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Abstract

Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires 

spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the 

radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving 

unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which 

can severely degrade the quality of the images. This work develops a technique for a single photon 

emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer 

concentration in the myocardium using a tensor product of different sets of basis functions that 

approximately describe the spatiotemporal variation of the radiotracer concentration and the 

motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the 

dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart 

are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are 

presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac 

beating, and is displaced due to respiratory motion. These results are compared with the 

conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of 

the tracer activity. The higher dimensional reconstruction method proposed here improves bias, 

yet the signal-to-noise ratio (SNR) decreases due to redistribution of the counts over the cardiac-

respiratory gates. However, there is a trade-off between the number of gates and the number of 

projections per gate to achieve high contrast images.
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Myocardial perfusion imaging; dynamic SPECT; motion correction; higher dimensional 
reconstruction

I. Introduction

Non-invasive cardiac imaging using single photon emission computed tomography (SPECT) 

provides both diagnostic and prognostic assessment of patients suffering from coronary 
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syndromes that include ischemia and myocardial dysfunction (Beller and Heede, 2011). In 

conventional studies using SPECT, generally a rest study followed by a stress study is 

performed. These studies are not performed dynamically, i.e., the data does not provide 

information on radiotracer kinetics; instead gated tomographic data are acquired 30 to 60 

minutes after the injection of the radiotracer. Comparisons of the rest and stress scans 

provide information about ischemic heart disease and the gated images provide information 

about the wall motion which is important for diagnosing viable myocardium to identify 

patients that might benefit from revascularization. Dynamic imaging has been used for some 

time with PET to quantify myocardial blood flow (MBF) (Kuhle et al., 1992), (Di Carli et 

al., 1995), and recently some progress has also been made using dynamic SPECT (Gullberg 

et al., 2010), (Alhassen et al., 2013). Measuring coronary flow reserve (CFR) with PET 

manifests macro- and microvascular disease providing important prognostic value (Cremer 

et al., 2014). However, despite widespread applications, images from PET and SPECT 

suffer from undesirable motion artifacts due to cardiac beating, respiratory and/or patient’s 

movement leading to image degradation, blurring, and false positive diagnosis (Matsumoto 

et al., 2001). Even though several methods have been proposed (Parker et al., 2009), 

(Livieratos et al., 2005), (Rahmim et al., 2009), (Nam et al., 2013), (Bai and Brady, 2009), 

(Picard and Thompson, 1997), (Mukherjee et al., 2009), (Kovalski et al., 2007), in most 

cases cardiac motion due to respiration is difficult to handle especially when tracer kinetics 

is involved. For the dynamic cardiac SPECT application, there is the problem of analyzing 

tracer kinetic data acquired with a slowly rotating two-headed SPECT camera. In this paper, 

we demonstrate that it is possible to model all 6 dimensions of space, time, cardiac 

deformation, and cardiac respiratory motion from data acquired using a slowly rotating 

SPECT camera with only a few views per respiratory and cardiac gate.

Continuous cardiac beating and respiratory motion can result in up to a 2 cm displacement 

of the myocardium. Motion usually results in spatial blurring, image artifacts, and poor 

dissolution of perfusion related quantitative measurements such as MBF and CFR. These 

inaccuracies in the tomographic reconstruction impact the diagnostic accuracy of 

conventional myocardial perfusion imaging (MPI). The problem due to respiratory motion 

occurs not only in cardiac imaging, but also in the detection of small tumor lesions, and the 

therapeutic responses of external beam radiation can be severely affected (Shimizu et al., 

2001). Motion artifacts can be reduced by gating the heart phases using an 

electrocardiogram (ECG), which is a standard clinical procedure for detecting the 

myocardium thickening and ventricular wall motion. The combined motion due to beating of 

the heart and respiration can be rectified by binning the list-mode data into projections of 

different cardiac-respiratory gates and reconstructing each gate separately (Kovalski et al., 

2007). This is a powerful reconstruction approach in PET where all projection views can be 

acquired simultaneously in a list-mode format and can be used to reconstruct each cardiac or 

respiratory state (Nichols et al., 2002). Binning of the dynamic data in SPECT for the list 

mode reconstruction is also possible, however, because of the small number of detector 

heads and the rotation speed of the SPECT camera, it is difficult to obtain the necessary 

tomographic views in each cardiac and respiratory state.
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The main goal of this study was to simultaneously model the continuous motion of the 

human heart and the distribution of the radiotracer for in situ MPI using a slowly rotating 

SPECT camera. The human heart for the application of dynamic SPECT MPI is modeled by 

incorporating the cardiac and respiratory motion in terms of spatiotemporal basis functions 

of the changing radiotracer concentration and basis functions corresponding to the cardiac 

and respiratory states of the heart. Spatiotemporal basis functions are the basic building 

blocks for modeling the variation of the radiotracer distribution in space and time (Reutter et 

al., 2000). Time-varying activity within a volume can be modeled by selecting a set of 

temporal basis functions that are capable of representing approximate local time variations 

and have desired smoothness properties. These functions may be splines, factor analysis of 

dynamic structures (FADS), curves that fit compartment models, polynomial expansions or 

other possible spectral decompositions (Gullberg et al., 2010). Similarly, the spatially 

nonuniform activity concentration within a particular volume can be modeled by selecting 

an appropriate set of spatial basis functions defined within the volume. These could also be 

splines, point clouds of tetrahedral elements, blobs, various types of polynomial expansions 

or indicator functions corresponding to voxels (Sitek et al., 2000), (Maltz, 2002), (Sitek et 

al., 2006), (Lewitt, 1990). On the other hand, the basis functions for the motion can be 

anything that optimally characterizes the internal degrees of freedom of the organ being 

considered. For instance, the motion of the heart can be characterized by some periodic 

functions that reflect the different cardiac phases. The number of basis functions and their 

spatial and temporal extents can also be varied so that they can optimally model the spatial 

and temporal content of the data with the fewest number of basis functions.

In this work, we formulated the reconstruction algorithm for the projection of dynamic 

cardiac SPECT data acquired by a slowly rotating camera using the tensor product of 

spatiotemporal basis functions and basis functions of the subspace of cardiac and respiratory 

phases and evaluated the algorithm using simulated data from the mathematical cardiac 

torso (MCAT) phantom. Usually slowly rotating in dynamic SPECT acquisition means that 

the rate of camera rotation is slower than the kinetics of the tracer i.e., the concentration of 

the tracer in the blood and heart is changing between projection views. This is particularly a 

problem during the early phase of the blood input but less so after the tracer has equilibrated. 

Our formulation is therefore somewhat more difficult than that developed for dynamic 

cardiac PET (Verhaeghe et al., 2007) because it takes into consideration the slowly rotating 

SPECT gamma camera as well as the additional degree of freedom due to the respiratory 

motion. We simultaneously solved a smooth time-varying distribution of the concentration 

of the tracer activity in each voxel in a given volume as the heart deformed and displaced 

due to cardiac and respiratory motion. We used the maximum likelihood expectation 

maximization (ML-EM) algorithm (Shepp and Vardi, 1982) for estimating the activity 

distribution. The ML-EM algorithm was successfully implemented in the past for modeling 

four-dimensional (4D) SPECT acquisition as well as for five-dimensional (5D) PET and 

(5D) SPECT acquisitions (Niu et al., 2010). Recently, we have also reported on a fully 5D 

reconstruction method using a continuous rotating SPECT system for dynamic MPI. In the 

implementation presented here, attenuation correction was explicitly incorporated into the 

system matrix (Gullberg et al., 1985), while the effect of scatter was neglected. We believe 
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our approach of higher dimensional image reconstruction will provide a way to study tracer 

kinetics and dynamics in any organ that is subject to motion.

II. Theory

A. Spatiotemporal reconstruction in 4D

In dynamic cardiac SPECT using a slowly rotating gamma camera, a photon emitting 

radionuclide, e.g., technetium (Tc-99m) tagged to sestamibi or tetrofosmin, is infused into 

the patient’s vein and the emitted photons are detected and recorded continuously by the 

camera detector as it rotates (Fig. 1). The image of the detected photons, so called 

‘projections’, contains the information of the kinetics and dynamics of the tracer as well as 

the motion of the heart. In a conventional four-dimensional (4D) spatiotemporal image 

reconstruction, the temporal change of the tracer is incorporated explicitly while the motion 

is neglected.

The activity distribution of a radionuclide in the image space is represented by a function 

A(x,t), where x and t are the three dimensional volume and time coordinates, respectively. 

As a preliminary to our methodology, we show here how the formulation of image 

reconstruction in higher dimensions can be developed for 4D reconstruction. The activity 

distribution can be written as a tensor product of the spatiotemporal basis functions:

(1)

where Sm(x), m =1,2, … M, are the spatial and Vn(t), n =1,2, … N, are the temporal basis 

functions. The expansion coefficients amn provide the weights for each product of basis 

functions.

For the geometry of our acquisition scheme using continuous rotation shown in Fig. 1, the 

projection of the activity at any particular instant depends on the angular position of the 

detector. The detector is also pixelized so that for an arbitrary ith pixel, accumulation of the 

photons in a given small time interval Δtk at a time point tk is given by

(2)

where the spatiotemporal distribution of the activity is integrated along the line of projection 

in the image space χ. The weighting function F[x,di(t)] maps the activity from a position x in 

the image space into the projection at the detector position di(t). Expanding the activity in 

terms of the basis functions, the projections can be modeled as

(3)

with the definitions:
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(4)

Generally, the projection data are recorded as individual events of radioactive emissions (list 

mode) or the accumulation of events in a detector bin di(t) over the acquisition time interval 

divided by the net interval so that the value at all time points are in terms of activity 

concentration in units of counts per unit time. The expression for the projection in Equation 

(3) can be generalized in terms of a matrix

(5)

where p is a (I × K)-element column vector, I being the total number of detector bins and K 

being the number of time points. F is the projection operator of dimensions (I × K × M×N) 

with matrix element

(6)

The matrix a of the coefficients of the expansion in Equation (1) that is to be estimated has 

the dimensions of (M × N). These coefficients can be estimated using either maximum 

likelihood or Bayesian formulation [27]. For a voxelized space, M corresponds to the total 

number of voxels in the reconstruction space and N, the number of temporal basis functions. 

For example, in a volume space of dimension 128×128×128 and a number of B-spline 

temporal basis functions of N = 13, the number of coefficients that are to be estimated is 

128×128×128×13. Once these coefficients are estimated, the activity distribution in each 

voxel follows from Equation (1). In practice, the number of basis functions, N, is much 

smaller than the number of dynamic image frames, K.

B. Reconstruction in Higher Dimensions

In analogy, the formulation of image reconstruction in higher dimensions proceeds as 

described in the foregoing section. Here, we outline the general method of image 

reconstruction in a 6-dimensional space modeled by the tensor product of the basis functions 

in each dimension. In particular to the reconstruction of MPI, the measurement of the 

activity distribution in the heart is affected by cardiac beating, respiratory motion, and 

radiotracer kinetics. This can be represented by a general function A(x,t,τ(t), ζ(t)), where x is 

the spatial, t is the temporal, τ(t) is the cardiac phase coordinate due to beating of the heart, 

and ζ(t) is the cardiac displacement coordinate due to the respiratory motion. As before, we 

model the activity distribution in the myocardium as a tensor product of the spatiotemporal 

basis functions and the basis functions that represent the motion of the heart:

(7)

where Sm(x), m =1,2, … M, are the spatial and Vn(t), n =1,2, … N, are the temporal basis 

functions, while Wq(t), q = 1,2, … Q, and Rr(t), r = 1,2, … L, are basis functions 
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corresponding to the cardiac and respiratory phases, respectively. Again, the expansion 

coefficients amnqr give the weights for each set of basis functions. The reconstruction 

problem thus involves the estimation of these coefficients.

Our formulation provides a particular representation of the activity concentration in 

parametric space to include smooth temporal changes of activity within the volume when the 

volume itself is moving in time, and so to provide the dynamic reconstruction in higher 

dimensions.

The projections of the activity in terms of the weighting function can be written as

(8)

Again substituting Equation (7) into Equation (8), the projections can be expanded as:

(9)

with the definitions:

(10)

The expression in Equation (9) can also be represented in matrix form as

(11)

where p is an (I × K × G × L)-element column vector, I being the total number of detector 

bins and K being the number of time points. Here, L is the number of respiratory gates, l =1,

…,L, and G is the number of cardiac gates, g =1,…,G during the respective respiratory and 

cardiac cycles. The matrix operator F is of dimensions (I×K×G×L) (M×N× Q×R), and a is 

an (M×N×Q×R)-element column vector of unknown coefficients that are estimated by 

solving Equation (11). This is a 6D reconstruction problem where the elements of a are the 

estimated coefficients that determines the activity distribution A(x,t,τ(t), ζ(t)).

III. Methods

A. Cardiac Deformation (5D Reconstruction) – temporal, cardiac deformation, no 
respiratory motion simulated

1) Simulation of Data Acquisition—To evaluate our approach, the mathematical 

cardiac torso (MCAT) phantom (Fig. 2) was used to simulate the measurement of the time-

varying activity distributions of the radiopharmaceutical and cardiac deformation due to 

cardiac beating and motion due to respiration. The time activity curves (TACs) for vital 

organs such as heart, lungs, liver, spleen, and several others such as stomach, kidney, and 

background tissue were measured or estimated and used to simulate activity distributions 
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corresponding to one of the patients injected with the radiotracer 99mTc-tetrofosmin (99mTc, 

140 keV) in our ongoing dynamic cardiac SPECT studies. The protocol consisted of starting 

the camera rotation followed by injection of 10 mCi of radiotracer and 10 ml flush of normal 

saline. Typical TACs obtained to simulate the projection data are shown in Fig. 3. The 

activity of the left ventricle (LV), right ventricle (RV), myocardium, liver and spleen were 

measured directly from the patient data. Activities of those organs such as stomach, kidney, 

and background tissue that were not visible in the reconstructed images were estimated 

using a 1-tissue compartment model by providing generic wash-in and wash-out kinetic 

parameters (Higley et al., 1993). Using these activities as input, the noise-free projection 

data sets were generated for the geometry of a commonly available dual-headed SPECT 

camera (Infinia Hawkeye 4, GE Healthcare).

Although the activity was simulated for the entire torso as described above, we paid 

particular attention to the temporal changes of the tracer in the myocardium as it deformed 

and displaced by cardiac beating and respiratory motion. We considered a three-dimensional 

(3D) image space with 128×128×128 voxels each of 4.4 mm. Each detector surface was 

pixelized to a dimension of 128×128 with a pixel width of 4.4 mm. For imaging the MCAT 

phantom using parallel-hole collimator detector geometry, a system matrix was built which 

contained the information about the attenuation as well as the geometric point response of 

the parallel low-energy-high-resolution (LEHR) SPECT collimator. Attenuation was 

modeled for each projection image. It should be noted that the deformation of the 

myocardium and cardiac motion due to respiration changes the attenuation of the emitting 

photons in successive projection views. Incorporating the time dependent attenuation in the 

system matrix is complicated and the reconstruction would be challenging due to the 

dynamic nature of the system matrix. In order to avoid this difficulty, we considered an 

average attenuation so that the system matrix was time independent.

The projection data P at the detector position d(t) were obtained by applying the system 

matrix S to the MCAT phantom with a particular activity distribution O at a time t:

(12)

Figure 4 shows a typical activity distribution in the torso 4 minutes after the tracer injection 

and the corresponding projection images. The cardiac torso is placed in the supine position, 

and the axis of rotation of the detector head is shown for a patient aligned foot-to-head with 

the arrow indicating a clock-wise rotation.

For the 5D case, the respiratory motion was turned off during the beating of the heart. The 

period of the cardiac cycle was 1 sec, and the duration between end-diastolic to the end-

systolic phase was 0.325 sec. The camera rotation period was tuned in such a way that the 

projection data were synchronized, i.e., each projection corresponded to one gate of the 

cardiac cycle (See Fig. 5, left). There were 8-gates for each cardiac cycle (1 sec duration). 

There were 360 projections per rotation; and therefore the period of rotation was 45 sec. The 

total number of rotations was 8 that corresponded to 6 min duration of TAC (Fig. 3).
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2) Reconstruction—The spatiotemporal reconstruction models the temporal change of 

the activity in the heart by cubic B-spline basis functions (see Ref. (Reutter et al., 2000) for 

details). In order to obtain an optimal set of basis functions, the TACs of the measured 

patient data were first fitted to sets of B-spline basis functions. Figure 6 shows a set of 6 

cubic B-spline basis functions that were determined to optimally model the temporal 

dynamics of the radiotracer.

Although the beating of the heart is a continuous process, we assumed that the motion of the 

heart goes through a series of discrete states due to cardiac deformation. The basis functions 

for the cardiac phases were chosen as Gaussians functions. The widths and the peaks of the 

Gaussian functions were chosen in such a way that the reconstructed image activity closely 

correlated with the true activity distribution. Three sets of Gaussian functions of widths σ = 

2, 4, and 8 were tested and it was found that the larger widths do not capture the finer 

motions of the heart. Therefore, Gaussian functions of all the same widths (σ = 2 ) were used 

and were equally spaced in gated cardiac coordinates. Figure 7 shows a representative set of 

Gaussian functions used to model the cardiac phase. The iterative ML-EM algorithm was 

used to estimate the coefficients of the expansion of the basis functions. Figure 5 (right) 

summarizes the flow of the reconstruction algorithm.

B. Cardiac Deformation and Respiratory Motion (6D Reconstruction)

1) Simulation of Data Acquisition—To simulate cardiac-respiratory motion, the 

respiratory motion in the MCAT was turned on along with the beating of the heart. The 

time-varying activity distribution of the radiotracer concentration for each respiratory and 

cardiac cycle was simulated as described in the previous section. Two sets of data were 

generated corresponding to the respiratory period of 4 sec and 5 sec with two different 

numbers of gates for each respiratory cycle. In both cases, the maximum vertical 

displacement of the heart due to respiratory motion was set to be 2 cm. The period of the 

cardiac cycle was again set to be 1 sec, and the duration between end-diastolic to the end-

systolic phase was 0.325 sec. The camera rotation period was tuned in such a way that the 

data were synchronized, i.e., each projection corresponded to one gate of the cardiac-

respiratory phase. For instance, if there were 30 cardiac-respiratory gates and the respiratory 

period was 5 sec, the activities were sampled every 5 sec from the TAC such that every 30 

cardiac-respiratory gates, each with the same activity, corresponded to 5 sec time duration in 

the TAC (Fig. 3). There were 360 projections and 12 time frames in each rotation; and 

therefore the physical period of the camera rotation is 60 sec, which is a typical rotation 

speed of a commercially available SPECT camera (DePuey, 2012).

The activity distribution was reconstructed for two sets of cardiac-respiratory gates to see 

how the respiratory motion modulates the reconstructed images and if there is a trade-off 

between the number of gates and the number of projections per gate to achieve a high 

contrast image. We increased the number of cardiac-respiratory gates to 60 in order to 

reduce the effect of discreteness in cardiac-respiratory motion keeping the total number of 

projections 360 as before. For 60 gates in one cardiac-respiratory cycle, there were 6 time 

points over 360° camera rotation corresponding to only 6 projections per gate.
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The other sets of detector parameters were exactly the same as in the 5D simulation. The 

object volume activity distribution changed with time due to both the temporal changes of 

the radiotracer and the cardiac-respiratory motion.

2) Reconstruction—For the cardiac-respiratory reconstruction, we modeled the temporal 

dynamics of the tracer by cubic B-spline basis functions, and the basis functions for the 

cardiac-respiratory phases were chosen to be Gaussian functions as before. Figure 8 shows a 

set of Gaussian functions used to model the cardiac-respiratory phase. The widths and the 

peaks of the Gaussian functions were chosen in such a way that the reconstructed image 

volume closely correlated with the true activity distribution. Gaussian functions all with the 

same width (σ = 2 ) and equally spaced in gated cardiac-respiratory coordinates were used.

The reconstruction algorithm for solving the expansion coefficients in Equation (7) used a 

system matrix in Equation (11) that modeled attenuation and geometric point response using 

the line integral approach developed for the 3D geometry (Siddon, 1985), (Zeng and 

Gullberg, 1998), and adapted for spatiotemporal (Reutter et al., 2000) and gated dynamic 

reconstructions (Jin et al., 2006). Since the system matrix is the matrix of probabilities that 

the photon emitted from a given voxel in object space can reach the given pixel of the 

detector, it only depends on the orientation of the detector relative to the object (with 

attenuation) even though the activity distribution differs greatly with cardiac deformation 

and respiration motion. As mentioned previously, incorporating the time dependent 

attenuation into the system matrix would be computationally very costly, especially in the 

reconstruction part; so an average attenuation was used in generating the system matrix so 

that the system matrix was independent of time. The same system matrix was used for 

generating the projections and reconstructions for all datasets.

The standard iterative ML-EM algorithm was used to estimate the coefficients. For the noise 

free data only 17 iterations were used. It is pointed out that the reconstruction using the 

tensor product of the basis functions proposed in this work does not directly estimate the 

activity distribution in the image volume. Instead, it calculates the coefficients (weights) of 

the basis functions in the expansion in Equation (7) that is, in turn, used to map the 

spatiotemporal activity distribution of radiotracer over space and time.

3) 4D Reconstruction (only temporal simulated) Compared with 6D 
Reconstruction (temporal, cardiac deformation, respiratory motion simulated)
—The 6D reconstructed images were compared with that obtained from the conventional 

spatiotemporal 4D reconstruction. The spatiotemporal 4D reconstruction provides 

information of the temporal changes of the radiotracer at each spatial point (voxel), 

assuming that the point (voxel) is static in nature. The spatial and the smooth temporal 

representation of the dynamic image volume were modeled using voxels and a continuous 

set of 6 cubic B-splines basis functions. In the 4D reconstruction, the projection data were 

still gated. However, reconstructions were performed without taking into consideration of 

respiratory-cardiac motion.
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C. Performance Evaluation with Statistical Noise

1) Simulation and Data Acquisition—The simulations presented in the previous 

sections are ideal in the sense that they did not include noise. In emission tomographic data 

acquisition, a human subject is injected with a radiopharmaceutical used to tag the tissue of 

interest such as the myocardium, and a photon-counting camera detects the emitted photons. 

The detection of photons in the image acquisition using modalities such as PET or SPECT 

include photon noise or quantum fluctuations (Alpert et al., 1982), which are modeled by a 

Poisson probability distribution. This noise is related to an unavoidable uncertainty 

associated with the measurement inherent to the quantized nature of the radiation field and 

plays a dominant role in the system when number of photons is small (Javanainen and 

Shrestha, 2008).

To evaluate the performance of our algorithm in the presence of statistical noise, Poisson 

noise was added to the simulated projection data sets. For the reconstruction with multiple 

noise realizations, we considered data of only the third and fourth minutes after tracer 

injection with 360 projections per rotation, corresponding to a total of 720 projections with 

total counts equal to 2.65×107. There were 30 cardiac-respiratory gates and the respiratory 

period was 5 sec. As before, each view in the detector plane was pixelized with 128×128 

bins, and the mean photon counts per pixel was 2.25 ensuring the count rate was within the 

tolerance of the SPECT camera (Seo et al., 2008). These datasets and mean photon counts 

were comparable to a typical image obtained in clinical acquisition of one of our dynamic 

cardiac patient studies with 10 mCi of 99mTc-tetrofosmin (99mTc, 140 keV) and 120 

projections per rotation, and was used to generate noisy projections.

The detected photons in each set of projection data ŷ were corrupted with Poisson 

distributed noise according to (Boutchko et al., 2013)

(13)

where A is the system matrix that contains the physics and geometry of the detector and η is 

the noise level. The index i = 1,2,… represents a particular noise realization for a given 

noise level η. Four sets of noise levels were simulated. We chose η = 1024,256,64 and 1 

such that the mean number of photons with the noise level η =1024 approximately 

corresponded to a typical clinical acquisition with 10 mCi of 99mTc-tetrofosmin (99mTc, 140 

keV) in our dynamic cardiac SPECT studies, where the estimated mean photon counts per 

pixel was 2.5. For each noise level there were 10 noise realizations.

2) Reconstruction—The projections were reconstructed in an analogous manner as 

described before with the same set of basis functions for the 6-D reconstruction. The 

addition of noise presented an ill-posed problem for the reconstruction. In this case, the 

number of iterations was increased to 27 to ensure better convergence for the values of the 

estimated coefficients. In order to generate the time activity curves from the reconstruction, 

we again reconstructed the noisy data up to 5 min of TAC.

The reconstructed volumes were rescaled by the noise level:
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(14)

The reconstructed volume of activity were then filtered using a 3D convolution kernel of 

9×9×9 that approximated a 3D Gaussian filter with FWHM = 4 mm.

3) Measures of SNR, Bias and Variance—For a given noise level, η, the statistical 

mean value 〈V(η)〉 and the standard deviation σ(η) of the activity at each voxel were 

computed for a set of 10 noise realizations. The average signal-to-noise ratio (SNR) over the 

region of interest (ROI) was then calculated as

(15)

where  denotes averaging over a given ROI. The variance estimate is given by

(16)

Similarly the bias, BROI, owing to reconstruction is defined by

(17)

IV. Results

A. Cardiac Deformation (5-D Reconstruction) – temporal, cardiac deformation, no 
respiratory motion simulated

In this case only the deformation of the heart due to cardiac beating as the radiotracer 

washed in and washed out was simulated. The respiratory motion was switched off. Figure 9 

presents an example of the reconstructed image volume from the gated noise-free cardiac 

data. Since the radiotracer wash-in and wash-out rates were relatively small compared to the 

heart rate, two plots are shown corresponding to these two time scales. The top row shows 

the coronal view of the activity distribution every 30 seconds beginning at 2 minutes after 

infusion. In the bottom row the short axis views of the myocardium are shown for one 

complete cardiac cycle from diastole (A) to end-diastole (H) through the systolic phases (C, 

D, and E) for one second beginning at four minutes after infusion. The reconstructed data 

were tri-linearly interpolated but no filtering was applied. The relative intensity of the left 

ventricle was adjusted to make the right ventricle visible in the short axis views. The 

thickening of the myocardium and reduction in the left ventricle volume are clearly visible 

in the systolic phases (C and D).

B. Cardiac Deformation and Respiratory Motion (6D Reconstruction)

1) 6D Reconstruction (temporal, cardiac deformation, respiratory motion 
simulated)—Figure 10 shows an example of the reconstructed images for the gated 
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cardiac-respiratory dynamic data using the tensor product of basis functions described in the 

Method section. The top row shows the three orthogonal views (coronal, transverse, sagittal) 

of the actual activity distribution in the object space 4 minutes after the tracer injection. The 

bottom row shows the corresponding 6D reconstructed images. Again the reconstructed data 

were tri-linearly interpolated, but no filtering was applied. The sharpness of the image is 

clearly manifested with no blurring due to motion artifacts. The streak artifact seen in the 

transverse view is due to the inconsistency in the projections. Since there were only 12 

projections for each gate, the reconstruction problem was highly underdetermined; and the 

projection data were insufficient for a good reconstruction.

In order to corroborate the speculation that a smaller number of projections per gate 

produced the streak artifacts observed in Fig. 10, the number of cardiac-respiratory gates 

was increased to 60 keeping other parameters of the simulation unchanged. There were still 

360 projections per rotation. This corresponded to 60 projections in one time frame with 

only 6 projections for each gate per rotation. Figure 11 shows the reconstructed images for 

the same activity as in Fig. 10 with 60 cardiac-respiratory gates. The image quality was 

degraded with pronounced streak artifact (in transverse view) even though the number of 

gates was doubled. This is due to the fact that increasing the number of cardiac-respiratory 

gates increased the number of states but this reduced the number of tomographic views per 

state (gate) in the tomographic reconstruction. Since the total number of projections in one 

rotation was 360, there were only 6 projections per gate, which made the reconstruction 

problem highly underdetermined. This clearly indicates that there is a trade-off between the 

number of gates per cardiac-respiratory cycle and the number of projections per gate in each 

tomographic rotation.

Like in the case of the gated cardiac reconstruction in Fig. 9, the tensor product of basis 

functions should also be able to delineate the deformation as well as the upward motion of 

the heart due to respiration. Figure 12 shows the myocardial displacement in an exhalation-

inhalation sequence during one respiratory cycle. Here the respiratory period was 4 sec 

while the duration of cardiac cycle was 1 sec. The images in the top row are the actual 

activity distribution in the object space while images in the bottom row are the reconstructed 

volumes 3 minutes after tracer injection. The cross hair marks the center of the left ventricle. 

The image frames were extracted from the reconstruction of 30 cardiac-respiratory gates in 

one complete respiratory cycle. Only the even numbered frames are shown.

Figure 13 compares the quality of the 4D and the 6D reconstructions. The simulated 

dynamic projection data were respiratory-cardiac gated. In the 4D reconstruction, the only 

basis functions used were cubic B-splines that approximately captured the temporal behavior 

of the radiotracer. For the 6D reconstruction the temporal as well as the cardiac-respiratory 

motion was modeled using the tensor product of the cubic B-splines and Gaussian basis 

functions. Both the image quality and contrast are superior in the 6D reconstruction. The 

line profile through the myocardium also shows sharper peaks in the 6D reconstruction 

compared to spatiotemporal 4D reconstruction.
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C. Performance Evaluation with Statistical Noise

In Fig. 14 we show the time activity curves in the myocardium for the fully 6D 

reconstruction without noise compared with the conventional spatiotemporal 4D 

reconstruction and the ground truth. The reconstructed results were averaged over all cardiac 

and respiratory gates and over time. The data shown here are for the first to the fifth minute 

after tracer injection. Notice that the 6D reconstruction slightly overestimates the true tracer 

activity whereas the 4D reconstruction greatly underestimates the true tracer activity.

In Fig. 15 we show the noisy projection data (noise level η = 1024) and the corresponding 

reconstruction results. Figure 15 (A) and (B) show the sinogram and a coronal (90°-

projection) view of the 6D noisy data for approximately 3 minutes after the tracer injection. 

Fig. 15 (C), (D) and (E) are the reconstructed images in three different orthogonal views 

while (F), (G), (H) are the corresponding filtered images.

Figure 16 shows the detailed results of the statistical analysis in the fully 6D reconstruction 

for 3 different noise levels and compares with the conventional 4D reconstruction. The mean 

activities per voxel in the myocardium were calculated as the average of the 10 noise 

realizations over all cardiac and respiratory gates for one minute. In the 6D reconstruction 

variances were higher as compared to the 4D reconstruction; consequently the SNR was 

reduced slightly. Notice that the differences in the SNR between the 6D and the 4D 

reconstructions are nearly the same for all noise levels.

By increasing the number of gates, the counts for each gate becomes less in the 6D 

reconstruction compared to the ungated 4D reconstruction for the same total number of 

counts. One would therefore expect the variance and hence the SNR to decrease. However, 

the SNR in 6D reconstruction did not suffer too much with the values only 11.2%, 14.7% 

and 18.3% smaller than the conventional 4D method for noise levels η=64, η=256 and 

η=1024, respectively. We believed that our approach of using Gaussian basis functions in 

the reconstruction provided an alternative method of regularization (Cabello and Rafecas, 

2012).

Figure 17 shows the comparison of the bias versus variance relationship for the fully 6D and 

conventional 4D reconstruction for different noise levels. The bias is presented in 

percentage. Each data point was averaged over one minute and was plotted for 1, 2, 3, 4, and 

5 minutes after the tracer injection. Although the variance was better for the 4D 

reconstruction, the bias performance was clearly superior for the 6D reconstruction. For 4D 

reconstruction there was a significant contamination coming from blood pool due to the 

cardiac and respiratory motion, and consequently more counts were registered in the 

myocardial ROI in the first minute. This is probably why the bias was better in 4D in the 

first minute after tracer injection.

V. DISCUSSION

In this study, we proposed a multidimensional image reconstruction method for dynamic 

SPECT using a tensor product of basis functions that estimates the activity distribution in 

each physical voxel of the object space as the object itself deformed and moved due to 

Shrestha et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



internal and external motion. The method is unique in that it proposes to solve 

simultaneously the problem of cardiac respiratory and deformative motion (cardiac beating) 

as well as a time varying tracer concentration in a 3D space with the additional difficulty of 

tomographically modeling these dynamics using data acquired with a slowly rotating 

SPECT camera. The solution to this 6D problem involves the use of a tensor product of 

basis functions that provides a continuous regularized model of the motion of tracer 

dynamics and cardiac motion.

Conventional methods for cardiac motion compensation are based on the assumption that 

the activity in a given voxel does not change in time. This is a valid assumption if one 

neglects the effect of concentration changes during uptake and washout of the radiotracer. 

However, the wash-in and washout rates for commonly available PET and SPECT tracers 

such as ammonia (13NH3) [49] or 99mTc-tetrofosmin vary significantly. Therefore, one 

needs to incorporate the temporal changes of the activity along with the motion to obtain 

more accurate kinetic model parameters and estimation of wall motion abnormalities. The 

reconstruction in higher dimensions using a tensor product of basis functions may provide 

an alternative approach for imaging deformed and moving organs when the radiotracer 

concentration changes with time. Specifically, 5D tomography refers to the approach of 

estimating the tracer dynamics from projections by modeling the deformation of the organ as 

well as the change of the concentration of the tracer as a function of time in terms of a tensor 

product of spatial, temporal, and deformation basis functions. The 6D tensor product 

reconstruction considers space, tracer concentration variation, and deformation, in addition 

to displacement of the organ due to respiration and may yield better image quality that can 

be intrinsically free from motion artifacts without losing the kinetic and dynamic 

information of the radiotracer.

In our evaluation we compared our 6D method with a 4D method where time was modeled 

without cardiac and respiratory motion showing bias versus variance plots. The variance is 

higher and the SNR is lower for 6D compared to 4D. Although we have not employed 

regularization explicitly in our calculation, and one would argue that the estimated 

parameter might be inaccurate without proper regularization, our approach, however, does 

provide an alternative method of regularization in the form of the implemented basis 

functions. We believe that the use of basis functions in the reconstruction performed some 

sort of regularization (Cabello and Rafecas, 2012) as the difference in SNR in 6D and 4D 

was not high for all noise levels. While a comparison of 6D with independent 4D 

reconstructions of cardiac and respiratory gates would be interesting, the biases are expected 

to be almost equal with a bias a little better with gating, whereas, the regularization due to 

the Gaussian basis functions would provide better SNR with 6D. In comparing 6D and 4D, 

time was modeled in each case whereas in a previous paper (Winant et al., 2012) 4D was 

compared with 3D reconstructed time frames with data acquired with the same slowly 

rotating camera setup as was simulated in this paper, demonstrating that 4D modeling of the 

data acquisition still produced better bias and noise characteristics.

The theory presented in this work is general for the purpose of selecting basis functions 

appropriate for the dynamic cardiac SPECT imaging problem. There are many different 

possible spatial and temporal basis functions that one could select. Voxels were used for the 
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spatial basis functions, splines for the temporal dimension, and Gaussian functions for 

cardiac deformation and respiratory motion. This set of basis functions does not provide 

spatial regularization, but does provide appropriate regularization in the temporal and in the 

cardiac deformation and respiratory motion dimensions. Instead of voxels, B-splines or 

Gaussians could have also been used for the spatial basis functions. In the past, we have 

used FADs for the temporal basis functions (Sitek et al., 2000), but FADS present several 

problems relative to non-uniqueness. Using splines, we have found that the non-uniqueness 

greatly improves, and we have used this for initialization of the FADS solution (Abdalah et 

al., 2015). Another possibility is to use discrete wavelet basis functions that have been used 

in biomedical image reconstruction and signal processing (Turkheimer et al., 2000).

Another regularization approach is the use of constraints in the form of a Bayesian prior. 

The information from cardiac and respiratory gating provides constraints that are necessary 

for our method to be plausible, however, we did not include rigorous constraints as to the 

motion of the heart in the present formulation. We felt for this application the best 

regularization would be the basis functions themselves, because not knowing the correct 

motion of the heart it then becomes difficult to know a priori what prior to implement. 

However, efforts are being pursued to better model motion for improved imaging results 

(Lee and Tsui, 2015). Since the heart is primarily incompressible, the velocity field must 

satisfy incompressibility or divergence-free constraints (Liu et al., 2012), which could be 

very useful in constraining possible solutions. Previously, our group has used the 

incompressibility constraint in post processing algorithms to improve the noise in gated 

(non-dynamic) cardiac SPECT images. In addition, we have been pursuing the use of finite 

element (FE) mechanical models (Veress et al., 2015; Veress et al., 2013; Veress et al., 

2011) to constrain solutions. However, one can argue that in the case of disease this may be 

difficult to model accurately in order to provide valid constraints for cardiac contraction. To 

overcome this problem, estimation of exact motion fields for compensation of irregular 

motion is needed. Applying motion fields after reconstruction of each gate has shown to 

provide motion-corrected gated reconstructions.

With the advent of new dual modality PET-MR technology (Judenhofer and Cherry, 2013), 

(Wehrl et al., 2014) there has been significant excitement and promises in the direction of 

the estimation of motion fields for cardiac motion correction in the PET images. The 

simultaneous use of PET-MRI not only corrects the rigid body movement but also non-rigid 

respiration motion. Our method of using spatiotemporal and deformative basis functions 

could be used in the PET-MRI application. It may improve the detection of motion 

abnormalities over that of pure gating because it models the continuous motion between 

gates instead of reconstructing only a discrete image for each gate and could also include 

motion field information. One can argue that modeling cardiac motion provides too many 

degrees of freedom and thus requires constraints to penalize impossible kinds of movements.

Although very promising, our method has some limitations. For example, the method 

requires a sufficient number of cardiac-respiratory gates as well as a large number of 

tomographic views per gate to obtain good image quality, which can be difficult with a slow 

rotating two-headed SPECT system. A small number of gates may increase the tomographic 

views per gate but it results in blurring due to insufficient number of cardiac-respiratory 
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phases leading to poor motional resolution. On the other hand, while a larger number of 

gates may delineate the continuity of the myocardium deformation and its displacement due 

to respiratory motion, it reduces the number of tomographic views per cardiac-respiratory 

state. Therefore, increasing the number of gates by keeping the number of views per state 

relatively large would definitely provide improvement in the image quality, however, it 

would require faster rotation speeds of the camera, thus lowering the counts per view, or 

require more detector heads surrounding the patient, such as the GE 570c (GE Healthcare), 

thus improving the count sensitivity and temporal resolution. Also, the size of the system 

matrix, and the computational cost increases exponentially. At the present our 6D 

reconstruction takes about 2 weeks of CPU time in a single core machine to obtain a result. 

Although this approach is computationally challenging, the advent of faster modern 

technology using GPU reconstruction or parallel computation can be exploited to reduce the 

computational time significantly.

We were not able to test our method with real (clinical) data from existing SPECT systems 

in our institution because it does not provide gating information during a dynamic 

acquisition. Future modifications will be necessary for clinical SPECT systems to be able to 

acquire dynamic cardiac and respiratory-gated data. Another limitation is the 

implementation of time-dependent system matrix while implementing the attenuation in 

higher dimension. It is always desired to simulate projection data using a more accurate 

(time-dependent) system matrix and to perform reconstruction with the same time-

dependent system matrix. Creating projection data with time-varying attenuation rather than 

using its approximate average value may be computationally very fast, and could be a more 

exact attenuation model. However, doing reconstruction with time-dependent system matrix 

is computationally very costly. One can also argue on creating a more accurate projection 

data with the time-dependent system matrix and perform the reconstruction with the 

approximate (time-independent) system matrix. But we believe that, with the level of 

approximation we employed in the reconstruction, the accuracy would not improve much 

until and unless we use the time-dependent system matrix in the reconstruction as well.

Last but not least, we assumed that the respiratory motion was synchronized with the cardiac 

gating in all simulations to ease our calculation. However, this is not the case in real clinical 

MPI. We expect that the use of basis functions would smooth the asynchrony and we believe 

this would provide an average estimation of parameter values in the unsynchronized MPI 

studies. We are working on how to incorporate asynchrony in the model to represent the 

more realistic case. Furthermore, in our model we used a constant frequency periodic 

(sinusoidal) respiratory cycle. We believe that incorporating priors in the reconstruction 

(such as based on a mechanical model (Lee et al., 1995)) would improve the variable 

frequency (non-sinusoidal) model for respiration, and will be a subject of future publication.

VI. CONCLUSION

We have developed a method for 6-D reconstruction and simulated the temporal dynamics 

of the radiotracer in a deforming myocardium displaced by respiration for data acquired 

using a slowly rotating SPECT camera. A higher-dimensional multiresolution 

spatiotemporal parameterization of the gated cardiac and respiratory data delineated the 
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changes in the deformation of the heart as well as changes in the intensity of the signal 

caused by uptake and washout of the radiopharmaceutical in the myocardium. Our approach 

permits direct measure of the tracer distributions in moving organs and thus an accurate 

estimation of the parameter values that one can derive from the projection data set. 

Verification of our method was performed with the simulation of data acquired with a 

commonly available SPECT camera in the clinic. Modifications to present clinical SPECT 

systems are necessary to enable acquisition of dynamic cardiac- and respiratory-gated data. 

However, the methods developed here are appropriate for cardiac PET applications and can 

be implemented on present clinical systems.
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APPENDIX: Maximum Likelihood Expectation Maximization (ML-EM) 

Algorithm in 6D

It is assumed that the detection of photons at each detector bin for a given angular position 

θ(t) is governed by a Poisson distribution. Let pi be the projection measurement for bin I 

during the measurement interval [tk, tk + Δtk]. Let cim be the probably that a photon leaving 

voxel basis function m reaches the ith projection, and λimnqr be the random number of 

photons detected in bin I that comes from voxel basis function Sm, temporal basis function 

Vn, gate basis function Wq, and respiratory basis function Rr during the measurement 

interval [tk, tk + Δtk]. The mean of λimnqr is
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(A.1)

where amnqr are the coefficients of basis functions to be determined.

The random number of photons recorded in projection bin i is

where pi and λimnqr are Poisson distributed random variables. The mean of λimnqr is given 

above in Equation (A.1), and the mean of pi is

(A.2)

Rewriting Equation (A.2) for the mean number of detected photons

(A.

3)

where cim = amnqrUm(di(t), t)Vn(t)Wq(τ(t)), Rr(ζ(t)) is the probability that a photon emitted 

from a voxel basis function m, temporal basis function n, gate basis function q, and 

respiratory basis function r would be detected in the ith detector bin at time t. Hence, 

assuming the detection of photons from each voxel basis function is an independent process, 

the likelihood function is given by

Equivalently, one can write

(A.4)

From Equation (A.4), the log-likelihood function is

(A.5)

where
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One can solve for the optimum A by maximizing this log-likelihood function. Instead, we 

seek to use the EM algorithm (Shepp and Vardi, 1982). For the E-step we need the complete 

data log-likelihood. To do this we introduce the complete data λimnqr which is the random 

number of photons detected in bin i that comes from voxel basis function m, temporal basis 

function n, gate basis function q, and respiratory basis function r during measurement 

interval [tk, tk + Δtk]. Substituting the expression for Bmnqr in Equation (A.1), the mean of 

λimnqr is

(A.6)

The complete data likelihood function of λ given A is

Expanding the product, the complete data log likelihood function of λ given A is

(A.7)

The E-step involves taking the expectation of the complete data log-likelihood function 

given the projection data p and the value of A at the iteration η:

(A.

8)

where Aη is the value of A at iteration η. The random variables λimnqr are defined by a 

multinomial distribution given pi.

Therefore,

where

We can now write Eλ(lnℒλ(λ|A)|p, Aη) as

Shrestha et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A.

9)

We ignore the last term because the optimum value for A in this expression is also the 

optimum value for the function without this term. Taking partial derivatives of that function 

and setting the expressions to zero, we have

(A.10)

Therefore solving for , we have the following algorithm for estimating amnqr

(A.11)
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Fig. 1. 
The SPECT detector is assumed to rotate continuously so that the detector coordinate d(t) 

has an angle θ(t) and a spatial coordinate ξ(t). The projection measurements pi(tk) are the 

activity acquired over the time period to tk to tk + Δt for the detector bin di(t).
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Fig. 2. 
Three-dimensional surface rendering of the MCAT phantom torso (left) and a coronal view 

of the radiotracer activity distribution in the vital organs of the phantom used in the 

simulations (right).
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Fig. 3. 
Measured and estimated time activity curves derived from one of the patients infused with 

the radiotracer 99mTc-tetrofosmin (99mTc, 140 keV) in one of our dynamic cardiac SPECT 

studies. The activity of the left ventricle (LV), right ventricle (RV), myocardium (MY), liver 

(LIV) and lung (LN) were measured directly from the patient’s data. Other activity for 

stomach (STM), kidney (KID) and background (BG) tissue (total of 16 organs in the MCAT 

phantom) were estimated using a 1-tissue compartment model by providing generic wash-in 

and wash-out kinetic parameters.
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Fig. 4. 
(top row) A typical activity distribution for organs in the torso in three different orthogonal 

views (left: coronal, middle: transverse, and right: sagittal) after four minutes of a tracer 

injection. Also shown is the axis and direction of the rotation of the detector. (bottom row) 

A static noiseless projection at 90°-anterior view (left) and corresponding sinogram for one 

complete camera rotation (right).
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Fig. 5. 
(Left) Tree diagram representing the grouping of temporal (T), respiratory (Rg), and cardiac 

(Cg) gates in the simulation of the data. For 5D, there were no respiratory gates. For 6D, the 

simulation of the data coincided with the subset of cardiac and respiratory gates, such that 

each projection measurement was timed to correspond to one of the gates denoted by the 

circles in the figure. (Right) Algorithmic flow chart for the reconstruction.
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Fig. 6. 
A representative set of temporal cubic B-spline basis functions that were optimized for a 

specific input time activity curve (TAC) in Fig. 3.
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Fig. 7. 
A representative set of Gaussian basis functions used to reconstruct the gated cardiac 

dynamic projection data. Altogether 8 cardiac basis functions were used to model the 

deformation of the heart. Due to symmetry gate 1 is identical to gate 9 (bold curves).
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Fig. 8. 
A representative set of Gaussian basis functions used to reconstruct the gated cardiac-

respiratory dynamic projection data. The beating of the heart was assumed to be a discrete 

process as was respiration. Note that the cardiac and respiratory motion are periodic, so all 

of the basis curves are symmetric.
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Fig. 9. 
Reconstruction of gated cardiac data. (Top) Demonstration of the temporal changes of the 

tracer every 30 sec beginning at 2 minutes after tracer injection. (Bottom) Heart phases 

beginning at 4 minutes after the tracer injection showing short axis views of the myocardium 

(left and right ventricles) in one complete cardiac cycle from diastole (A) to end-diastole (H) 

through the systolic phases (C, D, E). Notice the thickening of the myocardium in the 

systolic phases (C, D).
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Fig. 10. 
Reconstruction of gated cardiac-respiratory noise-free data. (Top) three orthogonal views 

(coronal, transverse, sagittal) of the actual object activity distribution 4 minutes after the 

tracer injection. (Bottom row) corresponding reconstructed images. There were 30 gates in 

each time frame corresponding to 12 projection views for each gate and total of 360 

projections per rotation.
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Fig. 11. 
Three orthogonal views (coronal, transverse, sagittal) of the reconstruction of the gated 

cardiac-respiratory data with 60 gates and 6 projections for each gate per rotation. The rest 

of the parameters were the same as in Fig. 10.
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Fig. 12. 
Coronal views of an exhalation-inhalation sequence during one respiratory cycle. (Top row) 

The original time activity distribution and (Bottom row) the corresponding reconstructed 

images. The respiratory period was 4 sec while the heart beat period was 1 sec. The cross 

hair marks the center of the left ventricle during exhalation. The vertical shift of the 

myocardium is clearly demonstrated both in the original images and in the reconstructed 

images. The total number of cardiac-respiratory gates was 30. Only even number of frames 

is shown here.
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Fig. 13. 
4D (spatiotemporal) reconstruction compared with 6D (temporal, cardiac, respiratory) 

reconstruction. The insets show the reconstructed images 4 min after tracer injection with 

the 4D reconstruction (A) and the 6D reconstruction (B) algorithm. (C) The line profile of 

myocardium intensity distribution along the line (shown by arrow) for 4D and 6D. (Right) 

The ground truth image (D) and corresponding line profile (E).
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Fig. 14. 
Time activity of the tracer in the myocardium for the fully 6D reconstruction (diamond, 

blue) compared with the conventional 4D reconstruction (square, red) and the ground truth 

(triangle, green). Simulation results are reconstructions 360 views per rotation from the first 

to the fifth minutes after injection. All activities were averaged over cardiac and respiratory 

gates in the static ROI over each minute.
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Fig. 15. 
Reconstruction of the projection data with Poisson noise. (A) Noisy sonogram (noise level η 

= 1024) for one complete camera rotation approximately 3 minutes after tracer injection; (B) 

A coronal view (projection) at the 90° detector position; (C) Coronal, (D) Transverse, (E) 

Sagittal views of the 6D reconstructed images; (F), (G), (H) Same with the 3D Gaussian 

filter.
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Fig. 16. 
Statistical analysis for the 6D reconstruction (diamond, blue) compared with the 

conventional 4D reconstruction (square, red) as a function of time (minutes) after injection. 

Shown here are the (i) mean number of counts, (ii) variance, and (iii) SNR for 10 noise 

realizations for three different noise levels (A) η=64, (B) η=256 and (C) η=1024. The mean 

activity averaged over cardiac and respiratory gates of the ground truth (green triangle) is 

also shown.
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Fig. 17. 
Bias versus variance relationship at different noise levels for the fully 6-D reconstruction 

(diamond, blue) compared with the conventional 4D reconstruction (square, red). The series 

of five data points represent the average taken over each minute at 1, 2, 3, 4, and 5 minutes 

after tracer injection. For 6D, the variance curves increase slightly with increase in bias from 

1 to 5 minutes, whereas for 4D the variance decreases with increase in bias from 1 to 2 

minutes then the variance and bias both decrease slightly from 2 to 5 minutes.
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