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Abstract.—A number of methods have been developed for modeling the evolution of a quantitative trait on a phylogeny. These
methods have received renewed interest in the context of genome-wide studies of gene expression, in which the expression
levels of many genes can be modeled as quantitative traits. We here develop a new method for joint analyses of quantitative
traits within- and between species, the Expression Variance and Evolution (EVE) model. The model parameterizes the
ratio of population to evolutionary expression variance, facilitating a wide variety of analyses, including a test for lineage-
specific shifts in expression level, and a phylogenetic ANOVA that can detect genes with increased or decreased ratios
of expression divergence to diversity, analogous to the famous Hudson Kreitman Aguadé (HKA) test used to detect
selection at the DNA level. We use simulations to explore the properties of these tests under a variety of circumstances
and show that the phylogenetic ANOVA is more accurate than the standard ANOVA (no accounting for phylogeny)
sometimes used in transcriptomics. We then apply the EVE model to a mammalian phylogeny of 15 species typed for
expression levels in liver tissue. We identify genes with high expression divergence between species as candidates for
expression level adaptation, and genes with high expression diversity within species as candidates for expression level
conservation and/or plasticity. Using the test for lineage-specific expression shifts, we identify several candidate genes for
expression level adaptation on the catarrhine and human lineages, including genes putatively related to dietary changes
in humans. We compare these results to those reported previously using a model which ignores expression variance
within species, uncovering important differences in performance. We demonstrate the necessity for a phylogenetic model
in comparative expression studies and show the utility of the EVE model to detect expression divergence, diversity, and
branch-specific shifts. [Comparative expression; expression adaptation; Ornstein–Uhlenbeck model; plasticity; population
variance].

Quantitative phylogenetic methods account for
nonindependence relationships between species using
several approaches such as independent contrasts
(Felsenstein 1985) and generalized least squares (Martins
and Hansen 1997; Grafen 1989; Rohlf 2001). These
methods have provided frameworks for a variety
of phylogenetic approaches which consider variance
within species (for a review, see Garamszegi 2014).
For instance, the phylogenetic mixed model considers
both gradual evolutionary drift and within-species
variance (Lynch 1991; Housworth et al. 2004). Another
approach transforms comparative quantitative data
to account for phylogeny before performing ANOVA
(Butler et al. 2000). Still other methods compare ANOVA
results based on raw phylogenetic data to those based
on data simulated under a phylogenetic model to
create an appropriate null distribution (Garland et al.
1993; Harmon et al. 2008; Revell 2012). Sophisticated
extensions of quantitative evolutionary models allow
evolutionary scenarios including varying rates of
phenotypic evolution (Pagel 1999; O’Meara et al. 2006).
These quantitative trait evolution methods have been
used effectively for a variety of phenotypic, particularly
morphological, traits.

The emergence of transcriptome-wide comparative
gene expression studies including multiple individuals
per species (Kalinka et al. 2010; Brawand et al.
2011; Perry et al. 2012; Necsulea et al. 2014) has
presented a new challenge to quantitative evolutionary
methodology. Like traditional morphological traits,

expression levels can be considered a quantitative trait
that evolves over a phylogeny. Expression levels are
particularly interesting as relatively malleable basic
genetic traits, creating a convenient point of intervention
for adaptation (Whitehead and Crawford 2006; Gilad
et al. 2006b; Fraser 2011). By examining comparative
expression levels, we can identify fundamental changes
that underlie adaptation to environmental factors. This
invites quantitative genetic investigation of evolutionary
modality (drift, stabilizing selection, adaptive shift, etc.).
In addition to a clear genetic basis, expression levels
have strong environmental components (Idaghdour
et al. 2010; Pickrell et al. 2010). Changes in expression
level may reflect genetic adaptation fixed within
individuals, or plastic (rapidly changeable) response
to environmental variables. This plasticity allows
examination of the relationship between expression
plasticity and adaptability. Finally, the large numbers
of measurements across genes in transcriptome-wide
expression studies present new analytical opportunities.

Despite the extensive literature of quantitative
phylogenetic methods, many early large-scale
comparative expression analyses used traditional
ANOVA to detect genes with unusually high expression
divergence between species, given the expression
variance within species (Nuzhdin et al. 2004; Gilad
et al. 2006a; Khaitovich et al. 2006; Whitehead and
Crawford 2006). These analyses typically assume
independence between species. While technically
untrue, this assumption has no impact for phylogenies
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of two species and may have limited impact for the small
numbers of species analyzed. However, as more species
are considered in recent studies, the difference in shared
evolutionary history between closely and distantly
related species increases, and a complex covariance
structure emerges. In current comparative expression
data sets across larger phylogenies, the assumption of
species independence does not hold, necessitating more
sophisticated methods taking into account evolutionary
relationships (Felsenstein 1985).

More recent comparative expression studies have
employed classical quantitative trait evolutionary
models, particularly the model of constrained trait
evolution proposed by Hansen (1997) and expanded in
later work (Butler and King 2004; Hansen et al. 2008).
This flexible model has been applied to describe the
evolution of gene expression under neutral expression
level diffusion, constrained diffusion (expected under
stabilizing selection), and species-specific expression
level shifts (Bedford and Hartl 2009). These models are
used to calculate the expected species average expression
levels and expression covariance between species under
a particular evolutionary scenario. Likelihood ratio tests
can then be formulated to distinguish unconstrained
random trait evolution, constrained or stabilized trait
evolution, and branch-specific shifts in trait evolution, as
has been successfully analyzed in a number of data sets
(Bedford and Hartl 2009; Kalinka et al. 2010; Perry et al.
2012; Schraiber et al. 2013). However, these methods
are limited by their inability to model nonphylogenetic
variance (Oakley et al. 2005) and are not designed to
investigate evolutionary expression variation in relation
to expression variance within species.

A number of augmentations to these models allow
within-species variance as an error term (Lynch 1991;
Martins and Hansen 1997; Gu 2004; Ives et al.
2007; Felsenstein 2008; Hansen and Bartoszek 2012;
Rohlfs et al. 2014). Several models of phenotypic
drift parameterize within-species variance (Lynch 1991;
Housworth et al. 2004; Felsenstein 2008), while other
analyses show how this substantially improves ancestral
state estimation (Martins and Lamont 1998; Ives et al.
2007) and evolutionary inference (Harmon and Losos
2005; Ives et al. 2007; Revell et al. 2008). Within-
species variance has additionally been parameterized
in an evolutionary model allowing for constrained trait
evolution (Rohlfs et al. 2014).

We build upon these models to create the unified
Expression Variance and Evolution (EVE) model,
describing both phylogenetic expression level evolution
between species and expression level variance within
species. Expression levels vary among individuals in a
population or a species. This expression level variance is
caused by genetic and environmental differences among
individuals. It may be low if the gene has an important
function, is expressed constitutively, and does not
respond to environmental changes. Such genes might be
the genes involved in important cellular functions such
as cell cycle control. Genes that have high expression
level variance are genes that either harbor segregating

adaptive variation affecting expression levels, or more
likely, respond to various environmental cues. Such
genes might, for example, include genes involved in
immunity and defense against pathogens. Our method
allows for expression level evolution under neutrality
or selective constraint with a flexible model (Hansen
1997; Butler and King 2004; Hansen et al. 2008), while
adding in within-species variance (as was previously
done under drift (Lynch 1991; Housworth et al. 2004;
Felsenstein 2008)). The EVE model re-parameterizes a
previous model, which allows within-species variance
simply as an error term (Rohlfs et al. 2014). By
contrast, in the EVE model, we parameterize the ratio
of expression variance within species to evolutionary
variance between species, facilitating rigorous novel
analyses directly aimed at this ratio. This can be
considered a phylogenetic analogy to test for drift
via ratios of between- to within-population variance
(Lande 1979; Ackermann and Cheverud 2002; Marroig
and Cheverud 2004). We develop this phylogenetic
framework with genome-wide expression data in mind,
exploiting the large number of expression measurements
over the same individuals. Yet, the EVE model could
be used for any set of quantitative traits, including
morphological traits.

The EVE model enables an expression analogy
to classic genetic neutrality tests considering
polymorphism and diversity, namely, the HKA
test (Hudson et al. 1987). In this test, the ratio of
polymorphism within species to divergence between
species is compared among different genes in the
genome. Under neutrality, this ratio should be the
same (in expectation) for all genes in the genome.
However, for genes affected by selection, the number
of polymorphic sites within species may be increased
or decreased relative to the number of fixed differences
between species, depending on the directionality and
modality of selection (see e.g., Nielsen 2005).

Analogously, in our model, we parameterize the ratio
of within-species expression variance to between-species
expression evolutionary variance using a parameter �
defined over the phylogeny. This parameter represents
the ratio of within- to between-species variance, which
should be approximately constant for a given phylogeny
over different genes if only constant stabilizing selection
(or no selection) is acting on the trait (Lande 1976).
We can now construct likelihood ratio tests aimed at
detecting if � varies among genes. Let G=g1,g2,...,gk be
the set of all k genes for which expression values have
been obtained, and let the value of � for gene i∈G be
�i. To test if �i is elevated compared to the rest of the
genes, we then calculate the likelihood under the null
hypothesis of a constant value of � among genes, that
is, �i =�shared for all genes i∈G. We compare it to the
alternative hypothesis of �i �=�shared−i, where �shared−i is a
value of � shared for all genes in G except gi. The resulting
likelihood ratio test statistic, formed in the usual fashion,
by comparing the log likelihood maximized under the
union of the null and the alternative hypothesis, to the
log likelihood maximized under the null hypothesis, is
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then �2 distributed with one degree of freedom under
standard regularity conditions.

As a practical matter, we assume that the value
of � estimated for �shared is approximately the same
as the value of � estimated for �shared−i for any i.
This assumption is reasonable when there are many
genes and the estimate of �shared is not dominated
by any particular gene. Using this assumption leads
to considerable reductions in computational time. In
the following, we will therefore in the notation not
distinguish between �shared and �shared−i.

If the null hypothesis is rejected because �i is
significantly larger than �shared, expression divergence
between species is elevated in gene i relative to the
level of within species variance. This would suggest
that gene i may be subject to species or branch-specific
directional selection on expression level. Genes with an
unusually low ratio (�i <�shared) show proportionally
high expression diversity within species, suggesting
conservation of species average expression levels, with
expression variation in response to either environmental
factors or diversifying selection within species. This test
can also be thought of as an alternative phylogenetic
ANOVA test as it is essentially an analysis of expression
variance within- versus between species, accounting for
varying evolutionary relationships between species. In
statistical terms, the analogy is to a one way ANOVA
where species define the discriminating factor and the
test determines if species share the same mean, but
where evolutionary dependencies between species are
accounted for.

Since phylogenetic information is included in the EVE
model itself, a wide variety of evolutionary scenarios
may be specified by selectively constraining parameters,
improving flexibility to test different comparative
hypotheses. For example, we can test for unusual
species or lineage-specific expression variance, as may
be observed under recent relaxation or increases of
constraint on expression level, diversifying selection
on expression level, or under extreme branch-specific
demographic processes. Other tests may be constructed
to test for differing expression diversity for groups
of individuals within each species, for instance,
evolutionarily conserved age or sex-specific expression
variance. All of these tests could be performed on
a particular gene of interest or on a class of genes
of interest, for example, a list of candidate genes
could be queried for increased expression diversity in
older individuals. In addition to these novel tests, the
EVE model can be used for the same tests as other
expression evolution models which discount within-
species variance. In particular, the EVE model can test
for lineage-specific shifts in constrained expression level,
while taking into account within-species variance.

Here, we explore the performance of two EVE model
tests: The test for unusual expression divergence or
diversity and the test for lineage-specific expression
level shifts. We use simulations to describe these
tests and formulate expectations under the null
hypotheses. We then apply the tests to a previously

published expression data set of 15 mammals. We
identify a number of genes with high expression level
divergence between species as candidates for expression
level adaptation to species-specific factors, and genes
with high expression level diversity within species
as candidates for environmentally responsive gene
expression (plasticity). Using the test for lineage-specific
expression shifts, we identify several strong candidate
genes for branch-specific expression adaptation on the
catarrhine and human lineages.

We compare our results to those obtained using the
species mean (SM) model described by Bedford and
Hartl (2009) and recently used in a number of studies
(Bedford and Hartl 2009; Kalinka et al. 2010; Perry
et al. 2012). The SM model considers the evolution
of the mean expression level for each species, rather
than within species variance. This model can describe
trait evolution without constraint, with constraint, or
with a branch-specific adaptive shift in response to an
environmental factor. By comparing the likelihood of
observed data under different parametric limits, the SM
model can be used to identify genes subject to different
evolutionary schemes. We find important differences
between our results and those obtained using the
SM method, especially for analyses of species-specific
expression shifts (Perry et al. 2012).

METHODS

The EVE Model for Gene Expression Evolution and
Population Variance

The evolution of quantitative traits by diffusion and
constrained or stabilized diffusion has been modeled
using an Ornstein–Uhlenbeck (OU) process, which can
be thought of as a random walk with a pull toward
an optimal value (Lande 1976; Hansen 1997; Butler
and King 2004; Hansen et al. 2008; Bedford and Hartl
2009; Kalinka et al. 2010). In an OU model of stabilizing
selection on gene expression level, the parameter �i can
be thought of as the optimal expression level for gene i,
�2

i the diffusion acting on that expression level, and �i
the rate of adaptation for that expression level (Hansen
1997; Butler and King 2004; Hansen et al. 2008; Hansen
2012). Over evolutionary time, the stationary variance

of SM expression levels for gene i will be �2
i

2�i
, which we

refer to as the evolutionary variance.
More recently, several Brownian motion and OU-

based models have been augmented to include
within-species population level variance (Lynch 1991;
Felsenstein 2008; Hansen and Bartoszek 2012; Rohlfs
et al. 2014). Accounting for population variance is crucial
to distinguish evolutionary modalities (Rohlfs et al.
2014).

The model we describe builds on these OU models
for quantitative trait evolution with the additional
parameter � which describes the ratio of population to
evolutionary expression level variance. Within species
j the expression level of any individual k is distributed
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), where Yj is the SM expression level

determined by the OU process. We call this the EVE
model, which describes a linear relationship between
population and evolutionary expression level variance.

In his classic paper, Lande (1976) showed that
under an OU model of stabilizing selection, a
linear relationship arises between a quantitative trait’s
evolutionary variance and population variance within
species. Additionally, the Poisson nature of RNA-Seq and
gene expression itself means that both evolutionary and
population expression variance increase with expression
mean. With that in mind, our model assumes a
linear relationship between evolutionary and population
expression variance. That assumption is reflected in
the data, which shows a linear relationship between

estimated evolutionary expression level variance ( �̂2
i

2�̂i
)

and estimated population expression level variance

(�̂i
�̂2

i
2�̂i

) (Fig. 1).
The slope of this linear relationship (parameterized

by �) should be consistent across genes which have
undergone the same evolutionary and demographic
processes under stabilizing selection. However, in a
gene, i, which has experienced directional selection on
expression level, �i would be lower as compared to
other genes in the same individuals. The directional
selection would drive increased expression divergence
between species, while maintaining low-expression
variance within species. Similarly, a gene with plastic
expression may have more variation within species
than between as compared to other genes, raising the
value of �i. High �i could alternatively be explained
by diversifying selection on expression level. Since
expression levels are quite plastic, this explanation seems
less plausible without other corroborating information.
In this manuscript, since the samples we consider are

opportunistically harvested, presumably under quite
varying environmental conditions, we focus on the
environmental plasticity hypothesis in the interpretation
of our results.

Likelihood Calculations Under the EVE Model
The EVE model is similar to other OU process-

based phylogenetic models (Butler and King 2004;
Bedford and Hartl 2009), with the addition of within-
species expression variance in terms of the evolutionary
variance. As such, under the EVE model expression
levels across individuals and species, given a fixed
phylogeny, follow a multivariate normal distribution
identical to those under SM models at the species level as

E(Yi)=E(Yp)e−�itip +�i(1−e−�itip ) (1)

Var(Yi)=
�2

i
2�i

(1−e−2�itip)+Var(Yp)e−2�itip (2)

Cov(Yi,Yj)=Var(Ya)exp(−
∑

k∈lij

�ktk −
∑

k∈lji

�ktk) (3)

where Yi is the expression level in species i; Yp is the
SM expression at the parental node p of species i; �i, �2

i ,
and �i are the parameter values on the branch leading
to node i; tip is the length of the branch between i and
p; Ya is the expression level at the most recent common
ancestor of species i and j; and lij is the set of nodes in the
lineage of Yi not in the lineage of Yj (Rohlfs et al. 2014).

This multivariate normal distribution describing the
species-level expression is augmented in the EVE
model to include individuals within species, so for an

individual k in species i, Yik ∼N(Yi,�i
�2

i
2�i

). In this way, the
within-species expression variance parameter described
by Rohlfs et al. (Rohlfs et al. 2014) �2 is re-parameterized

as �i
�2

i
2�i

. The entire multivariate normal distribution can
be described as

E(Yik)=E(Yi)

Var(Yik)=Var(Yi)+�i
�2

i
2�i

Cov(Yik,Yil)=Var(Yi)

Cov(Yik,Yjl)=Cov(Yi,Yj)

based on equations (1), (2), and (3), where i �= j and
k �= l. With the distribution of expression levels under
a particular set of parameters defined according to this
multivariate normal, the likelihood of the data under
the model is simply the probability density. Notice
that sampling and experimental variance is accounted
for (and confounded) in the parameters governing the
distribution of Yik|Yi.
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Maximum Likelihood Procedures
For the test for individual gene departures from

�shared, under the null hypothesis each gene i is governed
by parameters �i, �2

i , and �i, reflecting the evolutionary
process of each gene based on its degree of expression
diffusion and constraint. The population expression
variance in all n genes is controlled by the single
parameter �shared. To more computationally efficiently
maximize the likelihood over these 3n+1 parameters, we
use a nested structure with Brent’s method (Brent 1973)
in the outer loop to maximize over the single parameter
�shared, and the BFGS algorithm (Broyden 1970; Fletcher
1970; Goldfarb 1970; Shanno 1970) in the inner loop to
optimize over �i, �2

i , and �i for each gene. Under the
alternative hypothesis, the likelihood of each gene i is
maximized using the BFGS algorithm over �i, �2

i , �i,
and �i. To compute the likelihood ratio, the likelihoods
of each individual gene i are computed under H0 :�i =
�shared and Ha :�i �=�shared, where �shared considers all
of the genes considered. Note that this experimental set
up allows better computational efficiency, but relies on
�shared over all the genes approximating �shared over
all the genes excluding gene i for large numbers of
genes.

In the likelihood maximization under the null
hypothesis, likelihoods across genes are assumed to be
independent so that for a particular value of �shared,
the likelihood of a set of genes is simply the product
of the likelihoods of each gene. While this assumption
is currently typical in this sort of analysis, it leaves
something to be desired since the evolution of expression
levels of inter-related genes are not independent, and
nor are the particular expression levels measured in an
individual which may be responding to the environment
of that individual. A more rigorous approach would
take into account complex correlation structures across
genes, as has been outlined for some evolutionary
models (Lande and Arnold 1983; Felsenstein 1985, 1988;
Lynch 1991). Unfortunately, because of the combinatorial
problem of investigating a very large set of possible
correlation structures, a full likelihood approach that
estimates the correlation structure directly for thousands
of genes is not computationally tractable and possibly
may not be based on identifiable models. Instead we
use the independence model as an approximation.
If expression patterns are correlated among genes,
we can consider this procedure to be a composite
likelihood method (Larribe and Fearnhead 2011) since
the estimating function is formed by taking the product
of functions that individually are valid likelihood
functions, but the total product is not necessarily a valid
likelihood function. In the case of severe dependence
between genes, estimates of �shared will tend toward the
value for correlated genes, leading to over-identification
of genes with �i different from the correlated genes.

For the test of branch-specific expression shift for
a particular gene i, under the null hypothesis the
likelihood of each gene i is maximized over �i, �2

i , �i,

and �i. Under the alternative hypothesis the likelihood
of each gene i is maximized with an additional �

parameter (�shift branch
i and �non-shift branch

i ) to allow for
the expression shift.

Testing for Deviations from a Constant Expression
Divergence/Diversity Ratio

The EVE model can, as previously mentioned, be
used to test for deviations from a constant ratio of
expression to divergence ratio among genes, analogous
to the HKA test often applied to test for selection at
the DNA level. Specifically, a likelihood ratio can be
formed by comparing the likelihood under a null model
where � for all genes equals �shared (H0 :�i =�shared) to
the likelihood under the alternative model where �i is a
free parameter (Ha :�i �=�shared). If the null hypothesis
is rejected in a likelihood ratio test, we can conclude
that �i for a particular gene varies significantly from
�shared across the genes. A gene where �i <�shared has
high expression variance between species as compared
to within, or high expression divergence. A gene
where �i >�shared has high-expression variance within
species as compared to between, or high expression
diversity.

An implementation of the EVE model is available
as Supplementary Material on Dryad on Dryad at
http://dx.doi.org/10.5061/dryad.r122k.

Mammalian Expression Data and Phylogeny
We applied the EVE model to analyze a comparative

expression data set over 15 mammalian species with four
individuals per species (except for armadillos with two
individuals) which is described in full in Perry et al.
(2012). Of the 15 species typed, five are anthropoids
(common marmoset [mr], vervet [ve], rhesus macaque
[mc], chimpanzee [ch], human [hu]), five are lemurs (aye-
aye [ay], Coquerel’s sifaka [sf], black and white ruffed
lemur [bw], mongoose lemur [mn], and crowned lemur
[cr]), and the remaining five are more distantly related
mammals (slow loris [sl], northern treeshrew [ts], house
mouse [ms], nine-banded armadillo [ar], and gray short-
tailed opossum [op]). Since many of these species are
endangered and protected, most samples were collected
opportunistically within four hours of death. Liver tissue
from each individual was typed using RNA-Seq and
transcriptomes were assembled with a robust de novo
technique that was verified on species with reference
genomes available (Perry et al. 2012). Expression levels
were normalized based on each individual, transcript
length, GC content, and species (Bullard et al. 2010;
Pickrell et al. 2010; Perry et al. 2012), as is appropriate
for comparative analysis so that genes are considered
equitably in relation to each other (Dunn et al. 2013).
Here, we consider a subset of 675 genes with no missing
data across all species and individuals.

http://dx.doi.org/10.5061/dryad.r122k


700 SYSTEMATIC BIOLOGY VOL. 64

)c)b
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

average expr difference

po
w

er

opossum

a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average expr difference

po
w

er

human

0 1 2 3 4 5 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average expr difference

po
w

er

anthropoid

0 1 2 3 4 5

FIGURE 2. Power is shown as a function of average expression difference between the species on the shifted branch and the rest of the phylogeny.
Power is shown for traditional ANOVA (crosses) and the EVE method “phylogenetic ANOVA” (triangles) for shifts on the (a) opossum, (b) human,
and (c) anthropoid branches.

Simulated Data
Comparing EVE and ANOVA.—We performed a
simulation study to compare the power of the
EVE method and traditional ANOVA to detect
expression divergence between species. Expression was
simulated for 100 genes on the phylogeny and number
of individuals observed experimentally, using the
parameter values �2 =5, �=3.0, �=6, and �=100 with a
total tree height of 0.08. However, one of the simulated
genes was subject to a branch-specific expression shift
on either the opossum, human, or anthropoid branches.
These simulations were performed for varying strengths
of branch-specific shifts and for each shifts on each of
the three branches considered with 100 simulations in
each set of conditions. For the opossum branch shift,
differences in optimal expression levels (��) ranged
from 0 to 19; for the human branch shift, values ranged
from 0 to 950; and for the anthropoid branch shift,
values ranged from 0 to 57. These parameter values
describe relatively weak stabilizing selection with
drastic branch-specific optimum shifts. The varying
optimum shift values were chosen to achieve similar
absolute expression level changes across the three trials
with shifts on differently lengthed branches.

Null distribution of Likelihood Ratio Test (LRT�i=�shared ).—
We performed a second simulation study to explore
the null distribution of the test statistic for unusual
expression divergence or diversity (LRT�i=�shared ). Since
the alternative hypothesis has one additional degree
of freedom as compared to the null hypothesis, the
asymptotic distribution for the LR test statistic under
the null hypothesis is �2 with one degree of freedom
(LRT�i �=�shared ∼�2

1). However, smaller phylogenies may
not be large enough for the asymptotic distribution
to apply, as has been observed in other comparative
methods (Beaulieu et al. 2012; Boettiger et al. 2012).

For our simulations exploring the null distribution of
LRT�i=�shared , we consider a phylogeny identical to that
from the mammalian data set from Perry et al. (Perry
et al. 2012), calling that “1x tree” or t1. We additionally
consider a “2x tree” or t2 which is constructed with two
copies of t1 as (t1,t1) with the connecting branches the
length of t1 itself. Similarly, we consider a “3x tree” or t3

as (t2,t1) with the branch to t2 the length of t1 and the
branch to t2 twice the length of t1, and a “4x tree” or t4

as (t2,t2) with the connecting branches the length of t1

(Supplementary Fig. 1).
We performed additional simulations based on

a pectinate topography over different number of
species with the same internal branch lengths (e.g.
Supplementary Fig. 3) and a single set of parameters
taken from the median parameter estimates from the
experimental analysis (�=0.57, �2 =2.66, �=19.05, and
�=0.39).

RESULTS

Comparison to traditional ANOVA
Both the traditional ANOVA and the EVE

“phylogenetic ANOVA” tests were performed on
simulated data (described above), the later leveraging
variance information over genes in addition to
phylogenetic information. Figure 2 compares the power
of the “phylogenetic ANOVA” and traditional ANOVA.
Without taking phylogeny into account, the traditional
ANOVA interprets species differences attributable to
drift as due to divergence, leading to uncontrolled false
positive rates (Fig. 2 at average expression difference
of zero). The “phylogenetic ANOVA” gains power for
genes with moderate expression shifts by considering
these shifts in the context of the phylogeny. Among the
simulations with shifts on different branches, the EVE
method has more power to detect shifts in the opossum
lineage than the human lineage, analogous to power
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differences across branch lengths in sequence-based
tests for divergence (Yang and dos Reis 2011). With both
methods, the shift on the anthropoid lineage, which
includes five species, is more easily detected than the
single species shifts.

Determining Significant Deviations of Expression
Divergence/Diversity Ratio

Test expectation under the null hypothesis.—At the
asymptotic limit, the likelihood ratio test statistic
for testing H0 :�i =�shared versus HA :�i �=�shared,
LRT�i �=�shared , is �2

1 distributed under the null hypothesis.
However, when applied to small phylogenies, the
distribution of LRT�i �=�shared may not be near the
asymptotic limit, and may deviate from a �2

1 (e.g.,
Boettiger et al. 2012) (see Supplementary Materials).
To explore the null distribution of LRT�i �=�shared over
different parameter values and phylogeny sizes,
we simulated data under the null hypothesis of
H0 :�i =�shared for four sets of parameter values
(Supplementary Table 1) based on the median maximum
likelihood estimates from the experimental data, under
four tree sizes based on the mammalian phylogeny that
we subsequently will analyze (Supplementary Fig. 1
and Supplementary Materials).

While the null distribution resembles the
asymptotically expected �2

1 for a phylogeny like
the one analyzed here, we observe some minor
deviations (Supplementary Fig. 2). However, as the
size of the phylogeny considered increases, the null
distribution approaches a �2

1, though it converges more
slowly under some parameter values. As in previous
studies examining parameter estimates over phylogeny
size (Boettiger et al. 2012), we see that the parameter
estimates improve with phylogeny height and number
of tips, though some are more easily estimable than
others (Supplementary Figs 5–10). Yet, note that for the
set of expression values simulated under a low � value
(set 3), the evolutionary variance is very high and is not
saturated in the phylogeny lengths explored here. In this
case, the phylogenies with longer branches investigated
allow more time for expression levels to vary more
widely, making parameter and likelihood estimation
less accurate. This is a case where the null distribution
of LRT�i=�shared is far from the asymptotic expectation.

We performed further simulations based on a
pectinate phylogeny for different numbers of species
(Supplementary Figs 3, 11). Again, we see that as the
phylogeny size increases, the simulated null distribution
more closely matches the asymptotic expectation. It is
important to note that the null distribution under a
pectinate topology more quickly approaches �2

1 than the
other topology because there are more varying branch
lengths between species in a pectinate phylogeny. Trait
evolution methods are powered by multiple varying
branch length differences between species, making a
pectinate phylogeny the most informative.

Parametric bootstrap approach for the null distribution.—
To account for deviations from the asymptotically
expected null distributions of LRT�i �=�shared , we follow
the suggestion of Beaulieu et al. (2012) and use
a parametric bootstrap. That is, for a particular
gene, we simulate expression profiles based on the
maximum likelihood parameter estimates under the
null hypothesis. These simulated expression profiles are
then tested for deviation from the null hypothesis to
determine the parametric bootstrapped null distribution
of LRT�i �=�shared ,to which the experimental result can be
compared.

We performed a parametric bootstrap analysis with
100 simulations for each of the genes simulated under
the null hypothesis described above. For each gene,
we compared the original test statistic (LRT�i �=�shared ) to
the distribution created by these additional simulations
to determine the parametric bootstrapped P-value.
The resulting bootstrapped P-values are approximately
uniformly distributed between 0 and 1 (Supplementary
Fig. 13) as expected. Note that these bootstrapped
P-values describe the departure from the null for each
gene individually; a correction for multiple tests must
be included when considering P-values across genes.
Further, note that the bootstrap approach assumes
independence between genes, which, while statistically
convenient, could cause inaccuracy when expression
is highly correlated between genes. Generally, the
parametric bootstrap approach is most effective for
accurate parameter estimates; in the presence of biased
estimates and a dependence of the distribution of the
likelihood ratio test statistics on parameter values, the
parametric bootstrap approach can be biased. It is,
therefore, worthwhile to test the parametric bootstrap
before interpreting results based on it.

Expression Divergence and Diversity in Mammals
Assessing expression divergence and diversity.—We applied
the test of constant expression divergence to diversity
ratio to each gene in the mammalian data set. The
resulting empirical LRT�i �=�shared values increase with
departure from �̂i = �̂shared (Fig. 3). We see much
higher values of LRT�i �=�shared for low �̂i than high �̂i.
This is partially explained by error in �i estimates,
especially for higher values (Supplementary Figs 5,
11). Additionally, under the null hypothesis, some of
the observed expression variance may be explained by
increasing the estimated evolutionary variance, hence
power is reduced for genes with high �i.

We additionally estimated parametric bootstrapped
P-values using 1000 simulations for each gene, finding
that they roughly follow a uniform distribution with
some excess of low P-values (Supplementary Fig. 15),
as is expected under our prediction that most genes
are well described by �shared, while for a small number
of genes �i �=�shared. We compared those bootstrapped
P-values to LRT�i �=�shared and found a clear correlation



702 SYSTEMATIC BIOLOGY VOL. 64

−4 −3 −2 −1 0 1 2

0
5

10
15

20
25

30
35

log(β̂i)

LR
T

β i
≠β

sh
ar

ed

FIGURE 3. The test for a gene with �i varying from �̂shared
was computed for each gene. Those likelihood ratio test statistics
(LRT�i �=�shared ) are plotted against the log of the � parameter estimated
for each gene (log(�̂i)) in a volcano plot. The dashed line indicates the
value of �̂shared.

(Supplementary Fig. 16). Using 1000 simulations, the
minimum P-value is 0.001, hence more simulations
would be needed to more accurately assess the degree
of departure from the null distribution in the tail of the
distribution.

Candidate genes for expression adaptation and plasticity.—
Genes in the tail of the LRT�i �=�shared distribution with
high �̂ have conserved mean expression levels across
species, but high variance within species. A likely
explanation is that the expression of these genes is highly
plastic and that the genes are responding to individual
environmental conditions. Among the most significant
high �̂i genes, we see PPIB, which has been implicated in
immunosuppression (Price et al. 1991; Luban et al. 1993)
and HSPA8, a heat shock protein (Daugaard et al. 2007,
Fig. 4a). Based on their function, the expression levels
of both of these genes are expected to vary depending
on environmental inputs such as pathogen load and
temperature. Since most of the samples were collected
without standardized conditions, these environmental
factors are likely to vary over individuals.

Conversely, genes with low �̂ have unusually high-
evolutionary variance as compared to population
variance, which is expected in cases of directional
selection on expression level. The most extreme outlier
with low �̂i is F10, which encodes Factor X, a key blood

coagulation protein produced in the liver (Uprichard
and Perry 2002). F10 is highly expressed in armadillo as
compared to the other mammals considered (Fig. 4b).
High F10 expression in armadillos may be caused
by an environmental condition specific to armadillos,
or by fixed genetic differences. We can not eliminate
the possibility of an environmental factor underlying
high-F10 expression in armadillos without conducting
experiments in controlled conditions. However, it has
previously been found that armadillo blood coagulates
two to five times faster than human blood (Lewis and
Doyle 1964). A likely molecular cause is the increased
expression of F10 observed here.

These results, together with the simulation results
presented in the previous sections, suggest that
the phylogenetic ANOVA application of the EVE
model provides a versatile tool for identifying genes
with relative elevated expression variance within
species, possibly due to plastic gene expression, or
relative elevated expression divergence between species,
possibly due to species or lineage specific adaptive
changes in gene expression. We emphasize that claims of
adaptation would have to be followed up by additional
lines of evidence.

Testing for Branch-Specific Expression Level Shifts
The EVE model can be used to formulate hypotheses

about branch-specific shifts in the expression of gene
i by comparing likelihoods under H0 :�a

i =�non-a
i versus

Ha :�a
i �=�non-a

i , where �a
i is the value of �i at all nodes in

the shifted lineage(s), a, and �non-a
i is the value of �i at the

remaining (non-a) nodes. The corresponding likelihood
ratio test statistic is asymptotically �2

1 distributed. The
phylogeny used for these analyses seems sufficient to
achieve that asymptotic distribution for most genes
(Supplementary Fig. 17). We performed this test
querying expression level shift on both the catarrhine
(containing humans, chimpanzees, rhesus macaques,
and vervets) and human lineages (Supplementary
Tables 2, 3).

Candidate genes for adaptation on catarrhine and human
lineages.—In the test for expression shift in catarrhines
(cat), we identify a number of interesting outliers
(Supplementary Fig. 18). The most significant shift
is seen in DEXI, with higher expression level in
catarrhines. This expression shift alone does not allow
us to distinguish between environmental and genetic
causation. However, studies in humans have shown high
expression of DEXI to be protective against autoimmune
diseases including type I diabetes and multiple sclerosis
(Davison et al. 2012). If expression function is conserved
across catarrhines, this suggests that increased DEXI
expression in catarrhines may play an important role in
immune response management.

Similarly, the test for expression shift on the
human (hum) branch revealed interesting outliers
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FIGURE 4. Each plot shows the expression profile across the 15 species for gene in the extreme tails of the empirical distribution of the test
statistic for a gene-specific �i differing from �shared (LRT�i �=�shared ). a) shows genes with high-�̂i values. b) shows genes with low-�̂i values.

(Supplementary Table 3), notably, two genes linked
to fat metabolism or obesity. In the extreme tail of
the distribution, we detected human-specific increased
expression of MGAT1, which aids in metabolism of
fatty acids to triglycerides (Yen et al. 2002), and the
expression of which has been associated with excess
retention of lipids (Lee et al. 2012). Additionally, we
see that TBCA, a tubulin cofactor which assists in the
folding of �-tubulin (Tian et al. 1996), has increased
expression in humans. Given that reduced expression
of TBCA through a heterozygous deletion has been
associated with childhood obesity in humans (Glessner
et al. 2010), it is possible that the human-specific increase
in TBCA expression assists in metabolism of a high-
fat diet. However, in both cases, it is unclear if the
increased expression in humans is an evolutionary shift
in expression, helping to adapt to a diet more rich
in fat, or if the increased expression in humans is
environmentally responding to the diet. Expression level
studies can only distinguish between these alternatives
if the environmental conditions have been controlled
between study objects, which for humans is only possible
with cell line studies. Nonetheless, this new observation
of human-specific regulatory changes for genes involved
in fatty acid metabolism is interesting in light of the
corresponding changes diet in humans.

Another gene with a significant expression shift
in humans is BCKDK. BCKDK inactivates the

branched-chain ketoacid dehydrogenase (BCKD)
complex, which catalyzes metabolism of branched-
chain amino acids (BCAAs). Nonsense and frame shift
mutations in BCKDK have recently been linked to low
levels of BCAAs and a phenotype including autism
and epilepsy (Novarino et al. 2012). The observed
increased human BCKDK expression may slow the
metabolism of BCAAs, hence they can be processed
into neurotransmitters (Novarino et al. 2012). Again,
whether this shift has an adaptive genetic basis, or is a
plastic response to human-specific conditions remains
unclear.

Comparing results using the EVE model and SM model.—
We compared our results for the expression shift tests to
those reported in an analysis of the same data by Perry
et al. (2012) using the SM model described by Bedford
and Hartl (2009). The distributions of LRT�cat

i �=�non-cat
i

and
LRT�hum

i �=�non-hum
i

from that analysis deviate substantially

from the �2
1 distribution expected under the null

hypothesis (Supplementary Fig. 20). This could be due to
a number of possible numerical, optimization, or book-
keeping errors, as these methods require a number of
important technical considerations. In a comparison of
the rank of expression shift test statistics as computed
by Perry et al. (2012) and as computed using the EVE
model, we see a general lack of correlation with some
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FIGURE 5. Each plot shows (a) LRT
�cat
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i

and (b)
LRT

�hum
i �=�non−hum

i
calculated using the EVE model (y-axes) and SM

model (x-axes) as implemented in this analysis. The line indicates x=y.

similarity in the extreme outliers discussed in that paper
(Supplementary Fig. 21).

To investigate if the results in Perry et al. (2012)
were due to numerical problems we re-implemented
the method and compared our results with those
previously published by Perry et al. (2012). In our
implementation, we see that the empirical distribution
of test statistics are approximately �2

1 distributed with
some excess of high values (Supplementary Fig. 22) and
a much improved correlation to EVE model test statistics
(Fig. 5), suggesting that the strong deviations for a �2

1
distribution in the Perry et al. (2012) results are largely
due to numerical or optimization errors.

We then proceeded to compare the new results under
the SM model to the results of the EVE model. While
both models identify similar genes with branch-specific
�i shifts, we see much higher correlation between models
for a shift on the catarrhine lineage than on the human
lineage (Fig. 5). Since the SM model ignores variation
within species, it may identify genes where the mean
expression appears to have shifted, even if the degree of
variance may make that shift seem less extreme. By the

same token, the EVE method may identify genes with a
shift that cannot be explained by the expected within
species variance. This difference is most pronounced
when considering shift of a single species (such as
humans) where considering variance within that single
species may alter the perception of an expression shift.

Figure 6 shows the three genes with the biggest
difference in value of LRT�hum

i �=�non-hum
i

between the EVE
and SM models, that is, the genes that are most clearly
identified by one model, while missed by the other.
The gene TBCA, discussed above as a candidate for
diet-associated expression adaptation, is a clear outlier
under the EVE model (LRT�hum

TBCA �=�non-hum
TBCA

=9.5), but is less
easily identified using the SM model (LRT�hum

TBCA �=�non-hum
TBCA

=
5.5). These results illustrate the importance of including
within-species variance in the analyses of expression
data evolution.

DISCUSSION

We have described the EVE model for gene expression
evolution which parameterizes the ratio between
population and evolutionary variance in terms of a
parameter � so that, in addition to more classic tests for
selection on gene expression level, hypotheses regarding
diversity to divergence ratios can be tested. We have
explored a test for gene-specific �i, showing that the
null distribution of the test statistic LRT�i �=�shared is
asymptotically �2

1, though depending on the size of
the data set and the value of the parameters, the null
distribution may not have converged to the asymptote.
We show that in these cases, a parametric bootstrap
approach can be used to more accurately assess the
significance of LRT�i �=�shared values. Since the parametric
bootstrap may be sensitive to variance in parameter
estimates, it is prudent to verify its effectiveness on a
particular data set with simulations before using it to
interpret data.

The test for gene-specific �i can be thought of as a
phylogenetic ANOVA, or as a gene expression analog
to the HKA test. This enables a previously unavailable
line of inquiry into gene expression divergence, which
may be indicative of expression-level adaptation to
different environmental factors between species, and
gene expression diversity, which may be indicative of
plastic expression levels responding to environmental
conditions. By utilizing a comparative approach, we can
distinguish between genes which have high variance
in expression levels within a species simply because
expression of this gene has little effect on fitness,
so is subject to drift, and genes with functional
conserved expression levels across species along with
high-expression variance within species because the
gene mediates a plastic response to the environment.
We have shown that by accounting for phylogeny our
method has substantially improved power and reduced
false positive rate as compared to traditional ANOVA,
analogous to other results (Martins et al. 2002).
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FIGURE 6. Each plot shows the expression profile for genes identified with an expression shift in humans by the EVE model, but not by the
SM model (a), and identified by the SM model, but not by the EVE model (b). Each plot shows LRT

�hum
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(as LRT) as computed under the

EVE and SM models.

In applying the gene-specific �i test to a mammalian
data set, we identified several candidates for expression-
level divergence, most notably high expression of
F10 in armadillos, which may be linked to their
phenotype of rapid blood coagulation. We additionally
identified several candidate genes for environmentally
responsive expression levels including PPIB, which
helps regulate immunosuppression, and HSPA8, a heat
shock protein. The identification of these biologically
plausible candidates demonstrates the effectiveness of
our method.

In addition to the novel test for unusual population
or evolutionary variance, we used the EVE model to
test for branch-specific shifts in expression level, as had
been done previously with the SM model (Hansen 1997;
Butler and King 2004). Note that while the test for
expression divergence may detect genes with branch-
specific shifts, this more targeted test will detect shifts
in expression on particular specified lineages. We found
an increase in DEXI expression in catarrhines, which
may have an adaptive role in autoimmune regulation to
the catarrhine-specific pathogenic load. In humans, we
found increased expression of two genes thought to be
involved in lipid metabolism (MGAT1 and TBCA) and
of BCKDK, the low expression of which has been linked
to BCAA (necessary for neurotransmitters) deficiency,
epilepsy, and autism.

When comparing our lineage-specific expression shift
results to those previously reported using the SM model,
we observed startling differences. We attribute these
differences primarily to a numerical or optimization
problem in that original analysis, highlighting the
importance of carefully addressing these issues. We
performed an additional analysis using the SM model to
create a fair comparison. From that secondary analysis,
we observe important differences between the EVE
model and SM model, most notably when testing for
a shift in a single species. By discarding population
variance, the SM model may mistake a mild expression
shift attributable to expected within species variance
for an evolutionary shift. We see this illustrated by
the identification of an expression shift in humans for
TBCA using the EVE model, but not using the SM
model.

As described here, the EVE model assumes one
consistent and reliable phylogeny for all genes.
Incomplete lineage sorting would violate this
assumption, leading to unpredictable model behavior.
To compensate, a Bayesian MCMC approach may be
used to estimate the probability of expression data
under a variety of underlying phylogenies using a
method such as MrBayes (Ronquist and Huelsenbeck
2003). Additionally, like other similar tools, the EVE
model and analyses described here do not account for
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expression correlations between genes, but rather, treat
each gene independently. Gene expression data may
be better described using a more complex multivariate
approach (Dunn et al. 2013). Another important caveat
is that while the EVE model is well suited to detect
adaptive divergence or plasticity of expression, this
does not rule out increases in plasticity or canalization
as part of the adaptive process (Lewontin 1974; Lande
1976).

The analyses described here provide examples
of how the EVE model can be parameterized to
test for expression divergence, diversity, or branch-
specific shift. The tests for expression divergence and
diversity can be used to identify genes with expression
subject to different types of selection. For phylogenies
where some species are known to be adapted to
different environmental conditions, the branch-specific
expression shift test can be formulated to identify
genes with changes in expression that putatively
underlie that adaptation. By changing parameter
constraints, the EVE model can be used to test a
variety of additional hypotheses. For example, tests
may be formulated for branch-specific � values, which
may be expected under branch-specific tightening or
relaxation of constraint, or under unusual branch-
specific demographic processes. The EVE model could
also be used to test hypotheses of gene class-specific
(rather than gene-specific) � values, which may vary
based on gene class function. For example, genes
involved in stress response may have a higher � value
than housekeeping genes.

Like all comparative expression methods, the EVE
method applies to any heritable quantitative trait with
environmental components, including metabolomics
(Nicholson and Lindon 2008; Cui et al. 2008; Sreekumar
et al. 2009) and genome-wide methylation (Pokholok
et al. 2005; Pomraning et al. 2009). As larger expression
and other quantitative trait comparative data sets
emerge, the versatile EVE model and framework
described here will facilitate a wide variety of
sophisticated analyses.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.r122k.
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