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Abstract
Metabolic reprogramming is a central hallmark of cancer, enabling tumor cells to obtain the
macromolecular precursors and energy needed for rapid tumor growth. Understanding how
oncogenes coordinate altered signaling with metabolic reprogramming and how cancer
cells harness cellular metabolism and its metabolites for their survival may yield new
insights into tumor pathogenesis. Here, we review the recently identified central regulatory
role for mTORC2, a downstream effector of many cancer-causing mutations, in metabolic
reprogramming and cancer drug resistance in glioblastoma. We further consider the emerg-
ing concept that mTORC2 may connect genetics with environmental alterations in brain
cancer.

INTRODUCTION—GROWTH FACTOR
RECEPTOR SIGNALING AND
METABOLIC REPROGRAMMING IN
BRAIN CANCER
Metabolic reprogramming is a central hallmark of cancer (13),
including the highly lethal primary brain cancer glioblastoma
(GBM). Tumor cells convert the majority of the glucose they take
up into lactate even when sufficient oxygen is present to support
oxidative phosphorylation (32). This adaptation, termed “the
Warburg effect,” enables cancer cells to use glucose-derived
carbons to meet both the increased biosynthetic and energy
demands imposed by rapid tumor growth. The Warburg effect
alone cannot account for the full spectrum of metabolic changes in
GBM. GBM cells also catabolize glutamine to support tumor cell
proliferation (31) and engage in de novo lipogenesis (6, 12) to
support tumor growth. Metabolic reprogramming may also exert
some of its most important consequences by globally altering gene
transcription and epigenetic landscape (14, 18), including through
histone and non-histone protein acetylation (4, 16, 35, 37).

In cancer, including GBM, metabolic reprogramming is
frequently a consequence of upstream mutations in the growth
factor receptor–phosphoinositide 3-kinase (PI3K)–v-akt murine
thymoma viral oncogene (Akt)–mechanistic target of rapamycin
(mTOR) signaling network, although the underlying mechanisms
are incompletely understood (30, 32). The genomic “portrait” of
GBM reveals frequent genetic alterations of the key components of
the growth factor receptor-PI3K–Akt signaling pathway that acti-

vate mTOR signaling (3, 24, 25), potentially suggesting a central
role for metabolic reprogramming in GBM pathogenesis (5).
Receptor tyrosine kinase (RTK) gene amplification and/or muta-
tions are detected in 66% of the primary GBM samples analyzed
by The Cancer Genome Atlas (TCGA), with EGFR amplification
and/or mutation occurring in 57% of cases (3, 10). In addition,
PI3K catalytic and regulatory subunit genetic mutations, and phos-
phatase and tensin homolog deleted on chromosome 10 (PTEN)
gene deletion and mutation are common events in GBM (3),
resulting in constitutive activation of the PI3K–Akt–mTOR
hyperactivation (5).

In this mini-symposium article, we briefly outline a recent set of
discoveries that point to a central role for mTOR complex 2
(mTORC2)-mediated metabolic reprogramming in GBM patho-
genesis. Newly identified molecular mechanisms by which
mTORC2 reprograms GBM cells are discussed. In addition, recent
work demonstrating that elevated nutrient levels can drive resist-
ance to targeted cancer treatments in GBM via its ability to main-
tain mTORC2 signaling is highlighted, nominating mTORC2 as a
central node integrating altered growth factor receptor signaling
with nutrient availability in GBM.

mTORC1 AND mTORC2—ESSENTIAL
COMPONENTS IN METABOLIC
REPROGRAMMING
mTOR is a serine/threonine kinase that exists in two distinct com-
plexes, mTORC1 and mTORC2, which differ in their regulation,
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function and responsiveness to the allosteric inhibitor, rapamycin
(36). mTORC1 contains mTOR kinase in association with Raptor,
PRAS40, mLST8, Deptor and Tti1/Tel2 and is a validated cancer
drug target (15). mTORC1 links upstream growth factor receptor
signaling with downstream protein translation and cell prolifera-
tion through its substrates S6K1 and 4E-BP1. mTORC1 promotes
anabolic metabolism downstream of activated PI3K–Akt signaling
and in response to amino acid nutrient levels (15, 20). mTORC1
also regulates protein degradation, ribosome biogenesis, glucose,
lipid and nucleotide metabolism, and autophagy (15, 36)
(Figure 1).

mTORC2 contains mTOR kinase in association with Rictor,
mSIN1, Protor1/2, mLST8, Deptor and Tti1/Tel2 (15). mTORC2
is activated in response to RTK–PI3K activation and possibly by
association with ribosomes (38). mTORC2’s most well-
recognized function is the phosphorylation of Akt on Ser473 to

promote Akt’s maximal activation (27). In GBM, EGFRvIII, the
most common epidermal growth factor receptor (EGFR) mutation,
and PTEN loss potently activate mTORC2 (29). mTORC2 can also
activate other protein kinase A/protein kinase G/protein kinase C
(AGC) subfamilies, including Akt/PKB, PKCα, and serum and
glucocorticoid-inducible kinase 1 (SGK1). In a Drosophila model
of EGFR–PI3K-driven gliomas, mTORC2, but not Akt or
mTORC1, was required for tumor formation (26), suggesting a
critical, Akt-independent role for mTORC2 in GBM pathogenesis.
Recent studies suggest that mTORC2 can promote GBM growth
and chemotherapy resistance in cancer cells (29), as well as con-
trolling genome stability (28) and tumor metabolism including
glycolysis, glutaminolysis, lipogenesis, and nucleotide and reac-
tive oxygen species (ROS) metabolism (22) (Figure 1). These
effects appear to occur through Akt-dependent and Akt-
independent signaling.

Figure 1. Mechanistic target of rapamycin complex 2 (mTORC2)
signaling controls metabolic reprogramming in glioblastoma (GBM):
mTORC2 reprograms the glycolytic metabolism, lipid, glutamine,
nucleotide and ROS metabolism mainly through Akt and c-Myc. Akt and
c-Myc promote glycolysis and Warburg effect to generate sufficient
energy and macromolecules for rapid tumor growth. mTORC2 activates
SREBP1 in an Akt-dependent and Akt-independent manner to promote

lipogenesis, providing lipids for the synthesis of membrane and signal
molecules. mTORC2 also regulates glutaminolysis by activating c-Myc.
GBM with an activated mutant form of EGFR engages c-Myc signaling
at least by two complementary steps, including mTORC1 and mTORC2.
GLS = glutaminase; PPP = pentose phosphate pathway; ROS = reac-
tive oxygen species; SREBP = sterol regulatory binding protein;
TCA = tricarboxylic acid.
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METABOLIC REPROGRAMMING BY
mTORC2—C-MYC, A MASTER
REGULATOR OF mTOR-RELATED
METABOLISM
We recently identified an unexpected Akt-independent role for
mTORC2 in GBM metabolic reprogramming through its ability to
control c-Myc protein level (21). mTORC2 markedly increases
glycolysis in GBMs, which is mediated by regulating the intracel-
lular level of c-Myc, a crucial regulator of the Warburg effect (8).
mTORC2 signaling through PKCα, independent of Akt, promotes
inactivating phosphorylation of class IIa HDACs (23), leading to
constitutive acetylation of FoxO1 and 3, a family of negative
regulators of c-Myc that reduce c-Myc protein levels through a
microRNA-dependent process (11). Persistent mTORC2 signaling
relieves GBM cells of a miR-34c-dependent blockade of c-Myc,
potently promoting glycolysis to drive tumor growth. More impor-
tantly, activated mTORC2/acetylated FoxO/c-Myc expression was
associated with significantly shorter survival in GBM patients (21).

These results have an intriguing implication; GBM cells are
addicted to c-Myc. c-Myc is recognized as a central player in
cancer, both through c-Myc’s broad transcriptional activities (17)
and through its critical role in metabolic reprogramming (8).
However, c-Myc is rarely amplified or mutated in GBM (3), despite
its potential importance in GBM pathogenesis. How do the muta-
tions in growth factor receptor signaling pathways, such as EGFR
mutations, cooperate with c-Myc to promote tumorigenesis?
Recent work from our laboratory identifies a set of interlacing
molecular mechanisms by which EGFRvIII co-opts c-Myc to
reprogram cellular metabolism and drive tumor proliferation. First,
EGFRvIII promotes the oncogenic activity of c-Myc by inducing
mTORC1-dependent, hnRNPA1-dependent splicing of the c-Myc
interacting protein MAX, to form the gain of function variant
Delta MAX (1). Second, EGFRvIII upregulates c-Myc protein
levels through mTORC2-dependent acetylation of FoxO1 and 3
(21). Taken together, along with a work indicating that Akt can
control c-Myc levels via phosphorylation of FoxO1 and 3 (9, 11),
these studies identify multiple interlacing complementary mecha-
nisms by which EGFRvIII promotes metabolic reprogramming
and tumor cell proliferation via its control of c-Myc (Figure 1).
This tightly integrated, multi-pronged control mechanism suggests
potentially targetable points of therapeutic intervention, but it also
raises challenges for molecularly targeted therapies because any of
these mechanisms may be sufficient to maintain c-Myc levels to
promote drug resistance. More importantly, failure to inhibit
mTORC2, which appears to be harder to target than mTORC1,
even with ATP-competitive kinase inhibitors, may cause tumor cell
resistance to PI3K or Akt-targeted therapies by maintaining
elevated levels of c-Myc.

mTORC2—A CENTRAL PLAYER IN
DRUG RESISTANCE
mTORC2 thus appears to be a central player in cancer drug resist-
ance through several pathways. First, mTORC2 may contribute to
chemotherapy resistance directly through its activation of Akt.
Second, mTORC2 can promote resistance through NF-κB-
dependent signaling (29). Interestingly, the activation of the
NF-κB pathway in this case is not Akt-dependent, although Akt

has been shown to regulate NF-κB signaling in other circum-
stances (2, 7). Third, Akt-independent mTORC2 signaling has
also been shown to promote O-6-methylguanine-DNA
methyltransferase (MGMT)-dependent resistance to one of the
most used alkylating chemotherapy in GBM, temozolomide,
through N-Myc downstream regulated gene 1 (NDRG1) (33).
These findings suggest that Akt inhibition alone will be insuffi-
cient to sensitize tumors to chemotherapy. Fourth, mTORC2
might affect the sensitivity of cancer to chemotherapy as well as
radiation through its regulation of genome stability (28, 34).
More importantly, TORC2 has also been shown to regulate
genome stability in budding yeast (28). To date, the role of
mTORC2 in regulating genome instability in human cancer,
including GBM, remains unproven and future studies are needed
to examine this possibility. Fifth, failure to suppress mTORC2
may promote resistance to PI3K or Akt-targeted therapies through
acetylation of FoxO1 and 3 and maintenance of elevated c-Myc
levels, as described earlier. Thus, mTORC2 may lead to tumor
cell resistance to therapy through multiple molecular mecha-
nisms, including metabolic reprogramming.

EMERGING INSIGHT—WHEN GENETICS
AND ENVIRONMENTS CONVERGE
Cancer metabolic reprogramming is a consequence of upstream
mutations in the growth factor receptor–PI3K–Akt–mTOR
signaling network, resulting in changes in intracellular nutrient
levels. However, do cancer cells also adapt their signaling in
response to extracellular nutrient availability? We recently made
the surprising discovery that glucose or acetate, two “fuel sources”
that are widely available in the brain and readily taken up by tumor
cells (19), are required to activate mTORC2 and promote tumor
growth (23). Glucose or acetate promoted growth factor receptor
signaling through acetyl-CoA-dependent acetylation of Rictor, a
core component of the mTORC2 signaling complex. Remarkably,
in the presence of elevated glucose levels, Rictor acetylation is
maintained to form an auto-activation loop of mTORC2 even when
the upstream components of the growth factor receptor signaling
pathway are no longer active, thus rendering GBMs resistant to
EGFR, PI3K or Akt-targeted therapies (Figure 2). These results
demonstrate that elevated nutrient levels can drive resistance to
targeted cancer treatments and nominate mTORC2 as a central
node for integrating growth factor signaling with nutrient avail-
ability in GBM (23).

These results have a number of potentially important and unan-
ticipated implications. If sufficient nutrients are present, GBM
cells maintain mTORC2 signaling to drive cell proliferation and
survival through acetylation-dependent feedforward activation of
mTORC2, suggesting an interplay between oncogenic signaling
and the environment. Further, extracellular nutrients can maintain
oncogenic downstream growth factor receptor signaling even after
tumor cells are treated with inhibitors that target key upstream
components of the growth factor receptor signaling system to
which they are “addicted,” making the novel prediction that GBM
cells, and possibly other cancer types, may use nutrients to escape
targeted therapies (23). From a broader perspective, this work begs
the question of how lifestyle changes, including diet, can poten-
tially alter tumor cell metabolism, and if so, in what ways. Indeed,
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there may be more interplay between oncogenic signaling and the
environment than previously thought.

FUTURE PERSPECTIVES
Cancer cells reprogram their cellular metabolism to meet the
biosynthetic and energetic demands imposed by rapid tumor
growth and this process appears to be central to GBM pathogen-
esis. In GBM, mTORC2 appears to be a central node regulating
this process, contributing to tumor growth and drug resistance.
Signal transduction inhibitors hold the promise of much more
effective, much less toxic treatments for GBM patients. However,
that promise is unlikely to be realized until the consequences of
cancer-causing mutations on metabolic reprogramming are under-
stood, including the flexible ways in which tumor cells adapt to
changing conditions to coordinately maintain the activity of down-
stream effectors necessary for tumor growth. Unraveling these
important questions may point the way toward the more effective
targeted cancer treatments, including for patients with GBM.
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