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Vaccination directly protects vaccinated individuals, but it
also has the potential for indirectly protecting the
unvaccinated in a population (herd protection). Unintended
negative consequences such as the re-manifestation of
infection, mainly expressed as age shifts, result from
vaccination programs as well. We discuss the necessary
conditions for achieving optimal herd protection (i.e., high
quality vaccine-induced immunity, substantial effect on the
force of infection, and appropriate vaccine coverage and
distribution), as well as the conditions under which age shifts
are likely to occur. We show examples to illustrate these
effects. Substantial ambiguity in observing and quantifying
these indirect vaccine effects makes accurate evaluation
troublesome even though the nature of these outcomes may
be critical for accurate assessment of the economic value
when decision makers are evaluating a novel vaccine for
introduction into a particular region or population group.
More investigation is needed to identify and develop
successful assessment methodologies for precisely analyzing
these outcomes.

Introduction

Vaccination is a well-recognized way of protecting a population
against communicable infections.1,2 Evaluating the total epidemio-
logic impact vaccination is making on a population is complex. It
varies depending on the distinguishing traits of the pathogen, the
method of transmission, the characteristics of the vaccine and the
target population, and the mixing patterns of social contacts. It is
further complicated by the potential of indirect effects, which

include additional protection of unvaccinated persons in the popu-
lation (herd protection) and/or negative effects such as a reappear-
ance of infection that may be manifested under certain conditions.

Therefore, vaccination not only provides direct individual protec-
tion, it also provides indirect population effects. Both are assessed
(qualified and quantified) with real-life data from retrospective and
from well-designed prospective studies, or through modeling exer-
cises.3-10 The objective of this article is to examine these indirect
effects of vaccination, to discuss how they are manifested, observed,
and measured, and under which conditions they may maximally
appear. We report examples from the literature for several different
types of infections as illustrations of these effects. Our approach is to
stay at the level of epidemiological assessment and avoid moving in
the direction of immunological explanations.

But first, we start by explaining the basic concepts involved in
the transmission of a pathogen and how it is impacted when a
new vaccine is introduced as this helps clarify when and how the
indirect effects of a vaccine may occur.

Pathogen transmission
The risk of contracting an infection caused by a pathogen is

related to 3 factors: the number of infected subjects in a popula-
tion who are able to transmit the pathogen; the amount and type
of contact between the ones who transmit and the ones who
receive the pathogen; and the infectiousness of the pathogen. The
latter shows the ease with which a pathogen is transmitted when
there is contact between an infectious and a susceptible individ-
ual. It is reflected in the speed of an epidemiological disease out-
break.9,11-14

The rate at which susceptible subjects become infected is
called the force of infection.9,12,15 It is the expression of the num-
ber of infectious subjects (the transmitters of the pathogen) mul-
tiplied by a factor that characterizes the effective contact between
persons whereby the pathogen is transmitted. That factor is bro-
ken down into specific variables, the most important of which is
the basic reproduction number (R0). It describes the average num-
ber of successful transmissions generated by one infectious indi-
vidual in a fully susceptible population.13-16

R0 is unique to every type of infection and to the population
density of a region.13,15 The higher the R0, the more likely the
spread of the pathogen to susceptible subjects.12,13,15 For example,
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an R0 of 5 means that in a completely susceptible population, 1
infectious case generates 5 other cases. Each of those newly
infected cases will generate 5 subsequent cases, and so on.13,14 In
reality, the calculation of R0 could only occur after the first infec-
tion because only then is the population fully susceptible. When a
pathogen enters a population, some individuals in the population
become infected and then protected against infection, interrupting
the chain of transmission. A pathogen may produce a sub-optimal
immune response in some individuals such as immune-compro-
mised persons, 17,18 leaving them at higher risk. But once a patho-
gen has entered a population, the number of susceptible people
decreases as the number of infected individuals increases.

Thus, the potential for the spread of a particular infection (the
R0) is usually higher than in real-life situations. The actual rate of
transmission, the effective reproduction number (Rn), will be
lower. Rn is calculated by multiplying R0 by the fraction of the
population that is still susceptible at the time Rn is mea-
sured.12,14,16 An Rn of 1 is the threshold for invasion of a patho-
gen into a given population. If Rn is 1, transmission of the
pathogen is in equilibrium and we say that the infection process
is dynamically stable: it will neither disappear nor will it cause an
epidemic even though it will remain endemic.13,15,19 If Rn is <1,
the rate of new infections decreases, enabling a build-up of sus-
ceptible persons (e.g. by birth).9,12-14,19 When there is an excep-
tionally low number of susceptible people, it is likely that the
infection may disappear because disease transmission is not sus-
tained.9,12-14,19 If Rn is >1, the incidence rate will increase, lead-
ing to a new epidemic and a subsequent decline in susceptible
subjects.12-14,19 Thus, in a dynamic population Rn changes with
time and may lead to cyclic changes in rates of infection or fluc-
tuations in epidemics.

Indirect Effects of Vaccination Programs

Positive indirect effects
What happens when a vaccine is introduced into a population?

In the short-term, the number of infections will decline among vac-
cinated subjects because these individuals will mount an immune
response against the antigen to protect themselves (=direct protec-
tion). At the same time, the force of infection is also impacted
because the vaccine reduces the number of people who are infec-
tious. As a consequence, there is potential for an indirect benefit to
be gained through a reduced risk of exposure to the infectious agent
or pathogen across the whole population. Vaccination reduces the
pool of individuals capable of transmitting the pathogen. Therefore,
unvaccinated persons will also benefit from the fact that they are
members of the “herd,” producing what is known as herd protection
or an indirect benefit to the community.

The benefit of a new vaccine in a community is larger than
what is normally expected based on its actual known effi-
cacy.1,2,7-10,12,14-16,20-26 That process of extra or indirect benefit
is heavily influenced by a number of specific factors which we
will define next. Many studies examining different types of
communicable infections (e.g., varicella, polio, rubella, measles,
mumps, and diphtheria) have demonstrated herd protec-
tion.1,21,23-25,27-47, 14,21, 23-25, 31-46, 48-51

But the most spectacular herd protection effects are observed
among those normally not considered for vaccination but who
have a high potential for being infected by the transmitters of the
pathogen. A good example is the effect some pediatric vaccines
have on reducing the transmission of pathogens from children/
infants to the elderly. In the United Kingdom, the routine use of
the pneumococcal conjugate vaccine (PCV7) among infants up
to age 2 was shown to reduce the incidence of vaccine-type inva-
sive pneumococcal disease by 81% in adults who had not been
vaccinated (�65 y old).37 Herd protection is also observed
(although to a lesser extent) among those at high-risk of infection
when the optimal vaccine coverage level is not reached.

As already mentioned, the transmission of a pathogen is a
dynamic process that needs to reach a new equilibrium over time
when a vaccine is introduced. The following phases in relation to
population-level vaccination have been identified (see Fig. 1):2,4,9

� Pre-vaccination phase (1): the spread of the infection is in
equilibrium within the population.

� Honeymoon phase (2): at high vaccine coverage levels, the
number of susceptible subjects falls to such a low level that sus-
tained endemic transmission is no longer possible (Rn < 1).

� Post-honeymoon epidemic (3): the low incidence rate of infec-
tion allows susceptibles to accumulate slowly over time until
the introduction of an infected individual into this infection-
na€ıve group triggers a new epidemic (Rn > 1).

� New equilibrium (4): infection settles back into a new equilib-
rium with a lower incidence of infection than before vaccina-
tion, depending on the characteristics of the vaccine and the
disease in question.

Terminology
Another term for herd protection that is frequently used in the lit-

erature is herd immunity. This term may cause some confusion
although it has been used since 1923.52,53 The problem is that it

Figure 1. Modeled phases of varicella infection after vaccination (used
with permission from Brisson et al.2) Brisson M, Edmunds WJ. Med Decis
Making, 23(1), pp. 76–82, copyright ©2003 by (SAGE Publications).
Reprinted by Permission of SAGE Publications. (1) Pre-vaccination phase;
(2) Honeymoon phase (Rn < 1); (3) Post-honeymoon epidemic (Rn > 1);
(4) New equilibrium.
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implies an actual immune response in unvaccinated individuals
through exposure to live, attenuated pathogens in the vaccine as they
come in contact with vaccinated persons. Some people like using this
term because it refers to the secondary protection of unvaccinated
individuals due to the immunity of vaccinated persons in the popula-
tion. Vaccines that truly induce an immune response in unvaccinated
persons are rare and not well-documented.

To avoid confusion as to what causes what at the level of
immunity in the population, we prefer to use the term herd pro-
tection. This is a more general term for the indirect, vaccine-
induced benefit to unvaccinated individuals.52 Another term
used less frequently in published literature is marginal externality.
This is the difference between the marginal individual (direct)
benefit and the marginal social benefit (i.e., the total number of
illnesses prevented by vaccination).5

When is Herd Protection Observed?

Disease transmission processes have important implications
for vaccination programmes as they facilitate or limit the trans-
mission of the pathogen. What we know about herd protection is
that a certain level of vaccination coverage in a population must
be reached before it manifests itself. This essential level of cover-
age is what we call the herd protection threshold (HPT). The prev-
alence of immune individuals in the population must be higher
than this threshold in order to attenuate the spread of infection
at the population level and produce herd protection.6,9,13,14,19

This essential level of coverage is represented by the following
formula: � (1 – s). We can illustrate this calculation in a situation
where 20% of the population is susceptible: HPT � (1 – 0.20).
In this particular disease situation, �80% of the population must
be immune (through infection and recovery or through vaccina-
tion) to obtain herd protection.

Each type of infection will necessarily have a different HPT,
which provides a valuable target for immunisation programmes
and influences the critical minimum level of vaccine coverage.6,9,
13,14, 19 An important assumption is that susceptible and infec-
tious persons mix homogeneously across all relevant sub-groups
and across different seasons, which is not always the case in real-
ity. Table 1 reports the R0 and the HPT for various communica-
ble diseases. These vary by region as well as by the characteristics
of a given population and its mixing patterns. In the next sec-
tions, we discuss 3 main factors that interact most in obtaining
optimal herd protection.

High and maintained vaccine effectiveness
Good vaccine effectiveness is crucial in producing a positive

indirect effect or good herd protection from a vaccination pro-
gram.2 Vaccine effectiveness is the real-life measurement of a
vaccine’s ability to protect against infection. This is different
from vaccine efficacy, which is the capacity of a vaccine to provide
protection in a controlled environment like clinical trials.14 Vac-
cine effectiveness will vary between regions and different (sub)
populations,6 and should therefore be taken into account when
evaluating the positive indirect effect of a vaccine on a given

population. Since vaccines are almost never 100% effective, the
critical vaccination coverage level required to protect the popula-
tion must necessarily increase.6,14

In addition, not all vaccines elicit lifelong, protective immu-
nity (e.g. pertussis, measles, mumps). The waning of immunity
reduces the long-term effectiveness and the consequential herd
protection benefit.14,54-56 But in such cases, immunity may be
augmented by increasing vaccination coverage, and may be
resupplied by vaccination boosting or by regular, natural expo-
sure to infection.14,55

Transmission potential decreased with vaccination
A vaccine must substantially reduce the force of infection (the

transmission potential of the circulating pathogen) in order to
induce herd protection.2,5,10,12,14,15,22,25,61 This occurs when the
whole population is at-risk for the infection and contact between
infected and susceptible individuals is sufficiently direct and
intense. As noted above, the rate at which infection is spread is
crucial in understanding the transmission potential of a patho-
gen: when this rate is very high with a high R0, then vaccination
must achieve a correspondingly high uptake in order to assure a
decrease in the transmission potential.

This automatically assumes infections in which the reservoir of
the pathogen remains within the human species and is communi-
cable (i.e., spread mainly from person-to-person and is not due to
contaminated food or water as in hepatitis A).8-10,12,19,22, 25 For
example, vaccination for rabies and tetanus are unlikely to produce
herd protection because humans are not the primary mode of
pathogen transmission. In addition, the different modes of contact
(air-borne, food-born, oral, skin or sexual) heavily impact the
transmissibility of an infectious agent (e.g. the herd protection of
vaccination on a sexually transmitted infection is completely dif-
ferent from a food-borne disease).

To achieve good herd protection, vaccination needs to target
the correct reservoir of infection, or the core transmitter of the cir-
culating pathogen.2,9,10,12,15,19,22,25,27-30,51,62,63 For example, a
study of hepatitis A vaccination among Israeli toddlers 18–
24 months of age resulted in a 95% reduction of infection in all
other age groups (ages <1 and ages 5 to >65), even though these
toddlers represented <3% of the total population.51

Table 1. Basic reproduction numbers and implied crude HPT for various
communicable diseases13,19

Infections R0 HPT (%)

Diphtheria 6–7 84–85
Influenza 2–4 50–75
Malaria 5–100 80–99
Measles 9–18 83–94
Mumps 4–14 75–93
Pertussis 5–35 90–94
Polio 2–4a, 8–14b 80–86 (controversial)
Rubella 6–7 83–86
Smallpox 5–7 80–85

aPopulations with good hygiene.
bPopulations with poor hygiene.
HPT: herd protection threshold; R0: reproduction number.
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Conversely, if vaccine coverage is low among the main reser-
voir of infection, then herd protection is compromised even in
the presence of an overall high coverage level since the primary
group responsible for transmitting the pathogen is not blocked.
Modeling scenarios suggest that limited herd protection will be
seen against human papillomavirus (HPV) infection if the vac-
cine coverage among highly sexually active females is low, despite
a much higher coverage (>70%) in the general population.54

Appropriate vaccine uptake
Herd protection is highly impacted by vaccination coverage,

distribution patterns, and timing.2,13,14,25,26,64,65 We address
each of these factors in the following sections.

Coverage levels
Herd protection is best achieved when vaccination coverage is

at the higher end.54,66 Extremes of coverage (i.e., no one/very
few are vaccinated or almost everyone is vaccinated) will not pro-
duce sizable herd protection.2,5,12,66 It should be noted that the
coverage levels needed for achieving disease control are not the
same as those needed for disease elimination. The latter might be
of particular interest to governmental or healthcare authorities in
certain situations.

Thus, when very few individuals are immunized, endemic
equilibrium is not perturbed by removing a few potentially infec-
tious individuals from a largely susceptible population.5,12 Low
coverage levels not only attenuate herd protection, but produce
unintended negative consequences that for some diseases could
lead to more harm than good.10 For example, a large outbreak of
congenital rubella in Greece during 1993 was traced to inconsis-
tent immunization policies resulting in low vaccine coverage rates
(<50%).67 In the United States, a major resurgence of measles
occurred between 1989 and 1990 among unvaccinated pre-
school-aged children of ethnic minority groups. The epidemic
numbers were at least partly attributable to low coverage rates in
a number of cities throughout the early to mid-1980s.68

The other extreme (everyone or almost everyone vaccinated),
while it might be useful when disease elimination is the goal, will
not produce significant herd protection because it leaves practi-
cally no one in the cohort to infect (i.e., the protective benefits
are primarily/only to the vaccinated).12,68 Bogaards et al.68 dem-
onstrated through modeling that vaccinating 12-year old girls
against HPV at higher coverage rates decreased the positive indi-
rect effects: the percentage of indirectly averted cervical cancer
cases decreased from approximately 25% at coverage rates of 50–
70% to 10% at coverage levels of 90%.

Distribution
Appropriate distribution patterns, especially targeting the res-

ervoir of infection, are also essential to achieving good herd pro-
tection. This is generally more probable when unvaccinated
individuals are distributed evenly or at random.14,53,69 In situa-
tions where unvaccinated individuals are more likely to be in con-
tact with other unvaccinated individuals than would be expected
by chance, clusters or pockets of susceptible individuals may
appear.11,14,69-71 A vaccination program that fails to reduce the

number of susceptible individuals in these key sub-groups would
not be able to produce substantial indirect effects despite a gener-
ally high proportion of immune people.19

Factors that play a role in this phenomenon are geographical
restrictions (e.g., boarding schools, barracks, prisons)11,14,69-71 or
social developments such as “opinion formation,” where individ-
uals with a negative opinion about vaccination are more likely to
be in contact with individuals sharing the same opinion (e.g. cer-
tain religious groups of tightly-knit communities).69

Salathe et al.69 modeled how a simple opinion formation pro-
cess leads to clusters of unvaccinated individuals, reducing the
herd protection and leading to an increase in the probability of a
measles outbreak (see Fig. 2). The effect of clustering on out-
break probabilities was strongest when vaccination coverage was
close to the level required to provide herd protection under the
assumption of random mixing (i.e., 70% coverage). Thus, while
disease outbreaks did not occur in the absence of opinion forma-
tion at coverage levels of 90%, opinion formation led to an out-
break frequency that would be expected in a homogeneously
vaccinated population at coverage levels of 70%.69

Clustering leaves certain subpopulations with a higher degree
of susceptibility in which infections will spread and cause local
outbreaks.11,69,71,72 Some researchers have proposed that this
phenomenon may help explain why some countries (e.g., Swit-
zerland) continue to experience relatively large measles outbreaks
despite high vaccination coverage levels.69

Results from a study of a measles outbreak in Canada (2007)
suggested that minimal changes in the level of aggregation of
unvaccinated individuals lead to sustained transmission (>10
generations among unvaccinated individuals dispersed in the
population but with a certain level of aggregation), even in highly
vaccinated populations.70 Importation of infection from a single

Figure 2. Effect of “clustering” on the outbreak probability of measles
(used with permission from Salathe et al.)69 Salathe M, Bonhoeffer S., J R
Soc Interface, 5(29), pp. 1505–8, copyright ©2008 by (The Royal Society
Publishing). Reprinted by Permission of The Royal Society Publishing-
Black bars D probability of measles outbreak without opinion formation
Gray bars D probability of measles outbreak with opinion formation.
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infected person can easily cause an outbreak in such an
environment.11,69,71

But even in populations with some degree of clustering, if vac-
cination hits the correct reservoir of infection (i.e., the ones that
normally introduce the pathogen into a specific environment),
then herd protection is still substantial. In the United States,
Samandari et al.27 modeled this phenomenon with an estimated
76% reduction in hepatitis A cases among children 2–18 y old in
high incidence states even though coverage rates were much lower
(30%).

Timing
The effectiveness of a vaccination program could be affected

by the timing of vaccine administration or by individual timeli-
ness in receiving the vaccine. A study in Switzerland evaluated
this possibility for vaccination of measles (MCV1 and MCV2).
Considering disease susceptibility to count from 6 months of age
when maternal antibodies have waned, researchers calculated that
66.5% of an estimated 266 d susceptible to measles among 1-
year olds were due to the policy of recommending the MCV1
vaccine to be administered at 12 months of age (despite early
uptake among 20% of the infants). Individual delay in vaccina-
tion accounted for the other 33.5% of susceptible days. While
overall coverage levels were reasonably high among 2-year old
children (84.5% of these were up-to-date for measles immuniza-
tion), delayed administration of the vaccine (e.g. spread-out of
vaccine delivery) reduced the estimated effective vaccine coverage
to only 48.6%.64

Negative Indirect Effects

Age shifting and rebound effects are unintended consequences
that may arise as a result of vaccination, such as an increased
emergence/re-emergence of disease incidence or severity. Age
shifts are defined as increased disease incidence among unvacci-
nated age groups. Rebound effects, or the reappearance of dis-
ease, occur after a honeymoon period of significantly reduced
disease due to vaccination. This is brought about by an accumu-
lation of a new group of susceptible individuals due to vaccina-
tion at coverage levels of <100%, until a certain tipping point is
reached in which the wild-type pathogen may re-emerge and trig-
ger a new, post-honeymoon epidemic, as mentioned earlier.

These effects may occur quickly after the introduction of a
vaccine or with a delay depending on the rate of change and the
combination of specific conditions that are traced to different fac-
tors. Age shifts are more likely to occur than rebound effects. The
latter are more easily simulated in dynamic modeling exercises
than are observed in real-life since additional dynamic processes
may intervene before any full rebound effect appears. We will
discuss these interactions in the sections below.

Reduced impact on natural immunity
In naturally endemic situations, mild infections and expo-

sure to wild-type infections are frequent, leading to immune
boosting and a decreased incidence of severe disease.25,58,72

Thus, while vaccination will induce herd protection in the
short-term, it could lead to increased rates of infection or dis-
ease outbreaks in unvaccinated individuals through the loss of
natural boosting mechanisms or by the lack of regular expo-
sure to infection as vaccination reduces circulation of the
wild-type pathogen.1,25,72, 73

Meanwhile, these negative effects are less likely to occur with
high vaccine coverage rates, especially during the first year10,19,25

(assuming minimal vaccine waning). In such cases, immunity
due to natural infection would simply be replaced by vaccine-
induced immunity in newly introduced persons (e.g., by birth).19

For example, the lack of boosting from reduced pathogen circula-
tion due to vaccination and vaccine waning have been implicated
in increased rates of pertussis infection,1,55-58,60,62 as Figure 3
shows.55

Serotype replacement or switching
Another effect of large-scale vaccination programs is the emer-

gence of disease serotypes not targeted by the vac-
cine.1,15,35,37,38,45,73-81 For example, in a large Canadian study
over several years (1989–2007), this effect was observed in the
increased incidence of severe Haemophilus influenza (blood-
stream illness/sepsis) due to serotype replacement after mass vac-
cination with the serotype b (Hib) vaccine. However, these num-
bers remained quite limited in the assessment.33

One of the biggest concerns about serotype replacement has
been regarding pneumococcal disease, where the emergence of
non-7-valent (non-PCV7) pneumococcal vaccine serotypes (1, 3,
7F, 15B/C/F, 10A, 19A, 22F, 33F, and 38) could offset vaccine-
induced herd protection.1,25,35,37,45,77-83 The 10- and 13-valent
pneumococcal vaccines might allow less replacement disease due
to a reduced incidence of all PCV7 serotypes plus several addi-
tional serotypes (PCV6C).79,81,82,84,85 Furthermore, increases in

Figure 3. Complex relationship between pertussis vaccination and
herd protection (used with permission from Arinaminpathy et al.)55

Reprinted from PNAS USA, 109(49), Arinaminpathy N, Lavine JS, Gren-
fell BT., Self-boosting vaccines and their implications for herd immu-
nity, pp. 20154–9, Copyright (2012), with permission from PNAS USA.
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the incidence of invasive pneumococcal disease (e.g. bloodstream
infections/septicaemia, osteomyelitis, septic arthritis and menin-
gitis)86 from non-PCV7 serotypes have been minor relative to
reductions in PCV7-serotype disease,35,38,40,45 relieving some of
the concern over this issue.

Upward age shift
An upward shift in the average age of infection has been

clearly observed post-vaccination for many different infectious
diseases.2,8-10,12,14,19,22,33,46,50,56,58,62,63,67,72,74,87,88 For exam-
ple, an upward age shift has been witnessed in the incidence of
hepatitis A in Spain (Fig. 4),63 the incidence of varicella in the
United States,50 and the incidence of rubella in Greece.67

The upward age shift is not necessarily a negative effect unless
it leads to an actual increase of disease incidence or severity as
compared to pre-vaccination levels. The terminology is impor-
tant here: if we are referring to an increase in the proportion of
infected older age groups due to a sharp decrease in disease inci-
dence among vaccinated cohorts, then this age shift is not accom-
panied by an absolute increased disease incidence. An example of
the latter scenario comes from an epidemiological study con-
ducted in the United States by Wasley et al.,46 which showed
that while actual incidence rates had decreased among all age
groups post-vaccination, the proportion of adults with hepatitis A
was higher than in the pre-vaccination era.50

The mechanism behind this age-shift phenomenon is thought
to be caused by waning vaccine-induced immunity53 and a vac-
cine-induced delay in exposure to infection (or a minimal-to-
absent “exogenous boosting” effect), leading individuals to be
older when they become infected.2,12,22,67,72, 87 Vaccine coverage
also fundamentally influences the outcome: if very high coverage
levels are achieved in the first year of vaccination and are main-
tained (especially among the group who is the reservoir of infec-
tion), then an age-shift is unlikely to cause an overall greater
disease burden (i.e., the absolute number of cases would likely
decrease in all age groups).10,19

In the next paragraphs, we discuss this shift in the average age
of infection in greater detail for older and younger age groups.

Incidence or severity in older age groups
Upward age shifting post-vaccination results in higher

morbidity and/or mortality if disease severity increases with
age (e.g., varicella-zoster virus, polio, hepatitis A and B,
mumps, pneumococcal disease, rubella) or if absolute inci-
dence rates increase.2,8,12,14,22,34,41,63,67,75,88-94

Several epidemiological studies have indicated an increasing
incidence of pertussis in different countries due to an upward age
shift.56,58,60,62 De Vries et al.62 modeled this effect in the Neth-
erlands, in which pertussis vaccination of adolescents decreased
the total incidence of disease in the population while causing an
increase in absolute numbers of recurrent infections in older age
groups.62

Increased varicella incidence among older age groups as a
result of vaccination (especially with sub-optimal coverage levels)
has raised concerns among researchers since the virus tends to
produce more severe consequences as age increases. Complica-
tions such as skin super infection, pneumonia, encephalitis and
other central nervous system manifestations are common.2,88

Several studies have shown that the proportion of adults relative
to children with varicella has increased,50,89,95 although many
other studies have reported decreasing incidence rates among
most (if not all) age groups.49,50,89,95-102

Early research in the field and results from modeling stud-
ies have raised concerns about the possibility of routine vari-
cella vaccination of infants causing an increase in herpes
zoster among adults and the elderly.2,87,89,103 However, a
number of studies analyzing epidemiological data post-vari-
cella vaccination over the last 15 y in different regions have
not been able to confirm this hypothesis and the predictions
of modeling exercises.9,96,102,104-123

Evidence has not shown increasing incidence rates of hepa-
titis A among the elderly post-vaccination, although disease
severity is a potential consideration. Exposure to hepatitis A
later in life increases the probability of acute disease with
more debilitating and long-lasting effects.41,75,91-93 Mortality
rates also tend to increase with age (from 0.2% in symptom-
atic young adults to 3.9% in adults over the age of 80).93 It
should be noted that if the only negative effect of vaccination
for a particular infection is an increase in disease severity
with age, then this effect would need to be modeled to deter-
mine if the burden of disease (in terms of costs and/or
effects) is actually higher after vaccination.

Incidence or severity in younger age groups
It is also possible that an upward age shift could lead to

increased disease incidence or severity among young children via
transmission from older age groups in diseases like pertussis,
measles, rubella, and Hib.1,33,53,56,67,124

The potential for this effect is illustrated by the results of per-
tussis vaccination. An epidemiological study done by Guris
et al.60 reported fairly stable disease incidence rates in children/
infants younger than 5 y of age in the United States during a

Figure 4. Observed age shift in cases of hepatitis A in Catalonia, Spain
(used with permission from Lopalco et al.)63 Reprinted from Vaccine, 19
(4–5), Lopalco PL, Salleras L, Barbuti S, et al., Hepatitis A and B in children
and adolescents–what can we learn from Puglia (Italy) and Catalonia
(Spain)?, pp. 470–474, Copyright (2001), with permission from Elsevier.
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7-year period of time (1990–1996). It was postulated that the
generally increasing incidence rates of pertussis57 in individuals
�10 y of age1,56,60 could lead to disease increases in younger chil-
dren over the long-term. This is related to a couple of different
factors. First, there is an increased risk of transmission to suscep-
tible infants who are too young to be vaccinated (<1 y of age) via
siblings, mothers and fathers, since up to 70% of infant infec-
tions stem from these familial interactions.1,53,56,58,124 Secondly,
there is a risk of less effective trans-placental immunity to infants
by mothers with reduced immunity.1

Transfer of pertussis from older to younger age groups are
minimized by strategies like “cocooning” (i.e., selective vaccina-
tion targeting siblings, parents, grandparents, health care work-
ers, etc.), as well as booster vaccination of adolescents and
adults.1,53,56,62,125 While a vaccine-induced immune response
does not necessarily guarantee protection against an invading
pathogen, serological markers (e.g. antibodies) against infection
are nevertheless highly correlated with disease protection.126 In
response to the increasing incidence of pertussis (especially in the
United States),57 some researchers are advocating the need to
universally vaccinate all age groups at frequent intervals.127

In Greece, Panagiotopoulos et al.67 observed an absolute
increased incidence of rubella among individuals �15 years old
in 1986, following over a decade of a country-wide vaccination
program. This epidemic was plausibly linked to a subsequent
outbreak of congenital rubella in 1993, which was deemed the
worst epidemic in Greece since 1950 with 25 serologically con-
firmed cases, all of which had serious symptoms; 7 deaths also
occurred.67 Vaccine coverage rates in this study were <50%,
again highlighting the need for adequate uptake to help prevent
older age groups from contracting the virus and spreading it to
the young.

Thus, both herd protection and age shifts have been observed
to result from vaccination programs involving infectious diseases.
These effects are oftentimes attenuated by adequate, homoge-
neous, and consistent vaccination coverage, regular vaccine
boosting (in the case of vaccine waning), and vaccination of spe-
cific high-risk groups (e.g., cocooning). Thus, when conducting
evaluations of a vaccine’s impact on a population, herd protec-
tion needs to be weighed up against any negative effects, taking
into account disease characteristics as well as the country- and
population-specific situation.

How to Observe, Quantify, and Model Indirect
Effects

The decision regarding the introduction of a new vaccine into
a public healthcare program may depend on the expected magni-
tude of the herd protection as it may impact the economic value
of the new vaccine with additional indirect benefits.7,8 In an
atmosphere of increasingly stringent criteria for introducing new
vaccines into the healthcare system,7 demonstrating herd protec-
tion is likely to gain vital importance over time.

Traditionally, indirect vaccine effects have only been
assessed after a vaccine has been introduced into a

community. But new methodological developments have
opened up the possibility of evaluating herd protection
beforehand in order to provide decision makers with ade-
quate information from the outset.7 However, not much ana-
lytical and empirical work has been done to quantify the
magnitude of these vaccination externalities.5

Herd protection is observed and quantified by measuring the
registered change in disease incidence among the unvaccinated
portion of a partially-vaccinated population (may also be com-
pared with the incidence of a totally unvaccinated population)
over a certain period of time, assuming a similar demographic
composition and similar regional characteristics (Fig. 5).7,26,128

This may be manifested as a change in disease incidence among
unvaccinated persons of the vaccinated cohort that is greater than
the actual coverage level or greater than known protective efficacy
rates.7, 27 Another manifestation is a reduction in disease inci-
dence in age or gender groups outside (or in addition to) the vac-
cinated cohort.1,7,27-30,46,51,53, 129

In the United States, a modeled study estimated that hep-
atitis A vaccination among 2 to 18-year olds could prevent
51% of cases in that age group despite vaccination coverage
levels of only 10%.27 PCV-7-related disease decreased by
55% among adults aged �50 years due to vaccination of
infants 2–18 months of age.30 The incidence of Hib infec-
tions among infants too young to be vaccinated (<12 months
old) declined when toddlers 15–18 months of age were vacci-
nated.28 In Sweden, researchers observed reduced rates of per-
tussis infection among household members of vaccinated
individuals (e.g. parents and siblings).29

Measurements of herd protection need to be adjusted by sev-
eral important and influencing factors such as: the effectiveness
and duration of vaccine-induced protection,1 rebound effects like
serotype replacement and age shifting (which takes many years to
adequately observe),1,53 and behavioral changes in the rate or the
type of contact with infected persons due to belief in the protec-
tive effects of vaccination.26

In the sections below, we discuss some specific methods used
in quantifying changes in disease incidence due to herd protec-
tion. It is different for every type of infectious disease and include
a variety of outcomes such as the number of hospitalizations and
the length of stay, number and/or type of physician visits, mortal-
ity rates, differences in costs or Quality-Adjusted Life Years
(QALY’s), or increased periodicy59 (the length of time between
epidemics).

Observational studies
Household trials are used to record the number of infectious

disease episodes occurring among vaccinated and unvaccinated
members of the same household.4,29 Population surveillance
studies (e.g., serological surveys6) are also commonly used to
compare the incidence of disease in a given population before
and after a vaccination programme is initiated.4,6-8

Another type of study is a cluster-randomized trial, which ran-
domizes the entire eligible population of a geographically contigu-
ous area into 2 arms,4,8,26 comparing a partially-vaccinated group
(Population 1) with a no-vaccine control group (Population

2148 Volume 11 Issue 9Human Vaccines & Immunotherapeutics



2).7,8,26 Figure 5 shows the direct protective effect of vaccination
that is obtained by comparing the incidence of infection between
vaccinated and unvaccinated persons in Population 1.7,8,26 The
overall protective effect (direct and indirect) is obtained by com-
paring the incidence of infection between all individuals in Popu-
lation 1 and 2.7,8,26 Indirect herd protection is observed by
comparing the incidence of disease among unvaccinated persons
in Population 1 with the incidence in Population 2.7,8,26

A further development of that approach is the step-wedged
cluster randomized design, where cluster regions are randomized
and introduced into the study at different time points in order to
capture baseline disease fluctuation over time.

Mathematical models
The aforementioned observational evaluation methods have

limitations, namely setting-specific variables that are difficult to
measure and which differ between settings (e.g. household struc-
ture, age distribution, population mixing patterns, infectivity of
the disease, susceptibility of individuals, vaccine coverage).4 Con-
sequently, more hypothetical, predictive modeling evaluations
have been developed to help fill the gaps in quantifying herd pro-
tection.3-5

Dynamic transmission models cap-
ture the effect of vaccination on a popu-
lation that is followed over time9,10

through a change in the force of infec-
tion.2, 3,9,10,12,19,24 All effects, direct and
indirect, are tracked and quantified over
time through the post-vaccination
phases: honeymoon, post-honeymoon
epidemic, and post-honeymoon equilib-
rium.2,4,9 As a consequence, dynamic
models have the potential of producing
better economic results than typical
cohort models because they generally
predict more positive outcomes across
the whole population rather than limit-
ing the effect to the studied cohort only
(both short-term due to a more rapid
effect and long-term as the effect of herd
protection accumulates over time).4

This is not always the case, however,
as when significant rebound effects
diminish the protective herd effect.
Despite the very real possibility of a tar-
get population experiencing one or
more of these confounding effects,
dynamic models often fail to take them
into account. In addition, results from
these models are highly dependent on
assumptions made about key parameters
which are difficult to measure (e.g.,
probability of a pathogen’s
transmission).4

Thus, while evaluation methods are
necessary in determining the full impact

of a vaccination program in a population, there are limitations
with every type of assessment tool used. Ideally, information
obtained from observational and modeling studies should be
compared and then used to validate the results.

Will there always be a rebound effect after herd protection? Or
is there a herd without a rebound effect or a rebound effect with-
out herd protection? It should be clear from the previous para-
graphs that certain conditions need to be fulfilled before a
rebound phenomenon will appear. Meanwhile, a rebound effect
without herd protection is unlikely to happen as there needs to
be enough susceptibles in the population that remain in contact
with each other in order to transmit the pathogen.

Indirect Effects Illustrated

Table 2 provides a sampling of illustrations detailing the indi-
rect effects of vaccination in 5 infectious disease areas and in dif-
ferent countries. Using the most recent data possible, we have
included results from modeling as well as observational studies
where available. The results are heterogeneous, differing greatly
in the type of outcome reported by study and by region.

Figure 5. Stylized diagram for evaluating the effects of vaccination.
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Nevertheless, these results still provide examples of how vaccina-
tion indirectly impacts the population as a whole. Because it takes
a much longer observation period to observe clear rebound effects
(as they may only appear much later in the process of a vaccine’s
impact), little data on these effects have been reported in the liter-
ature regarding infections for which the vaccine has been recently
introduced.

Some modeling exercises for varicella have predicted high
rebound effects over time because of restrictions on the assump-
tions introduced in the dynamic models. It is likely that in real
life we will not observe these changes for 2 reasons. First,
dynamic models essentially base their analysis on infection and
not on disease, whereas in real life it is much more difficult to
capture infection than disease; thus we need to obtain a clearer
picture about how many of these infections will translate into dis-
ease (a number we often do not know). Second, once we observe
an increase in disease, clinical practice is much more reactive to
changes in management than a dynamic model is set up to dem-
onstrate. To better reflect reality, dynamic-dynamic models
should be developed.

Conclusions

Population-level effects (both herd protection and age shifts)
have been observed following the implementation of immuniza-
tion programs. This may have a great impact on measuring the
economic value of vaccines and on the implementation of the
right vaccine strategy. A variety of articles have been published
about certain portions of this subject, but we have here endeav-
ored to synthesize these separate bits and pieces of relevant infor-
mation into a comprehensive overview of the indirect effects of
vaccination. Various elements intersect within this framework
and specific methods have been developed that are useful in
observing, measuring and quantifying the precise impact of vacci-
nation. But we also pointed out the limitations inherent in esti-
mating the real impact of vaccination.

Through this process, more clarity and definition have been
brought to particular concepts and terminology in published lit-
erature regarding the indirect impact of vaccination (e.g. the con-
ditions for producing maximal herds protection, what rebound

effects are and when they more likely to occur, methods for mea-
suring indirect effects).

This should enable and motivate researchers and modellers to
investigate ways of bridging these gaps in data collection and
analysis to produce a better picture of these effects and the drivers
behind them. It has become clear that greater accuracy, clarity
and standardisation in the observation and measurement of the
indirect outcomes of vaccination are needed. This will tend to
produce a more straightforward and informed decision-making
process when evaluating the desirability of incorporating a partic-
ular vaccine into a national immunisation program.
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