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Abstract

With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health 

threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although 

pulmonary TB is the most common presentation, M. tuberculosis can disseminate into other 

organs and causes extrapulmonary TB (EPTB). The dissemination of bacteria from the initial site 

of infection to other organs can lead to fatal diseases, such as miliary and meningeal TB. 

Thoroughly understanding the mechanisms and pathways of dissemination would develop 

therapies to prevent the lethal prognosis of EPTB (miliary and meningeal TB) and vaccines to 

promote the development of adaptive immunity. This review focuses on risk factors of EPTB, 

bacterial and host genes involved in EPTB, and potential mechanisms of M. tuberculosis 

extrapulmonary dissemination.
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Introduction

Although tuberculosis (TB) emerged about 15000 to 35000 years ago (Kapur et al., 1994), it 

is still an important public health threat globally, causing 8 million new cases and 1.3 

million deaths each year (WHO 2014). The majority of human TB cases are caused by 

Mycobacterium tuberculosis, an aerobic bacterium that can persist in host tissues for months 

to decades without replication, but resumes growth when host immunity wanes. It is 

estimated that one-third of the worlds population are latently infected with M. tuberculosis 

(Sudre et al., 1992). Pulmonary TB is the most common presentation, but M. tuberculosis 

can disseminate into other organs and causes extrapulmonary TB (EPTB). The trafficking of 

bacteria from the initial site of infection to other organs can lead to fatal diseases, such as 

miliary and meningeal TB. Extrapulmonary involvement can occur with or without 
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pulmonary infection sites. About 15% reactivated TB from latency occur at extrapulmonary 

organs without active pulmonary TB (Hopewell, 1994). It has been reported that M. 

tuberculosis DNA was isolated from extrapulmonary organs during latent infection in 

human samples (Barrios-Payán et al., 2012). The rate of EPTB development is between 10% 

and 25% among immunocompetent patients (Weir and Thornton, 1985; Pitchenik et al., 

1988; Snider and Roper, 1992; American Thoracic Society, 2000). Frequent sites of 

extrapulmonary infection include the pleura, lymph nodes, bones and joints, CNS 

(meninges), larynx, skeleton (particularly the spine), genitourinary tract, eyes, 

gastrointestinal tract, adrenal gland, and skin. The clinical presentation of EPTB is atypical. 

Biopsy and/or surgery are required to procure tissue samples for confirmation of EPTB 

diagnosis. Thoroughly understanding the mechanisms of M. tuberculosis dissemination 

would help to prevent the lethal prognosis of EPTB and to improve diagnosis, treatment and 

prevention of EPTB. This review focuses on risk factors of EPTB, bacterial and host genes 

involved in EPTB, and potential mechanisms of M. tuberculosis caused extrapulmonary 

dissemination. Although nontuberculosis mycobacteria can cause both pulmonary and 

extrapulmonary TB (Alvarado-Esquivel et al., 2009; Henkle and Winthrop, 2015), it is out 

of the scope of this review.

M. tuberculosis infection

M. tuberculosis is a slow-growing facultative intracellular pathogen that can survive and 

multiply inside macrophages and other mammalian cells. It is transmitted from patients with 

active pulmonary disease by droplets, which are then inhaled. After an incubation period of 

4 to 12 weeks, approximately one third of the individuals exposed become infected 

(Edwards and Kirkpatrick, 1986). It is the balance between bacterial virulence and the 

inherent microbicidal ability of the alveolar macrophages that determines whether an inhaled 

tubercle bacillus can successfully establish infection in the lungs (Edwards and Kirkpatrick, 

1986; Dannenberg, 1989). Once inspired into the lungs, the bacilli multiply and cause 

inflammation, which induces neutrophils and macrophages to migrate to the area of 

inflammation. After phagocytizing the bacilli, alveolar macrophages are activated to release 

cytokines, which recruit more macrophages and activated Tcells to control infection 

(Dannenberg, 1989). Accumulated macrophages at sites of bacterial implantation further 

differentiate into epithelioid cells that have tightly interdigitated cell membranes in zipper-

like arrays linking adjacent cells to form tuberculous granuloma (Adams, 1976; Bouley et 

al., 2001). Granuloma contains the pathogen, a large population of Tcells, B cells, dendritic 

cells, neutrophils, and fibroblasts (Flynn and Chan, 2001; Peters and Ernst, 2003). After 

granuloma formation, M. tuberculosis is maintained and persists within the center of 

granuloma in a low active and anaerobic state to avoid direct confrontation with the host 

immune defense (McKinney et al., 2000). Reactivation happens once the balance between 

bacillary persistence and the immune response gets disturbed due to aging, malnutrition, 

steroids or HIV infection (Fenton and Vermeulen, 1996; Flynn and Chan, 2001).

Active TB occurs when the host immune response fails to contain the replication of M. 

tuberculosis associated with initial infection. It is estimated 5%–10% of those infected with 

M. tuberculosis develop active TB during the first few years following infection. The 

clinical manifestations of TB are quite variable and depend on host factors such as age, 
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immune status, coexisting diseases, immunization with BCG, and microbial factors such as 

virulence of the organism and predilection for specific tissues (American Thoracic Society, 

2000). Human immunodeficiency virus (HIV) co-infection increases the risk for active 

disease of TB. Among HIV-infected persons with latent TB infection, the rates of active 

disease are up to 100 times higher than those for individuals with latent TB infection without 

co-infection with HIV (Brewer and Heymann, 2005).

The immune response to M. tuberculosis infection is primarily a cell-mediated response with 

T cells as the main player (Kaufmann, 2002; Boom et al., 2003). CD4+ T cells, mediated by 

their cytokine production (Cooper et al., 1993; Jouanguy et al., 1996; de Jong et al., 1998), 

are the most important aspect of the protective response in M. tuberculosis infection (Caruso 

et al., 1999; van Pinxteren et al., 2000). One of the cytokines produced by CD4+ and CD8+ 

T cells is gamma interferon (IFN-γ). It can activate antigen-presenting cells, boost 

expression of major histocompatibility complex (MHC) (Cooper et al., 1993; Jouanguy et 

al., 1996; de Jong et al., 1998), induce reactive nitrogen derivatives (especially nitric oxide) 

(Arias et al., 1997; Nathan and Shiloh, 2000; Shiloh and Nathan, 2000), and alternate 

phagocytic vesicle tracking/control (MacMicking et al., 2003). IFN-γ can also inhibit over-

production of other cytokines, such as tumor necrosis factor α (TNF-α) (Rook and 

Hernandez-Pando, 1996; Bekker et al., 2000). Strategies employed by M. tuberculosis to 

evoke T helper-1 cell immune response include resisting intracellular killing mechanisms of 

microphages, and blocking apoptosis of macrophages (Sly et al., 2003) and the macrophages 

response to IFN-γ (Fortune et al., 2004).

Risk factors of EPTB

HIV infection

Before the HIV pandemic, about 15%–20% of TB cases developed EPTB (Weir and 

Thornton, 1985; Pitchenik et al., 1988; Snider and Roper, 1992; American Thoracic Society, 

2000). In HIV-positive patients, however, EPTB cases increased dramatically to more than 

50% of all cases of TB (Theuer et al., 1990; Shafer et al., 1991; Haas and Des Prez, 1994; 

Antonucci et al., 1995; Lado Lado et al., 1999; Lee et al., 2000; Yang et al., 2004). We 

found the risk of developing EPTB in HIV positive patients is as high as 5-fold of that in 

HIV negative patients, after controlling age, race, and gender (Yang et al., 2004). The close 

association between HIV infection and EPTB is very likely due to deficiency of CD4+ T 

cells among HIV infected patients. It is well known that HIV targets on CD4+ T cells and 

causes reduced CD4+ T cells and less cytokine production. CD4+ T-helper cells are major 

players for controlling M. tuberculosis infection. Among HIV positive patients, the risk of 

EPTB increases as the CD4+ lymphocyte count declines (Jones et al., 1993). The most 

common extrapulmonary site in HIV-positive individuals is the lymph node. However, other 

extrapulmonary sites such as neurological, pleural, pericardial, abdominal involvement have 

also been described in HIV-positive patients (Raviglione et al., 1992; Barnes and Barrows, 

1993; Jones et al., 1993).
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Race/ethnicity

Population-based epidemiological studies reported that African Americans tend to have 

higher proportion of EPTB cases (Farer et al., 1979; Yang et al., 2004; Fiske et al., 2010). In 

the United States, data from 13 states and two cities reported the rates of EPTB in African 

Americans is 5 times of that in Whites (6.5 vs 1.3 per 100000 population) (Farer et al., 

1979). In a case-control study with over 700 TB patients, we have found the risk of 

developing EPTB in African Americans is as 2-fold high as in White population, after 

controlling for other confounding factors, including age, gender and HIV coninfection 

(Yang et al., 2004). Higher risk of EPTB development in African American population may 

be related to higher overall TB incidence rates (Centers for Disease Control and Prevention, 

2008), higher exposure to TB, lower socioeconomic status, and lack of access to medical 

care (Rieder et al., 1990). Additionally higher prevalence of HIV infection might lead to 

higher risk of EPTB in African Americans.

People born in South Asian countries have higher incidence rates of EPTB than other 

foreign-born patients (Asghar et al., 2008). The mechanism is unknown. It might be due to 

unidentified host genetic or physiological factors that increase their risks to develop 

disseminated disease. One possible cause is vitamin D deficiency. Vitamin D deficiency 

happens more in dark-skinned people (Harris, 2006). The association between vitamin D 

deficiency and susceptibility to TB has been reported in epidemiologic and laboratory-based 

studies (Liu et al., 2006; Martineau et al., 2007; Sita-Lumsden et al., 2007). Although there 

was not significant independent association between the vitamin D receptor (VDR) genotype 

and TB susceptibility, the combination of TT/Tt genotype of VDR gene and vitamin D 

deficiency was significantly associated with TB susceptibility (Wilkinson et al., 2000). In 

clinical studies, vitamin D supplementation was observed to reduce patient pulmonary lesion 

(Nursyam et al., 2006). It has been reported that 25-hydroxyvitamin D can be activated by 

25-hydroxyvitamin D-1α hydroxylase (CYP27B1) into 1,25-dihydroxyvitamin D3. Binding 

of active vitamin D to its receptor VDR on cell surface increases expressions of β-defensin 2 

and cathelicidin (Wang et al., 2004; Gombart et al., 2005), which stimulate autophagy of M. 

tuberculosis infected phagocytes (Campbell and Spector, 2012), and help to inhibit bacterial 

replication. Vitamin D was also found to induce IL-1β expression in M. tuberculosis 

infected macrophages cocultured with human small airway epithelial cells, and to reduce 

bacterial burden through another antimicrobial peptide, DEFB4/HBD2, generated by the 

cocultured epithelial cells in response to IL-1β (Verway et al., 2013).

Gender

While men typically have higher overall rates of TB compared with women (Martinez et al., 

2000), some studies have shown that among people who develop TB, women are more 

likely to have EPTB than men (Rieder et al., 1990; Chan-Yeung et al., 2002; Yang et al., 

2004; Musellim et al., 2005; Sreeramareddy et al., 2008). A population-based case-control 

control study in the United States has showed that 16.9% of female patients had 

extrapulmonary disease compared to 9.3% of male patients (Yang et al., 2004). Similar 

findings have also been seen in Asian and European populations. (Chan-Yeung et al., 2002; 

Forssbohm et al., 2008; Zhang et al., 2011; Lin et al., 2013). It is still unclear why females 

tend to have more EPTB. Hormonal factors, smoking and TB exposure might be the causes 
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of this inequality (Hudelson, 1996; Holmes et al., 1998). Older women are less able to 

contain bacilli in the lungs due to reduced levels of sex hormones after menopause. The 

prevalence of smoking is higher in males than females. Smoking is a risk factor for 

pulmonary TB (Bates et al., 2007; Chiang et al., 2007). Another report has suggested that 

smoking is associated with relapse of TB and smokers are less likely to have isolated EPTB 

(Chiang et al., 2007). Other possible factors accounting for the difference are stigma 

associated with having TB and lack of access to health care, especially for females in 

resource limited regions (Holmes et al., 1998).

Age

Whether age is an independent risk factor of EPTB is not certain. In the above mentioned 

population-based case-control study, it has been found that the risk of EPTB among younger 

than 25 years old is 2-fold of that among older patients (Yang et al., 2004). Other studies 

from the United States (Gonzalez et al., 2003) and Europe (Cailhol et al., 2005) have also 

reported that younger age was an independent risk factor for EPTB. However, another study 

from Turkey (Musellim et al., 2005) has reported that age was not associated with EPTB. 

These inconsistent findings could be attributed to different prevalence of host-related factors 

or important co-exposures among the studied populations.

Bacterial genes involved in EPTB

After infection of M. tuberculosis in lungs, whether EPTB occurs is likely determined by 

interactions between the pathogen and the host immune response. Studies on bacterial 

virulence genes using animal models have identified several genes that might be related to 

M. tuberculosis dissemination.

Seven genes whiB1 through whiB7 at separate loci are in the M. tuberculosis genome (Cole 

et al., 1998; Camus et al., 2002) as orthologs of the whiB gene of Streptomyces coelicolor 

A3(2), which was annotated as a putative transcription factor, and has been shown to be 

involved in sporulation (Davis and Chater, 1992). Among them, WhiB4 has been postulated 

to act as a sensor of oxidative stress. M. tbΔwhiB4 showed a defect in dissemination to 

guinea-pig spleen, suggesting that whiB4 is essential for successful dissemination. It is likely 

WhiB4 regulates oxidative stress response to modulate survival in macrophages, and thus 

helps bacterial dissemination (Chawla et al., 2012).

A locus in M. tuberculosis genome, designated as mel2, plays an important role during 

persistence in mice (Cirillo et al., 2009). Like the whiB4, the mel2 mutant displays increased 

susceptibility to reactive oxygen species (ROS) (Cirillo et al., 2009). In aerosol infected 

mice, the mutant grew normally until the persistent stage, where it did not persist as well as 

the wild type, resulted in reduced pathology and CFU in spleen at 4 weeks post infection 

(Cirillo et al., 2009).

The most severe type of EPTB is meningitis, which happens when M. tuberculosis infects 

the central nervous system (CNS). Bacterial genes required for invasion or survival in 

mouse CNS were identified by using a pooled defined M. tuberculosis mutants library to 

intravenously infect mice (Be et al., 2008), including Rv0311, Rv0805, Rv0931c, and 
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Rv0986. Rv0805 and Rv0986 mutants were significantly attenuated on day 1 in brain tissue, 

in comparison with them in blood, suggesting that they have roles in invasion of the CNS. In 

addition, Rv0311, Rv0805, and Rv0931c might also play roles in survival in the CNS, 

because mutants of Rv0311, Rv0805, and Rv0931c were found to be significantly attenuated 

in brain on day 49, in comparison with them in brain on day 1(Be et al., 2008). Using rabbits 

infected intrathecally with different M. tuberculosis clinical isolates, the group of rabbits 

infected with HN878, a M. tuberculosis strain caused 60 cases of TB in Texas from 1995 to 

1998 (Manca et al., 2001), was found having the highest bacillary load in the brain and the 

most severe leukocytosisin cerebrospinal fluid (Tsenova et al., 2005). The higher bacterial 

load and leukocytosis in CNS caused by HN878 was ascribed to a polyketide synthase 

(PKS)–derived phenolic glycolipid (PGL), because the PKS genes deleted strain 

HN878pks1-15∷hyg infected animals showed reduced bacterial load, less severe pathologic 

changes and attenuated clinical manifestations (Tsenova et al., 2005), and the PGL-deficient 

mutant of HN878 was found to be more immunogenic and less lethal in infected mice (Reed 

et al., 2004).

Another region named “igr” for the defect in intracellular growth might play roles in 

dissemination, intracellular survival, and lipid catabolism (Sassetti and Rubin, 2003; 

Schnappinger et al., 2003; Rengarajan et al., 2005; Chang et al., 2007). The igr region is 

composed of 6 genes (Rv3540c– Rv3545c) (Chang et al., 2007). Three of these six open 

reading frames are lying in the same orientation and annotated as a cytochrome P450 

(cyp125), and two acyl-coenzyme A (CoA) dehydrogenases (fadE28 and fadE29); the other 

three genes are two conserved hypotheticals (Rv3541c and Rv3542c), and one lipid transfer 

protein (ltp2) (Chang et al., 2007). Aerosol infection of mice showed the strain having a 

deletion of this region had delayed dissemination to the spleen, and reduced lung pathology 

(Chang et al., 2007). However, the deletion mutant of this region showed no difference in 

persistence in comparison with the wild type strain (Chang et al., 2007).

Host genes involved in disseminated TB

After M. tuberculosis infection, bacterial replication and dissemination are first controlled 

by the host innate immune response, and then by a T cell mediated adaptive immune 

response. The innate immune response to M. tuberculosis is primarily through macrophages 

and intracellular signaling pathways. Bacterial antigen pattern recognition receptors, such as 

Toll-like receptors, are involved in bacterial recognition and macrophage activation. Toll-

like receptor 2 (TLR2) has been found to recognize M. tuberculosis and initiate the innate 

immune response to infection. TLR2 genotype T597C was found associated with TB 

meningitis in a case-control study (Thuong et al., 2007). The association increased with the 

severity of neurologic symptoms (Thuong et al., 2007). TNF-α is an important cytokine for 

controlling M. tuberculosis infection. Individuals treated with the anti-TNF-α agent 

infliximab were found associated with disseminated TB (Keane et al., 2001). Another anti-

TNF-α agent, adalimumab, caused disseminated TB in non-human primate model (Lin et 

al., 2010).

Besides main factors in innate immunity, cytokines and chemokines playing roles in T cell 

mediated immunity are also involved in dissemination of M. tuberculosis, including genes 
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encoding IFN-y receptor, IL-12 receptor, and the signal transducer and activator of 

transcription-1 (STAT-1). A mutation in the IFN-γR1 chain was identified from six children 

with disseminated environmental mycobacterial infection, suggesting that the IFN-γR gene 

mutation is associated with mycobacterial dissemination (Levin et al., 1995). Mutations in 

IL-12 receptor β 1 chain were found from three patients having severe, recurrent, and 

systemic Mycobacterial and Salmonella infections (de Jong et al., 1998). These patients also 

had reduced IFN-γ production from NK cells and T cells (de Jong et al., 1998). A genetic 

polymorphism in the Manose Binding Protein (MBP) encoding gene was associated with TB 

meningitis in a South African population (Hoal-Van Helden et al., 1999). The MBP B allele 

(G54D) led to low MBP levels, which provided protection against tuberculous meningitis 

(Hoal-Van Helden et al., 1999). Genetic polymorphisms in interleukin (IL)-1p/ IL-1R 

(Wilkinson et al., 1999), IL-10, IFN-γ (Henao et al., 2006), and NRAMP1 (Kim et al., 2003) 

were associated with pleural TB. In addition, a polymorphism in the P2X7 gene, which 

encodes a receptor expressed on macrophages, was associated with EPTB (Fernando et al., 

2007).

Mechanisms of dissemination

It is well accepted that M. tuberculosis can migrate from the primary infection site, lungs, to 

the lymphatic system and bloodstream. However, the detailed mechanisms of bacterial 

dissemination remain unclear. To migrate from lungs to the draining lymph nodes and blood 

stream, the bacilli must break through alveolar epithelium. So far, some evidences have 

shown that bacteria inside alveolar macrophages or dendritic cells can be relocated by these 

professional phagocytes into lymph nodes and blood. Bacteria could also invade and lyse 

epithelial cells after infecting epithelial cells.

Bacteria relocated by professional phagocytes

One of the ways for M. tuberculosis to infect other organs is to use professional phagocytes 

as vehicles to approach organs far away from lungs by following blood stream. After 

phagocytized by professional phagocytes, mycobacteria can survive within phagosomes, the 

hostile acidic niche, and prevent fusion of phagosome to lysosome (McDonough et al., 

1993) by using sulfatides (Goren et al., 1976), by producing ammonia or ammonium 

chlorides (Gordon et al., 1980; Hart et al., 1983), and by deactivating calmodulin and 

calmodulin dependent protein kinase 2 (Malik et al., 2001). Once infection is established, 

the infected macrophages and dendritic cells are surrounded by T cells and B cells to form 

granulomas. It was a dogma that granuloma helps confine bacterial dissemination. However, 

studies using zebra fish embryo infected with M. marinum demonstrated that macrophages 

within granulomas helped mycobacteria disseminate from initial infection sites to distant 

sites (Clay et al., 2007; Davis and Ramakrishnan, 2009). Early secretory antigenic target 6 

kDa (ESAT6) and culture filtrate protein 10 kDa (CFP10) are two proteins encoded by 

Rv3874 and Rv3875 within the RD1 gene cluster, which is present in M. tuberculosis 

genome but not in the M. bovis bacillus Calmette-Guérin (BCG) genome (Cole, 2002). In 

the M. marinum infected zebra fish embryo, RD1 deleted mutant could not disseminate to 

distant sites (Clay et al., 2007). It suggested that genes in the RD1 region are important for 

bacterial dissemination by migrating within granulomas. These studies were conducted with 
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M. marinum in immune immature zebra fish model. It remains to test whether these 

observations hold true in M. tuberculosis infected mature mammal model.

Another professional phagocyte, dendritic cell, also plays important roles in controlling M. 

tuberculosis infection. Using aerosol infected mouse model and flow cytometry, it has been 

found that the majority of infected cells in the lungs and mediastinl lymph node were 

CD11chighCD11bhigh myeloid DCs and recruited macrophages (Wolf et al., 2007). After 

phagocytizing mycobacteria, dendritic cells present bacterial antigens to T cells to prime 

IFN-γ producing T cells and to induce cell-mediated response to infection (Tascon et al., 

2000). Mannosylated lipoarabinomannan (ManLAM) on mycobacteria cell wall can interact 

with a c-type lectin receptor on dendritic cells to modify host response to inhibit dendritic 

cell maturation (Fortune et al., 2004). These investigations suggest M. tuberculosis may 

utilize macrophages and dendritic cells to traffic to the lymph nodes and blood (Menozzi et 

al., 1996).

Bacteria invade and lyse epithelial cells

Epithelial cells are the first lining of the alveolus that inhaled M. tuberculosis interacts with. 

After infecting epithelial cells, M. tuberculosis can replicate and undergo cell-to-cell 

spreading (Castro-Garza et al., 2002). Some studies suggest that M. tuberculosis can lyse 

epithelial cells and cause necrosis of epithelial cells (Dobos et al., 2000). Cytotoxicity for 

epithelial cells is associated with bacterial virulence (McDonough and Kress, 1995). The 

heparin binding hemagglutinin (HbhA) of M. tuberculosis was found to play important roles 

in infecting epithelial cells. HbhA was initially identified in M. tuberculosis and M. bovis 

(BCG) (Menozzi et al., 1996; Menozzi et al., 1998). It is located on the surface of the 

mycobacterium and mediates binding of the bacillus to epithelial cells and fibroblasts 

(Menozzi et al., 1996). Mutation of hbhA leaded to reduced adherence of bacteria to 

epithelial cells but no effect on adherence to macrophages (Pethe et al., 2001). In intranasal 

infected mice, mutation of hbhA did not affect colonization in lungs, but severely reduced 

colonization in spleen. However, this discrepancy was not observed when infection is 

through i.v., suggesting that HbhA is critical for escaping from lung, but not for colonization 

in extrapulmonary organs (Pethe et al., 2001; Sohn et al., 2011; Lebrun et al., 2012). 

Overall, these studies advocate that HbhA is important for M. tuberculosis to infect and 

transcytose epithelial cell layer and to escape from lungs.

Mammalian cell entry (mce) genes were identified when a DNA fragment of M. tuberculosis 

H37Ra was transformed into E. coli, which enabled this non-pathogenic bacterium to invade 

a nonphagocytic HeLa cell line. Initially, this gene was named mce (Arruda et al., 1993). 

Subsequently, other paralogous genes were found in M. tuberculosis H37Rv and these genes 

are now named mce1A, 2A, 3A, and 4A (Casali and Riley, 2007). These four gene are located 

in four separated mce operons, mce1 to mce4, with similar organization and a 450 bp core 

sequence (Kumar et al., 2003). In mice intratracheally infected with mutants of mce 2 or 3, 

bacterial loads in both lung and spleen are significantly lower than the bacterial loads in the 

wild type strain; whereas in intraperitonealy infected mice, there were not significantly 

different bacterial loads in lung and spleen among the mutant and wild type strains infected 

groups (Gioffré et al., 2005). These results indicate genes in mce 2 and mce 3 operons might 
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be involved in extrapulmonary dissemination. It remains to further characterize the detailed 

mechanisms and functions of each genes of mce operons.

Although ESAT6 and CFP10 were shown to be important for dissemination through the 

mechanism of being relocated by professional phagocytes as above discussed, there are 

evidences showing that they could help bacterial dissemination by lysing epithelial cells. 

Transposon disruption of the esat6 and cfp10 operon of RD1 showed defect of cytolysis in 

pneumocytes and macrophages (Hsu et al., 2003). ESAT6 can bind to laminin on the 

basolateral surface of alveolar epithelial cells and lyse pneumocytes (Kinhikar et al., 2010). 

In this way, ESAT6 helps bacteria directly disseminate through the alveolar wall.

Summary

Among TB patients, 10%–20% can develop EPTB, which complicates diagnosis and 

treatments, and thus increases morbidity and mortality of the disease. Although many factors 

have been reported involved or associated with EPTB development, the detailed 

mechanisms remain unclear. The phenotype of M. tuberculosis dissemination from initial 

infection site in the infected host is a sign of failure of containing bacteria by the granuloma. 

However, since lymph nodes are the critical place for professional phagocytes to present 

antigens to T cells, and thus to prime T cells, bacterial dissemination into regional lymph 

nodes also helps to develop protective T cell mediated immune response. There have been 

many evidences showing both bacterial and host factors play important roles in M. 

tuberculosis dissemination. As studies on bacterial and host genes related to dissemination 

move forward, more and more new factors and pathways will be identified and 

characterized. These results will, without a doubt, broaden and deepen our knowledge of TB 

pathogenesis, and thus improve our methods of diagnosis, treatment and prevention of TB.
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