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Abstract

Childhood maltreatment is a serious individual, familial, and societal threat that compromises 

healthy development and is associated with lasting alterations to emotion perception, processing, 

and regulation (Cicchetti & Curtis, 2005; Pollak, Cicchetti, Hornung, & Reed, 2000; Pollak & 

Tolley-Schell, 2003). Individuals with a history of maltreatment show altered structural and 

functional brain development in both frontal and limbic structures (Hart & Rubia, 2012). In 

particular, previous research has identified hyperactive amygdala responsivity associated with 

childhood maltreatment (e.g. Dannlowski et al., 2012). Less is known, however, about the impact 

of maltreatment on the relationship between the amygdala and other brain regions. The present 

study employed an emotion processing fMRI task to examine task-based activation and functional 

connectivity in adults who experienced maltreatment as children. The sample included adults with 

a history of substantiated childhood maltreatment (n = 33) and comparison adults (n = 38) who 

were well matched on demographic variables, all of whom have been studied prospectively since 

childhood. The maltreated group exhibited greater activation than comparison participants in 

prefrontal cortex and basal ganglia. In addition, maltreated adults showed increased amygdala 

connectivity with the hippocampus and prefrontal cortex. The results suggest that the intense early 

stress of childhood maltreatment is associated with lasting alterations to fronto-limbic circuitry.

Introduction

Childhood maltreatment is a severe stressor that jeopardizes normative development and can 

compromise adaptive functioning (Cicchetti & Toth, 2005). In 2013 alone, there were an 

estimated 679,000 cases of child maltreatment in the United States (U.S. Department of 

Health and Human Services, 2015). Unfortunately, this number likely under-represents the 

true magnitude of the problem, as it does not account for the vast number of unreported 

cases. Childhood maltreatment disrupts development across many domains, and individuals 

who experience childhood maltreatment are at higher risk for the development of 

psychopathology across the lifespan (Cicchetti & Toth, 1995; Kim & Cicchetti, 2010).
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Despite increased understanding of early adversity, and the importance of supporting young 

children, many social service agencies struggle to provide effective services for children 

facing maltreatment (Jaffee & Christian, 2014). This disconnect may be due in part to the 

fact that there is still much to be learned about the precise mechanisms by which childhood 

maltreatment alters developmental trajectories, including the neurobiological impact of 

maltreatment. The neuroimaging literature on childhood maltreatment has yet to fully 

evaluate the development of brain networks critical in supporting social, cognitive, and 

emotion regulation behaviors that are known to be vulnerable to adversity.

Emotion processing and maltreatment

Behaviorally, maltreated children experience a host of socio-emotional disruptions (Aber & 

Cicchetti, 1984; Pechtel & Pizzagalli, 2011). These differences can lead to a cascade of 

effects that confer vulnerability for affective and behavioral disorders (Masten & Cicchetti, 

2010). Individuals who experience childhood maltreatment are at risk for a wide range of 

psychopathology, including depression, anxiety, bipolar disorder, suicidality, conduct 

disorder and substance abuse (Brodsky et al., 2008; Cannon, Bonomi, Anderson, Rivara, & 

Thompson, 2010; Edalati & Krank, 2015; Garno, Goldberg, Ramirez, & Ritzler, 2005; 

Jaffee et al., 2005; Kaufman, 1991; Springer, Sheridan, Kuo, & Carnes, 2007; Widom, 

DuMont, & Czaja, 2007) Converging evidence suggests that maltreatment leads to an 

altered processing of emotions and social stimuli (da Silva Ferreira, Crippa, & de Lima 

Osorio, 2014). Overall, maltreated children tend to be less accurate in emotion recognition 

(Camras et al., 1988, 1990; Camras, Grow, & Ribordy, 1983; During & McMahon, 1991; 

Pollak et al., 2000). Differences also have been observed among maltreatment subtypes, 

with neglected children displaying difficulty discriminating between emotions, and 

physically abused children showing a response bias for angry facial expressions, requiring 

less perceptual information to recognize angry expressions (Pollak et al., 2000; Pollak, 

Messner, Kistler, & Cohn, 2009; Pollak & Kistler, 2002; Pollak & Sinha, 2002). Physically 

abused children show selective attention to threatening stimuli (Pollak & Tolley-Schell, 

2003), although severe physical abuse has also been associated with an attentional bias away 

from threat (Pine et al., 2005). Evidence from event-related potentials (ERPs) also suggests 

that children with a history of maltreatment process positive and negative facial expressions 

differently than non-maltreated children (Cicchetti & Curtis, 2005; Curtis & Cicchetti, 2011, 

2013; Pollak, Cicchetti, Klorman, & Brumaghim, 1997). Although most of the maltreatment 

research on emotion processing has been conducted with children, recent data suggest 

similar emotion recognition deficits in adults who experienced maltreatment in childhood 

(Young & Widom, 2014).

Altered emotion processing following maltreatment points to potential neural differences in 

emotion related regions of the brain. Of particular interest are the amygdala and the 

hippocampus, subcortical limbic structures involved in emotion and memory (LeDoux, 

2000), and prefrontal regulatory regions, including the orbital frontal cortex (OFC) and 

medial prefrontal cortex (mPFC; Etkin, Egner, & Kalisch, 2011). Structural and functional 

connectivity of the amygdala and mPFC is related to efficient emotion regulation, fear 

conditioning and extinction (Kim et al., 2011). Although the dorsolateral and ventrolateral 

prefrontal cortex (dlPFC, vlPFC) do not have direct structural connections with the 
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amygdala, research suggests that these regions are also indirectly involved in regulation of 

the amygdala (Delgado, Nearing, LeDoux, & Phelps, 2008; Ochsner & Gross, 2005; Wager, 

Davidson, Hughes, Lindquist, & Ochsner, 2008). The importance of these limbic and fronto-

limbic circuits for emotion processing and regulation suggests they may be prime targets for 

long-term, downstream consequences of childhood maltreatment.

Structural brain differences in maltreatment

Childhood maltreatment is associated with a range of differences in brain structure. 

Globally, children with a history of maltreatment and PTSD have shown reduced cerebral 

volumes (De Bellis et al., 2002) and lower overall grey matter volumes (De Brito et al., 

2013). Data from diffusion tensor imaging studies suggest that childhood maltreatment is 

associated with reduced integrity of white matter tracts throughout the brain (Choi, Jeong, 

Polcari, Rohan, & Teicher, 2012; Choi, Jeong, Rohan, Polcari, & Teicher, 2009; Hanson et 

al., 2013; Huang, Gundapuneedi, & Rao, 2012; Jackowski et al., 2008). Similarly, a number 

of studies have reported reduced prefrontal volumes or cortical thickness following 

maltreatment (Andersen et al., 2008; De Bellis et al., 2002; Edmiston et al., 2011), 

particularly in emotion regulatory regions such as the OFC (Dannlowski et al., 2012; De 

Brito et al., 2013; Edmiston et al., 2011; Hanson et al., 2010; Kelly et al., 2013; Lim, Radua, 

& Rubia, 2014), anterior cingulate cortex (ACC; Dannlowski et al., 2012; Kelly et al., 2013) 

and mPFC (Van Harmelen et al., 2010).

Structural differences in the hippocampus and amygdala as a result of maltreatment have 

been of great interest, given the relevance of these structures to mood disorders (Price & 

Drevets, 2010) and the animal literature suggesting that these regions are vulnerable to stress 

(McEwen, 1999; Moriceau, Roth, Okotoghaide, & Sullivan, 2004; Poeggel et al., 2003; 

Vyas, Mitra, Shankaranarayana Rao, & Chattarji, 2002). A meta-analysis of maltreatment-

related PTSD found smaller hippocampal volumes in adults with a history of childhood 

maltreatment, but not in children who had been maltreated (Woon & Hedges, 2008). Recent 

work in populations without PTSD has supported this finding in adults, with consistently 

smaller hippocampal volumes observed in maltreated groups (Chaney et al., 2014; 

Dannlowski et al., 2012; Riem, Alink, Out, van Ijzendoorn, & Bakermans-Kranenburg, 

2015; Samplin, Ikuta, Malhotra, Szeszko, & DeRosse, 2013; Teicher, Anderson, & Polcari, 

2012). Volumetric findings from the amygdala have been more mixed, with some studies of 

maltreated adolescents showing decreased amygdala volumes (Edmiston et al., 2011) and 

others showing increased volumes (Mehta et al., 2009; Pechtel, Lyons-Ruth, Anderson, & 

Teicher, 2014); while at least two studies of adults have reported no difference in amygdala 

volumes between childhood maltreatment and control groups (Andersen et al., 2008; 

Bremner et al., 1997).

Functional brain differences in maltreatment

Despite the growing evidence of structural alterations associated with childhood 

maltreatment, there are still relatively few studies that probe functional differences in brain 

activity following maltreatment. The existing fMRI studies on maltreatment lend support to 

a hypothesis of altered limbic circuitry. A number of recent studies point to an association 
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between maltreatment and increased amygdala reactivity (Dannlowski et al., 2012, 2013; De 

Bellis & Hooper, 2012; Grant, Cannistraci, Hollon, Gore, & Shelton, 2011; McCrory et al., 

2011, 2013; van Harmelen et al., 2013; White et al., 2012). Differences have also been 

found in reward processing regions such as the basal ganglia (Dillon et al., 2009) and in 

frontal regulatory regions, including mPFC (Fonzo et al., 2013; Lim et al., 2015; Mueller et 

al., 2010; Van Harmelen et al., 2014).

Although it is necessary to understand functional differences in specific brain regions, it is 

perhaps equally important to investigate interactions between regions. Measures of 

functional connectivity can provide a better understanding of how communication among 

networks of regions may be influenced by early life stress. Data from resting state fMRI 

studies have identified altered emotion-processing networks in individuals who experienced 

childhood maltreatment (Cisler et al., 2013; Herringa et al., 2013; van der Werff et al., 

2013). However, there is little consensus about the direction of effects in these networks, 

perhaps due to large heterogeneity in sample characteristics. In a study with adolescents, 

Herringa and colleagues (2013) found that childhood maltreatment predicted reduced 

connectivity between the amygdala and vmPFC, but greater amygdala-dlPFC connectivity. 

In an adult sample, childhood emotional maltreatment was related to decreased connectivity 

between the amygdala and the hippocampus, insula, and frontal structures such as the OFC 

(van der Werff et al., 2013). However, in a pilot study of drug users who had been 

maltreated as children, maltreatment was associated with increased connectivity between the 

amygdala and the hippocampus, hippocampal gyrus, and OFC (Dean, Kohno, Hellemann, & 

London, 2014). Overall, these studies examined participants of different ages, with different 

types of maltreatment that occurred at different points during development. The high degree 

of heterogeneity within the maltreated population makes differences in resting state 

connectivity measures challenging to interpret.

While data on maltreatment and resting state functional connectivity are scarce, even less is 

known about the coordination of neural networks while performing a task. One study 

observed maltreatment related differences in limbic circuitry during a face-viewing task in 

women with PTSD subsequent to partner violence (Fonzo et al., 2013). Specifically, results 

from this study suggested a positive relationship between a continuous measure of 

maltreatment (Child Trauma Questionnaire [CTQ]) and amygdala-prefrontal connectivity, 

but a negative association between CTQ scores and amygdala-insula connectivity. Similar 

maltreatment related differences in connectivity have also been observed in cognitive 

control regions during an inhibitory control task (Elton et al., 2014). Identifying and 

characterizing how networks of brain regions differ for individuals with a history of 

childhood maltreatment is as important to our understanding of the effects of early 

maltreatment as is the identification of regions that differ in their level of activation alone.

Current study

In the current study, we sought to further examine the association between childhood 

maltreatment and task-related functional connectivity of fronto-limbic circuits. The vast 

majority of neuroimaging research with maltreated samples relies on self-reported measures 

of maltreatment. However, a reliance on self-report alone may not capture the extent of 
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maltreatment and may include substantial measurement error (Hardt & Rutter, 2004). Our 

sample consisted of participants who were studied longitudinally as children, providing 

prospective data on maltreatment histories and early experiences. Additionally, some prior 

studies have used healthy comparison groups that are not well-matched on socio-economic 

status (SES) or other demographic variables associated with maltreatment risk. In our study, 

the maltreated and comparison participants were drawn from similarly low-income, high-

risk environments. This design helps minimize the contribution of other forms of early 

adversity and comes closer to isolating the unique relationship between childhood 

maltreatment and brain development.

The current study used an fMRI task known to elicit limbic activation to examined 

differences in functional connectivity related to childhood maltreatment. Because mounting 

data suggest an association between maltreatment and amygdala activation in response to 

emotionally valenced stimuli, we predicted a hyperactive amygdala response to emotional 

stimuli in maltreated participants relative to SES-matched comparison participants. There is 

a paucity of data regarding maltreatment and functional connectivity of limbic circuits 

during emotion processing. Consequently, there is not enough evidence to predict the 

direction of effects, or the specific nature of amygdala connectivity. However, given the 

importance of frontal regions in emotion regulation, as well as documented maltreatment-

related behavioral deficits in this domain (Kim & Cicchetti, 2010; Shields & Cicchetti, 

1997), we hypothesized differences in amygdala-prefrontal connectivity.

Methods

Participants

Eighty-seven adults (M=30.1 yrs, SD= 3.6, range = 23–37 yrs) were tested. Participants 

were part of an existing longitudinal sample, first recruited to a research summer camp for 

low-income, high-risk children when they were 6–12 years of age, and subsequently 

assessed at two time points in adolescence (Rogosch, Oshri, & Cicchetti, 2010). Forty-four 

participants had a history of childhood maltreatment as documented by Department of 

Human Services (DHS) records; 43 adults had no history of maltreatment as documented by 

a lack of DHS records (See Table 1 for sample characteristics). In addition to examining 

records, maltreatment was ruled out using the Maternal Maltreatment Classification 

Interview (Cicchetti, Toth, & Manly, 2003). The Maltreatment Classification System (MCS; 

Barnett, Manly, & Cicchetti, 1993) was used to classify the type and developmental timing 

of each report of substantiated maltreatment. Maltreatment experiences included emotional 

maltreatment, physical neglect, physical abuse, and sexual abuse. The majority (70%) of 

participants in the maltreatment group experienced more than one type of maltreatment.

Exclusion criteria included: current or past history of neurological disorders or trauma; 

known intellectual impairment; uncorrected visual or auditory impairments; or MRI 

contraindications, including claustrophobia, metal in the body, or extreme obesity. Sixteen 

(16) individuals participated but were excluded from the final sample of 71 for the following 

reasons: task accuracy > 2 SDs below the mean on control trials (< 75.7% correct; 4 

maltreated, 1 comparison); serious mental illness (2 maltreated; 1 schizophrenia, 1 bipolar 

disorder); structural brain anomalies (1 maltreated, 1 comparison); or excessive motion 
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during the fMRI task (a minimum of three blocks of each stimulus type was required for 

inclusion, with no more than 5 out of 15 TRs exceeding motion criteria within each block, 

see fMRI Analysis; 4 maltreated, 3 comparison). An additional 53 longitudinal participants 

were unable to participate for the following reasons: size/obesity (19), metal in body (6), 

incarceration (11), refusal or scheduling conflicts (14), pregnancy (1), or deceased (2). All 

participants provided informed consent in compliance with the University of Rochester’s 

Institutional Review Board.

Self-Report Measures

Participants completed several questionnaires, including the Adult Self-Report (ASR; 

Achenbach, 2003), the Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996) 

and a demographics questionnaire. The ASR includes normed scales for adaptive 

functioning, empirically based syndromes, substance use, internalizing, externalizing, and 

total problems. The BDI-II is a 21-item self-report instrument designed to assess severity of 

depression. Total scores for the BDI-II indicate ranges of symptom severity. The groups 

were not significantly different in income levels, education, internalizing, externalizing, or 

depression ratings (See Table 1).

Behavioral fMRI Paradigm

In the scanner, participants completed an emotion-matching task (Hariri, Bookheimer, & 

Mazziotta, 2000) that has been found to robustly activate the amygdala. The task was a 

block design with alternating blocks of emotion matching trials or shape matching trials 

(Figure 1). Each trial contained three images, one on the top half of the screen and two in the 

lower half. Participants were asked to match one of the two images on the bottom with the 

image on the top. For emotion matching trials, images were angry or fearful faces posed by 

three different actors of the same sex. Participants were instructed to match based on the 

emotion of the faces. The emotion to be matched (anger or fear) was balanced across trials. 

Face stimuli came from a standardized set of emotional faces (Ekman & Friesen, 1976). For 

shape matching trials, images were black shapes (circles, or horizontal or vertical ellipses) 

and participants were instructed to match based on shape. The task consisted of a total of 9 

blocks, each containing 6 trials, with alternating blocks of shape and emotion matching (5 

and 4 blocks, respectively). Stimuli were presented for 4500 ms, with a 500 ms interstimulus 

interval.

MRI acquisition

Structural and functional MRI data were acquired on a Siemens 3-Tesla Trio scanner using a 

32-channel head coil. High-resolution, T1-weighted, 3-D images were acquired for each 

participant using an MPRAGE sequence (TE = 3.44 ms, TR = 2530 ms, field of view = 256 

mm, matrix = 256 × 256, slice thickness = 1 mm, flip angle = 7°, 192 sagittal slices). 

Functional data were acquired using an echo-planar imaging (EPI) sequence (TE = 30 ms, 

TR = 2000 ms, field of view = 224 mm, matrix = 64 × 64, slice thickness = 3.5 mm with a 

29% gap, flip angle = 90°, 30 interleaved oblique axial slices). To correct geometric 

distortion in the functional data, a fieldmap volume was collected immediately prior to the 

functional data acquisition using the same positioning prescription (TE1 = 5.19 ms, TE2 = 
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7.65 ms, TR = 400 ms, field of view = 224 mm, matrix = 64 × 64, slice thickness = 3.5 mm 

with a 29% gap, flip angle = 60°, 30 interleaved oblique axial slices).

fMRI Analysis

MRI data were analyzed using FSL (FMRIB Software Library, v. 4.1.9; http://

fsl.fmrib.ox.ac.uk/fsl; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). 

Preprocessing involved motion correction with MCFLIRT (Motion Correction FMRIB's 

Linear Image Registration Tool), skull stripping using BET (Brain Extraction Tool), slice 

timing correction, geometric unwarping based on a fieldmap volume, spatial smoothing 

using a 6 mm FWHM Gaussian kernel, and high-pass temporal filtering with a filter cut off 

of 60 seconds based on task design. Volumes were assessed for exclusion (censoring) based 

on the following parameters: 1) motion exceeding one voxel of overall displacement from 

the first volume in the series, or 2) motion exceeding one-half voxel from one volume to the 

next. Volumes immediately preceding and following those that met the second criterion 

were also excluded. A separate confound predictor was included in a given participant’s 

initial regression analysis for each excluded volume. Finally, each participant’s functional 

images were registered to the corresponding high-resolution anatomical image (6 degrees of 

freedom), which was in turn registered to MNI standard space (Montreal Neurological 

Institute’s MNI 152 T1 2mm template; 12 degrees of freedom).

Individual data were entered into a general linear model (GLM) using a predictor for 

emotion matching blocks, with shape matching as the baseline. Additional predictors of non-

interest included fixation (one predictor coding for short fixation periods at the beginning 

and end of the task), motion (3 rotation and 3 linear translation), and motion censoring 

predictors. To compare group differences in activation, higher-level analyses were 

conducted using a random-effects GLM. This analysis was run once with maltreatment 

status as the sole predictor, and then a second time adding sex, depression symptoms, and 

task accuracy (emotion trials) as covariates. Group differences were tested at a voxel-wise 

significance threshold of Z=2.575 (p<.005) with a cluster threshold of 10 contiguous raw 

voxels (552 mm3; Forman et al., 1995; Lieberman & Cunningham, 2009).

Psychophysiological Interaction (PPI) Analysis

Psychophysiological interaction (PPI) analyses were conducted to examine task-based 

functional connectivity (Friston et al., 1997; O’Reilly, Woolrich, Behrens, Smith, & 

Johansen-Berg, 2012). Whole brain analyses were run using the bilateral amygdala as the 

seed region. This analysis identified regions where activation was temporally correlated 

(either negatively or positively) with activation in the bilateral amygdala during the 

emotion-matching component of the task relative to the shape matching baseline. We 

created our bilateral amygdala mask based on the Harvard-Oxford subcortical anatomical 

atlas included with FSL (HarvardOxford-sub-maxprob-thr0–2mm.nii.gz), and dilated the 

mask by 3 mm to ensure adequate coverage across individual variations in anatomy. We 

obtained the bilateral amygdala signal for each participant by back-projecting this mask into 

each participant’s original functional data space and extracting the mean physiological time-

series from within the mask. In addition to the predictors included in the initial task-related 

GLM, the individual-level PPI GLM included the bilateral amygdala physiological time-
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series and the interaction of the emotion-matching predictor and the physiological time-

series. The interaction predictor was used to identify regions that co-varied in a task-

dependent manner with amygdala activity. Higher-level analyses to test group differences in 

functional connectivity were conducted using a random-effects GLM. Again, this model was 

run with and without covariates (sex, depression symptoms, task accuracy), with a voxel-

wise significance threshold of p<.005 and a cluster threshold of 10 contiguous raw voxels 

(552 mm3).

Results

Behavioral Results

Accuracy and response time were examined using separate 2 × 2 mixed model ANOVAs 

with condition (shape matching, emotion matching) as a within-subjects factor and group 

(maltreated, comparison) as a between-subjects factor. Trials without a response, either due 

to failure to respond or a late response outside of the allotted time window, were coded as 

inaccurate. For accuracy, there was a main effect of condition, F(1, 69) = 153.73, p<.001, 

and a main effect of group, F(1, 69) = 6.44, p<.05. Participants were more accurate in shape 

matching (M = 96.5%, SD = 5.1%) than in emotion matching (M = 63.7%, SD = 22.3%). 

The maltreated group had lower accuracy than the comparison group for both shape (Mmal = 

95.2%, SD = 6.5%; Mcomp = 97.6%, SD = 2.7%) and emotion matching (Mmal = 57.8%, SD 

= 20.4%; Mcomp= 68.8%, SD = 22.9%). There were no interaction effects. For response 

time, there was a main effect of condition, F(1,68) = 540.99, p<.001, with participants 

showing faster response times for shape matching trials (M = 1372 ms SD=374 ms) than for 

emotion matching trials (M= 2583 ms SD=424 ms). There were no significant group or 

interaction effects for response time.

fMRI Results

Main effect of task—An analysis of the basic task effect (emotion matching greater than 

shape matching) across all subjects revealed significant activation in multiple brain regions, 

including bilateral amygdala, medial frontal gyrus, middle frontal gyrus, thalamus, basal 

ganglia, and occipital lobe. These regions are consistent with previous studies using this 

emotion-matching task (e.g. Fakra, Salgado-Pineda, Delaveau, Hariri, & Blin, 2008; Hariri 

et al., 2000).

Group differences in task activation—An analysis of group differences in task 

activation revealed two regions where the maltreated group had greater activation than the 

comparison group for the contrast of emotion matching greater than shape matching. These 

regions included bilateral putamen and left caudate (Table 2, Figure 2). Additionally, the 

comparison group had greater activation than the maltreated group in two regions in the left 

cerebellum. After controlling for sex, depression symptoms (as measured by the BDI), and 

accuracy on emotion trials, group differences in these regions remained significant. The 

inclusion of these covariates also revealed a region in the right middle frontal gyrus where 

the maltreated group had greater activation than comparison participants. There were no 

significant effects of group on amygdala activation.
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Functional connectivity: PPI Analysis—In the PPI analyses, we first examined 

general patterns of limbic connectivity across all subjects. There were no regions that 

exhibited positive connectivity with the amygdala. However, many regions were negatively 

correlated (anticorrelated) with amygdala activation. These regions included medial 

prefrontal gyrus, ACC, middle frontal gyrus, caudate, insula, posterior cingulate, 

parahippocampal gyrus, and thalamus. A group contrast revealed regions showing group 

differences in negative amygdala connectivity. Relative to the comparison group, the 

maltreated group had altered connectivity between bilateral amygdala and left hippocampus, 

bilateral parahippocampal gyrus, right inferior frontal gyrus (orbital), right inferior frontal 

gyrus (lateral), medial frontal gyrus, left frontal pole, right middle frontal gyrus and right 

inferior parietal lobule/angular gyrus (Table 3, Figure 3). In each of these regions, the 

comparison group showed a negative correlation with the amygdala, while the maltreated 

group showed a positive correlation. All regions remained significant after controlling for 

sex, depression symptoms, and task accuracy, with the exception of the cluster in right 

middle frontal gyrus, which fell below the cluster threshold of 552mm3 (to 512 mm3).

Discussion

In the present study, we investigated differences in brain function and connectivity 

associated with childhood maltreatment. We employed an emotion processing fMRI task in 

a sample of adults who experienced childhood maltreatment, and in a comparison group of 

non-maltreated adults with similar SES backgrounds, to target the neural circuitry 

underlying behavioral alterations associated with early maltreatment. In the emotion-

matching task, we identified regions in the basal ganglia and dlPFC that showed greater 

activation for maltreated participants than for the comparison group. The PPI analysis 

revealed that, although the full sample had predominantly negative connectivity between 

frontal and limbic regions and the amygdala, maltreated participants had positive 

connectivity in a number of frontal and subcortical regions. The primary results remained 

significant even after controlling for sex, accuracy, and depression. These findings suggest 

that lasting alterations to fronto-limbic circuitry occur as a consequence childhood 

maltreatment.

Behaviorally, participants with a history of maltreatment were significantly less accurate 

during the task than the comparison group. This result is congruent with previous studies of 

emotion identification deficits in maltreated children (e.g. Camras et al., 1983). However, 

accuracy differences between groups were not specific to emotion matching, suggesting that 

the entire task was more challenging for the maltreated group. Indeed, five additional 

participants were excluded for extremely poor performance on the shape trials. Four of these 

individuals were from the maltreated group. Overall, these group differences may reflect 

more general effects of maltreatment on cognitive and motor function rather than specific 

effects on emotion processing.

Group differences were observed in task activation with maltreated participants showing 

increased activity in basal ganglia (specifically caudate and putamen). After controlling for 

task accuracy, sex, and depression, this increased activity in basal ganglia persisted and a 

similar group difference in middle frontal gyrus emerged. Analogous fronto-striatal effects 
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have been found in relation to early life stress, with increased activation in caudate, 

putamen, and frontal regulatory regions during a cognitive control task (Mueller et al., 

2010). Greater activation of the basal ganglia is also supported by Dannlowski et al. (2013), 

who found that maltreatment was positively associated with putamen activation in response 

to sad faces. However, the direction of effects in basal ganglia may be context dependent 

since maltreated participants have also shown reduced basal ganglia activation during a 

reward-processing task (Dillon et al., 2009). Increased recruitment of the basal ganglia, 

which, in addition to reward processing, plays a central role in performance and response 

control (Casey et al., 2004; O’Doherty et al., 2004), may be indicative of the challenging 

nature of the task for maltreated participants. Greater activation of PFC in the maltreated 

group also supports this hypothesis. The dlPFC is involved in attending to difficult task 

demands (e.g. MacDonald, Cohen, Stenger, & Carter, 2000) and in the conscious down-

regulation of emotional responses using cognitive reappraisal (Eippert et al., 2007). It is 

reasonable to expect that cognitively and emotionally challenging tasks would require 

greater recruitment of these regions. Certainly, the difficulty of the task for the maltreated 

group is reflected behaviorally in lower accuracy. However, maltreatment accounted for 

differences in neural activation even after controlling for behavior, suggesting that 

regardless of performance during emotion matching, the maltreated group experienced the 

task differently than the comparison group. Taken together, the results from PFC and basal 

ganglia suggest that the cognitive regulatory demands of the task may have differed across 

groups.

Intriguingly, we did not find the predicted relationship between maltreatment and amygdala 

activation that has been observed in other studies (e.g. Dannlowski et al., 2013). The use of a 

comparably high-risk comparison group may have made it difficult to detect subtle 

differences in amygdala activation. We know from behavioral data that alterations in 

emotion processing differ by maltreatment subtype (e.g. Pollak, Cicchetti, Hornung, & 

Reed, 2000); however, we did not have sufficient power to divide groups into maltreatment 

subtypes and many participants experienced more than one subtype. Therefore, by pooling 

across participants, we may have been unable to capture the heterogeneity of maltreatment 

experience. Comparison to the existing literature also proves challenging because of wide 

variation among samples and methods. Some previously reported results have come from 

children or adolescents (e.g. De Bellis & Hooper, 2012; McCrory et al., 2011, 2013), some 

from patient groups (e.g. Grant et al., 2011), and some from samples that did not include 

control subjects matched on demographic variables such as SES. In our sample, both groups 

came from high-risk backgrounds with multiple potential sources of early adversity, aside 

from maltreatment. We know that diverse forms of early life stress, including low SES, have 

been associated with structural alterations to the amygdala (e.g. Hanson et al., 2015). 

Therefore, it is possible that other risk factors contributed to amygdala alterations in both 

groups, making it challenging to detect differences unique to maltreatment.

The PPI analysis with all participants revealed a number of frontal and subcortical regions 

that showed negative correlations with amygdala activity. Negative amygdala-prefrontal 

connectivity parallels previous work (Gee et al., 2013; Hare et al., 2008; Hariri et al., 2000; 

Kim, Somerville, Johnstone, Alexander, & Whalen, 2003), and it has been theorized that this 
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inverse relationship reflects frontal, top-down regulation of amygdala reactivity (Hariri, 

Mattay, Tessitore, Fera, & Weinberger, 2003; Kim, Loucks, et al., 2011). Gee and 

colleagues (2013) reported a developmental shift from positive amygdala-mPFC 

connectivity in childhood to negative connectivity in adulthood. The group connectivity 

from our adults matches this research, suggesting that when the mPFC was more active, 

amygdala activity decreased. Although our data cannot speak to the causal directionality of 

this relationship, the findings are consistent with the hypothesis of top-down frontal 

regulation.

A number of brain regions showed negative amygdala connectivity for the comparison 

group, but exhibited positive connectivity for the maltreated group. We did not observe this 

effect in the vmPFC, which has been examined frequently in this context due to structural 

connections to the amygdala (Kim, Loucks, et al., 2011). We did, however, observe 

connectivity differences in a number of other frontal regions. Specifically, the maltreated 

group had positive connectivity between the amygdala and the OFC, vlPFC, dmPFC, and 

dlPFC. The vlPFC (or inferior frontal gyrus) has been associated with cognitive control and 

response inhibition (Aron, Robbins, & Poldrack, 2014; Hampshire, Chamberlain, Monti, 

Duncan, & Owen, 2010; Levy & Wagner, 2011) and has been found to activate in response 

to emotional distractors (Yamasaki, LaBar, & McCarthy, 2002). Increasing evidence 

suggests that the OFC, dmPFC, and dlPFC contribute to emotion processing and regulation, 

particularly through cognitive mechanisms such as reappraisal and attentional control 

(Banks, Eddy, Angstadt, Nathan, & Phan, 2007; Etkin et al., 2011; Ochsner & Gross, 2005). 

These findings suggest that when the amygdala was activated in response to faces, the 

maltreated group up-regulated activation of cognitive control regions. While we are the first 

to identify this relationship during an emotion-processing task, similar amygdala 

associations to OFC, and dlPFC have been reported in maltreated samples during resting 

state fMRI (Dean et al., 2014; Herringa et al., 2013).

There are also data to suggest that the observed amygdala-prefrontal connectivity could 

reflect an elevated neural response to stress or threat. In healthy adults, greater amygdala-

OFC and amygdala-dlPFC connectivity have been associated with threat-induced anxiety 

(Gold, Morey, & McCarthy, 2015). Additionally, previous data from both resting state and 

task-based functional connectivity have indicted that amygdala-dmPFC connectivity is 

positively correlated with anxiety (Kim, Gee, Loucks, Davis, & Whalen, 2011; Robinson, 

Charney, Overstreet, Vytal, & Grillon, 2012) and is associated with a higher inflammatory 

response to stress (Muscatell et al., 2015). Increased connectivity in the maltreated group 

could signify higher vigilance to the threatening aspect of the angry and fearful faces used in 

the task. Indeed, the task may have comprised a fundamentally different experience for 

maltreated versus comparison participants, being more emotionally disturbing or stressful.

Finally, the PPI analysis revealed group differences in amygdala-hippocampal and 

parahippocampal connectivity, again with positive connectivity observed for maltreated 

participants and negative connectivity for the comparison group. This finding is novel, as 

functional connectivity between these regions has not been examined previously within the 

context of the emotion-matching task. The normative state of amygdala-hippocampal 

connectivity during emotion processing is not well characterized at this time. However, data 
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from resting state connectivity analyses has described a positive relationship between 

amygdala and the hippocampus/parahippocampal gyrus (Roy et al., 2009). Associations 

between childhood maltreatment and resting state connectivity of the amygdala and 

hippocampus have been mixed, with results showing both decreased (van der Werff et al., 

2013) and increased (Dean et al., 2014) connectivity. The manner of interaction between the 

two regions may be dependent on the nature of the cognitive function elicited by a task. For 

instance, connectivity between the amygdala and hippocampus has been shown to increase 

during emotional memory retrieval compared to the retrieval of memories without emotional 

valence (Smith, Stephan, Rugg, & Dolan, 2006). Although this interpretation is speculative, 

the strong amygdala-hippocampal connectivity observed in our results could indicate that 

maltreated participants are linking threatening stimuli to re-activation of negative memory 

traces. Pollak and colleagues (1998) have argued that the association between affective 

stimuli and traumatic memories alters the subsequent interpretation of emotions following 

maltreatment. Our data support this hypothesis, showing long-term alterations in the 

interaction between the hippocampus and amygdala during emotion processing.

Strengths and Limitations

The current study makes several important contributions over and above the existing 

literature. First, unlike many studies of maltreatment, this project includes a control group 

matched on socioeconomic and risk status. Second, both maltreated and comparison groups 

were assessed prospectively and did not rely on retrospective self-report. Finally, the current 

study provides further understanding of altered brain networks as a function of childhood 

maltreatment using functional connectivity analyses. Such analyses complement more 

traditional measures of task-based functional brain activation. Studies including multiple 

levels of analysis are necessary to understand the developmental pathways associated with 

complex risk factors such as childhood maltreatment.

The current study also has several limitations. Although the participants in the study have 

been followed since childhood, MRI assessments were limited to one time point in 

adulthood. Consequently, we have no way to map the trajectory of brain alterations 

associated with early experience. We cannot rule out the possibility of preexisting 

differences in brain structure and function that preceded maltreatment, including prenatal 

risks such as exposure to drugs or alcohol in utero. Maltreatment is known to co-occur with 

many other types of risk. Our design mitigates this confound by recruiting all participants 

from high-risk, low-SES backgrounds; however, we cannot be certain that we accounted for 

all relevant factors. As mentioned previously, there was wide heterogeneity of maltreatment 

experience within the maltreated sample, including type of maltreatment, duration and 

severity of maltreatment, and age of onset. Given the size of our sample and high degree of 

comorbidity in maltreatment subtypes, we were unable to examine the unique influence of 

different subtypes of maltreatment. A larger sample would be desirable to examine subtypes 

of maltreatment. However, our sample size was consistent with or exceeded previous 

imaging studies of maltreatment. Because a number of the longitudinal participants were 

unable to participate in our study, we did not get the full range of possible cases. Participants 

who were potentially more successful (e.g., having either moved away or refused because of 

employment conflicts) or less successful (e.g. incarcerated) were screened out, as well as a 
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number of cases with health related exclusions (e.g. obesity, or metal in body). 

Consequently, our sample may represent the mid range of outcomes following maltreatment. 

Finally, in relation to the PPI analysis, it is worth repeating that we did not have measures of 

directionality between regions. Therefore, although we speculate about a top-down 

relationship between frontal regions and amygdala, the evidence was correlational, and no 

causation can be inferred.

Conclusions and Future Directions

Our investigation highlights a number of avenues for future research. In particular, we 

provide further motivation for examining functional neural networks, in addition to the 

investigation of regional differences in activity. At present there is very little literature on 

the effect of maltreatment on the functional relationship among brain regions. Fronto-limbic 

circuitry is likely to be just one of many neural systems affected by early trauma. 

Importantly, more research is necessary to understand outcomes associated with individual 

differences in experience. Timing, chronicity, and type of maltreatment are all critical 

factors that likely shape neural development and behavioral outcomes (e.g Cowell, 

Cicchetti, Rogosch, & Toth, 2015). Not all children who are maltreated go on to experience 

negative outcomes; in fact many demonstrate remarkable resilience in the face of early 

adversity (Cicchetti, 2013). Consequently, it is also imperative to investigate individual 

differences in relation to adaptive functioning.

The current study highlights altered emotion circuitry and identifies a network of regions 

vulnerable to long-term effects of maltreatment. Brain and behavioral data suggest that our 

sample of maltreated individuals may have experienced the task as more cognitively taxing 

and emotionally stressful than the non-maltreated group. The disrupted neural circuitry 

observed may help explain the differential response to emotionally salient stimuli and may 

contribute to the heightened risk for psychopathology in individuals with a history of 

childhood maltreatment. Our study provides added evidence of the lasting neurobiological 

impact of child maltreatment, but there is clearly much more to be learned about the 

complex processes involved in the brain’s response to extreme stress.
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Figure 1. 
Emotion matching task. A. Example emotion matching trial with angry and fear faces 

(Ekman & Friesen, 1976). B. Example shape matching trial. C. Task design included 

alternating emotion matching (A) and shape matching blocks (B). Each block had 6 trials 

(5000 ms per trial).
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Figure 2. 
Group differences (Maltreated > Comparison) in task activation for the contrast of emotion 

matching > shape matching. A. Brain image shows significant clusters in right putamen and 

left putamen/caudate (MFG not pictured). B. Results from significant clusters are 

represented in graphical form (M ± SE across voxels in cluster).
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Figure 3. 
Group differences in functional connectivity with bilateral amygdala. Representative 

significant clusters are depicted in figures A-D. A. Group differences in inferior frontal 

gyrus (IFG). B. Group differences in left hippocampus (Hipp). C. Group differences in 

medial frontal gyrus (MdFG). D. Representative significant contrasts of amygdala 

connectivity are depicted in graphical form (M ± SE across voxels in cluster).
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Table 1

Demographics and sample characteristics for the maltreated and comparison groups.

Sample Characteristics Maltreated Group
N=33

Comparison Group
N=38 p-value

Age (years), M (SD) 30.64 (3.19) 29.52 (3.63) .18

Male, n (%) 14 (42.4) 20 (52.6) .39

Race, n (%) .09

  Black 17 (51.5) 28 (73.7)

  White 10 (30.3) 4 (10.5)

  Other/Multiracial 6 (18.2) 6 (15.8)

Total Family Income, M (SD);
Range

$29.1K (22.9K);
2.3K- 103K

$33.9K (24.2K);
5.2K- 120K .39

Marital Status n (%) .81

  Not married 28 (84.8) 33 (86.8)

  Married 5 (15.2) 5 (13.2)

Current Work Status n (%) .79

  Working full time 15 (45.5) 20 (52.6)

  Working part time 7 (21.2) 8 (21.1)

  Not working 11 (33.3) 10 (26.3)

Education n (%) .39

  Some high school 7 (21.2) 4 (10.5)

  High school diploma or GED 12 (36.3) 17 (44.7)

  Tech degree, associates
  degree, or some college 10 (30.3) 15 (39.5)

  Bachelor’s or master’s
  degree 4 (12.1) 2 (5.2)

  Depression- BDI scores M(SD) 9.58 (7.57) 10.55 (8.94) .62

Adult Self Report,
T -scores, M(SD)

  Internalizing 50.71 (10.12) 50.98 (12.54) .92

  Externalizing 52.18 (10.42) 49.05 (10.50) .36

  Total Problems 49.24 (9.68) 49.05 (10.87) .94
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