control, when treated
with 1 mM or 5 mM of MG132, respectively. In the presence
of RTA, the ORF45 levels also increased from 33 % to
98 % and 113 %, respectively, when 1 mM or 5 mM
MG132 was added (Fig. 3g, h). RTA ubiquitination
mutant K152E, which completely lost its ability to induce
protein degradation (Yang et al., 2008), and deletion
mutants AD4 and AD2, which have various deletions in

their activation domain (Zhang et al., 2005), were tested
for their ability to degrade ORF45 (Fig. 3i, j). At 48 h
post-transfection, the ORF45 level was decreased to 7 %
by the wild-type RTA. The deletion mutant AD4 was
capable of degrading ORF45 as effectively as the wild-
type (10 %), whereas AD2 could only partially degrade
ORF45 (62 %). When the RTA ubiquitination mutant
K152E was tested, ORF45 was no longer degraded
(107 %), demonstrating that a single amino acid mutation
at K152 abolished the ability of RTA to degrade ORF45.
These results suggest that the degradation of ORF45 pro-
tein is mediated by RTA via the 26S proteasome pathway.

Our results so far have demonstrated that ORF45
expression can be stimulated by RTA (Fig. 2b) but
ORF45 protein can be targeted for degradation by RTA
(Fig. 3). We have shown that in TRE6BCBL-1 RTA
cells, the endogenous ORF45 protein level increased
dramatically from 2 to 8 h and then decreased rapidly
(Fig. 1). This increase coincided with the accumulation of
RTA and suggests that RTA might regulate ORF45 differ-
entially at different stages of infection. At the early phase
of viral lytic replication, RTA activates ORF45 promoter
to evade the host immune surveillance. However, after
the initial infection and lytic replication, KSHV needs to
establish latency and persistent infection; viral proteins
that are involved in initial lytic replication such as
ORF45 and even RTA need to be down modulated. It is
possible that the degradation of accumulated ORF45
could also be mediated by RTA, as has been shown with
a number of viral and cellular proteins (Yang et al., 2008;
Yu & Hayward, 2010; Yu et al., 2005).

As the lytic switch protein, RTA regulates a variety of viral
and host proteins. It activates viral gene expressions
through direct binding or indirect interaction with viral
promoters (Chen et al., 2009; Ziegelbauer et al., 2006).
It also regulates a number of viral and host proteins
post-translationally (Ehrlich et al., 2014; Izumiya et al.,
2013;Yang et al., 2008; Yu & Hayward, 2010; Yu et al.,

Fig. 3. RTA targets ORF45 for degradation. (a) RTA downregulated ORF45 protein level in a dose-dependent manner. The
293T cells were co-transfected with ORF45 expression plasmid (200 ng) and an increasing amount of RTA expression plas-
mid (0, 100, 200, 500 and 1000 ng). The expressions of ORF45, RTA and b-tubulin were detected with Western blots. (b)
Quantification of the data from (a). The ORF45 protein levels were quantified using ImageJ software and normalized first to
the levels of b-tubulin and then to the ORF45 level in the absence of RTA. Results are averages of three independent exper-
iments, and the standard deviations are shown. (c) The time-course effects of RTA on the ORF45 protein level. The 293T
cells were transfected with 200 ng ORF45 expression plasmid, with or without 200 ng RTA expression plasmid. The 24 h
post-transfection was regarded as time point 0, and proteins were collected 0, 1, 4, 8 or 24 h later. The expressions of
ORF45, RTA and b-tubulin were detected with Western blots. (d) Quantification of the data from (c). (e) The downregulation
of ORF45 protein level by RTA is a result of ORF45 degradation. CHX (100 mg ml21) was added to block the de novo pro-
tein synthesis. The expressions of ORF45, RTA and b-tubulin were detected. (f) Quantification of the data from (e). (g) The
degradation of ORF45 protein level by RTA is dependent on the 26S proteasome pathway. MG132 dissolved in DMSO was
added 24 h post-transfection and cells were cultured for another 24 h before being collected for Western blots. MG132
concentrations were 0 mM (lanes 1 and 2), 1 mM (lanes 3 and 4) and 5 mM (lanes 5 and 6). (h) Quantification of the data
from (g). (i) Detection of mutant or deletions of RTA in degrading ORF45. RTA ubiquitination mutant K152E (lane 3) and del-
etions AD4 (lane 4) and AD2 (lane 5) were utilized to co-transfect 293T cells with ORF45 expression plasmid. (j) Quantifi-
cation of the data from (i).
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2005). Here we demonstrate for the first time, to our
knowledge, that RTA modulates ORF45 level by activating
ORF45 expression initially and then degrading the accu-
mulated ORF45. This could be a common mechanism
that RTA has adopted to subtly modulate viral or host
gene expression to regulate different stages of viral infec-
tion, from lytic replication to latency and subsequent reac-
tivation. In fact, besides modulating ORF45, RTA can
modulate itself by auto-activation of its own promoter to
increase expression (Deng et al., 2000) and auto-ubiquiti-
nation to enhance proteasome-mediated degradation (Yu
et al., 2005). Our study will help elucidate the mechanism
of how the ORF45 level is subtly modulated during KSHV
replication and how RTA controls the different phases of
viral infection.
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