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Abstract

This paper presents a computational study of head motion in human interaction, notably of its role 

in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and 

carries rich information; current modeling approaches based on visual signals, however, are still 

limited in their ability to adequately capture these important properties. Guided by the 

methodology of kinesics, we propose a data driven approach to identify typical head motion 

patterns. The approach follows the steps of first segmenting motion events, then parametrically 

representing the motion by linear predictive features, and finally generalizing the motion types 

using Gaussian mixture models. The proposed approach is experimentally validated using video 

recordings of communication sessions from real couples involved in a couples therapy study. In 

particular we use the head motion model to classify binarized expert judgments of the interactants’ 

specific behavioral characteristics where entrainment in head motion is hypothesized to play a 

role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 

60% to 70% for the various experimental settings and conditions. In addition, we describe a 

measure of motion similarity between the interaction partners based on the proposed model. We 

show that the relative change of head motion similarity during the interaction significantly 

correlates with the expert judgments of the interactants’ behavioral characteristics. These findings 

demonstrate the effectiveness of the proposed head motion model, and underscore the promise of 

analyzing human behavioral characteristics through signal processing methods.

B. Xiao, P. Georgiou, and S.S. Narayanan. Address: University of Southern California, 3740 McClintock Avenue, EEB 430, Los 
Angeles, CA 90089. boxiao@usc.edu, georgiou@sipi.usc.edu, shri@sipi.usc.edu. Phone: 213-740-6432. Fax: 213-740-4651.
B. Baucom. Address: University of Utah, 380 S. 1530 E., BEHS 502, Salt Lake City, UT 84112. brian.baucom@psych.utah.edu. 
Phone: 801-581-7109. Fax: 801-581-5841

HHS Public Access
Author manuscript
IEEE Trans Multimedia. Author manuscript; available in PMC 2016 July 13.

Published in final edited form as:
IEEE Trans Multimedia. 2015 July 13; 17(7): 1107–1119. doi:10.1109/TMM.2015.2432671.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Index Terms

Head motion; Behavioral characteristics; Entrainment; Kinesics; Gaussian mixture model; Linear 
predictive analysis

I. Introduction

Head motion is an important part of nonverbal communication in human interaction. There 

have been several classifications of head movement such as based on action type including 

nodding, shaking, tilting, tossing, dipping, thrusting, dropping, etc. [1]; based on frequency, 

amplitude, continuity and other factors [2]; based on timing, stress, juncture and disfluencies 

in speech, as well as the meaning or intension while listening [3], [4], [5], [6]. Additionally 

head motion has been studied in relation to semantics, discourse, and communicative 

functions [7].

Given the importance of head motion as a communicative and social interaction cue, it is 

also very important in human behavior analysis. However, due to the seemingly 

unstructured nature of head motion, it is difficult to quantify behaviors from this modality. A 

well known coding scheme due to Ekman [8] focuses on function rather than movement 

characterization. Birdwhistell [9] on the other hand, focuses on characterizing the structural-

compositional aspects of the movement, akin to the phonemes (elements of language’s 

phonology such as vowels and consonants) of language. This “kinesic-phonetic analogy” 

hypothesizes elementary motion units called “kinemes”. The drawback of Birdwhistell’s 

scheme is that it requires a meaningful discretization of the kinetic space; unlike natural 

spoken language that is governed by the rules of fairly well understood grammar, body and 

head movements are less structured, and do not lend themselves easily to unique and 

meaningful quantizations.

Although many successful approaches have been reported, the current computational 

approaches for modeling head motion are still not adequate in meeting the sophisticated 

needs of psychological research, nor are they adequate in capturing the complex details of 

head motion and the richer information conveyed therein. A topic that requires further 

research has been the categorization of head motion. People usually only consider nodding 

and shaking but have largely neglected others [10], including ignoring attributes such as the 

magnitude and speed of head motion. In addition, head motion behavior has been less 

studied in real interpersonal interaction scenarios. Finally, the link between head motion and 

interactants’ behavioral characteristics has not been widely analyzed.

The main contributions of this work include, first, the proposal of a categorical head motion 

representation obtained in a data driven way; second, using the head motion model as a 

middle layer construct to link low level head motion signals with high level, summative 

assessment of relevant target behavioral characteristics; and third, analysis of the relation 

between dyadic head motion entrainment and global behavioral characteristics using the 

proposed categorical representation framework. Note that in many real applications 

including the one in this work, only a single overall assessment is provided for an entire 

relatively long interaction, without direct short-term low level annotations. In such cases it 
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becomes challenging to directly find the relation between very detailed observational signals 

and subjective global assessments. Therefore, we aim to create a middle layer of motion 

patterns that has veritable relations to both observed motion signals and high-level 

behavioral annotations.

In this paper, we first review related background work — both conceptual and 

computational in Sec. II. We then propose the head motion model in Sec. III. Specifically, 

we begin by detecting head movement and computing the optical flow of head motion. We 

use the Line Spectral Frequencies (LSFs) of the optical flow signals as features that 

represent the properties of head motion. The key idea is to cluster head motion in an 

unsupervised way, and we use Gaussian Mixture Model (GMM) of LSF features to provide 

a generative probabilistic interpretation of head motion events. Ideally, each mixture 

component would correspond to a kineme realization, and the mixture components can be 

learned from large amounts of data.

In addition, based on the head motion model, we describe an algorithm to measure 

behavioral similarity in Sec. IV. Behavioral entrainment [11] is an underlying mechanism in 

human interactions that relates to affect and clinical outcome particularly in psycho-therapy 

[12], [13], [14], the domain of interest in the present work. We approximate behavioral 

entrainment with measures of similarity of the signals that the interlocutors generate. We 

define a head-motion similarity measure for a pair of motion events using Kullback-Leibler 

divergence. We estimate the similarity of two time periods by averaging a more behaviorally 

meaningful part of the pair-wise divergences.

We proceed with a description of the couple therapy corpus that is used for evaluation of our 

model in Sec. V. We apply the proposed model in two behavior modeling case studies in 

order to investigate its effectiveness in Sec. VI. We first use the proposed model to predict 

expert-annotated codes of interlocutors’ behavioral characteristics. We then test the 

correlation of the head motion similarity measure and the behavior codes, as the correlation 

between behavioral similarity and interlocutors’ relationship is of interest to domain experts 

[14], [15]. Since it is difficult for human to label entrainment, such correlation serves as an 

indirect way to investigate entrainment.

We discuss our findings and remarks on future work in Sec. VII, and offer our conclusions 

in Sec. VIII.

This work contributes significant new material over our past work [16], [17]. We employ 

more than twice of the sessions from the interaction corpus compared to past work; we use 

disjoint sets of data to learn the head motion model and to evaluate its relation to behavioral 

characteristics; we examine the behavior code classification problem by automatically 

selecting the parameters for the head motion model; we use symmetric divergence between 

the interactants for head motion similarity measure, which is easier to interpret; and we 

analyze the properties of the obtained head motion clusters to show how they conceptually 

relate to domain knowledge, which further supports the modeling approach.
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II. Related work

A. Communicative aspects of head motion

Head motion is an integral part of nonverbal human interaction. Nodding and shaking, 

referred to as “emblems” [8], are the most typical forms of head movement, although there 

are many others such as tilting, tossing, dipping, thrusting, dropping, etc. [1]. They also vary 

in terms of frequency, amplitude, continuity and other factors. Hadar et al. [2] studied head 

motion in natural human interactions recorded by polarised-light goniometer that measured 

the angle of head turning. Based on their results, they suggested five classes of head motion. 

The frequency of head motion clustered into three classes — slow, ordinary and rapid. In 

addition, large amplitude linear movement was named posture shift, while small amplitude 

quick movement was named tremor. Following this work, they also found the relation of 

head motion patterns to timing, stress, juncture and disfluencies in speech, as well as the 

meaning or intention while listening [3], [4], [5], [6].

B. Head motion modeling and Behavioral Signal Processing

From an engineering perspective, there have been many studies that involve analyzing, 

modeling and synthesizing human head behavior. One topic is the estimation of head pose 

through computer vision techniques [18]. The goal is to infer the orientation of the head 

either in discrete intervals, or continuously in 3D space, from digital images. For a video 

sequence, one could track the pose along time [19]. In addition, head tracking has been 

addressed by methods such as Kalman filtering and particle filtering [20], [21], [22], [23]. 

Recently, the availability of easy to use depth sensors such as Kinect has helped head pose 

estimation and tracking [24], [25]. Accurate pose estimation and tracking are very useful for 

analyzing head motion; however, it does not provide direct information regarding what type 

of motion is involved.

Other researchers have investigated head motion in order to discern specific patterns, usually 

“nodding” vs. “shaking”. An early study used infrared LEDs to track eye pupils and then 

used it to detect head nods and shakes with a Hidden Markov Model (HMM) [26]. Nodding 

and shaking detection using HMMs have also been applied to video data, enabled by face 

and eye detection [27], [28]. In recent years, multimodal methods of head motion detection 

have been proposed that take context into consideration, e.g., speaking state [29], and lexical 

and prosodic features [30]. The analysis of head motion also relates to the modeling of user 

attitude and emotional states [10], [31], [32].

Existing literature exhibits a clear trend in the multifaceted nature of studies on head motion: 

from a single visual modality to multimodal data use, from individual behavior to 

interaction, from modeling the signal itself to the signal’s implication of users’ mental, 

emotional, and rapport states. The emerging field of study — “Behavioral Signal 

Processing” (BSP) — encompasses these trends in the study of human behavior within 

which the present paper is situated. BSP refers to “techniques and computational methods 

that support the measurement, analysis, and modeling of human behavior signals that are 

manifested in both overt and covert multimodal cues (expressions), and that are processed 

and used by humans explicitly or implicitly (judgments and experiences)” [33]. The 
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essential goal of BSP is to inform human assessment and decision making, providing a 

computational ancillary for human behavior analysis in real world applications, such as 

marital psycho-therapy [34], addiction intervention [35], [36], and autism diagnosis [37], 

[38]. A schematic of the BSP framework adopted in the present paper is shown in Fig. 1.

A notable research topic closely related to BSP is Social Signal Processing (SSP), which 

focuses on modeling, analysis and synthesis of human social behavior through multimodal 

signal processing [39]. Theories and methods developed for BSP or SSP are largely 

shareable, since they both model human behavioral cues.

C. Psychological studies of kinesics

In the psychology field, one of the well known coding systems for human action was 

proposed by Ekman and Friesen [8]. It includes five classes: emblems, illustrators, 

regulators, adaptors and affective displays. The system focused more on the property and 

interactive function of action rather than directly characterizing the movement.

Birdwhistell suggested an structural and descriptive approach [9], treating nonverbal 

behavior just like verbal language, with the intuition of a “kinesic-phonetic analogy”. In his 

definition, a most elementary unit of motion was described as a kineme, like a phoneme 

(element of language’s phonology such as a vowel or a consonant), which were combined to 

form kine-morphs, or even larger units of kinemorphic constructions. For example, a head 

sweep to the left could be one kineme. In this way, Birdwhistell’s hierarchical compositional 

system of movement is just like that of verbal language.

Unfortunately, such a system has not been widely used in practice due to the difficulty of 

applying the coding on real data. Unlike speech, nonverbal language is less structured, and 

hence difficult to precisely discretize into kinemes. It also hence poses difficulty for human 

coders to agree on the coding assignment. As Harrigan [1] pointed out, the coding systems 

of head movement were “varied, rarely well-defined, and, with few exceptions, [are] not 

often organized conceptually or theoretically”.

Can computational technologies help at this point? As Kendon commented [40], 

Birdwhistell was probably ahead of his time. Advances in signal processing and computer 

vision techniques offer new opportunities to examine his theory in practice. This motivates 

us to revisit the Kinesics theory that Birdwhistell proposed. Such an approach is appealing to 

engineers for its natural connection with visual signals, and the hierarchical and 

compositional structure that is conducive to model construction. While human ratings can 

differ due to subjective opinions, annotator background, reliability of the annotator due to 

fatigue or training, computers remain consistent after training (albeit error prone based on 

training quality and coverage). Furthermore, computers can in certain cases access a much 

larger amount of data to obtain a more comprehensive model; for instance through cross-

referencing data seen in other sessions remote in time and space.

D. Structure models in computation

Discrimination of human action has been studied extensively in the computer vision domain 

[41] for applications such as video analysis, retrieval, surveillance, and human-computer 
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interaction. However, these do not address the problem of finding gesture types since the 

models only discern actions in pre-defined sets. An unsupervised system that recognizes 

human actions has been proposed based on Latent Dirichlet Allocation (LDA) model [42]. 

However, it was only applied to distinguish articulated bodily actions while head motion is 

much more subtle.

The Hierarchical Dirichlet Process — Hidden Markov Model (HDP-HMM) [43] is 

appealing to decode head motion. An extended form of the model named HDP-AR-HMM 

has been shown effective to the problem of speech diarization [44]. However, the results of 

our preliminary experiments were not encouraging, since we observed that usually the 

model generated one dominating cluster of motion, and very small remaining clusters. Such 

degraded performance might be due to difficulty of finding good parameters, prior type and 

sampling method, or it could be a result of inherent less discriminative nature of head 

motion. Although typical movements like nodding and shaking were well distinguished, in 

real interaction scenarios many movements did not fall into prototypical motion categories. 

Therefore one cluster tended to capture a disproportionate amount of movements.

Sargin et al. have proposed a method modeling head motion with Parallel-HMM [45]. The 

graphical structure was made up by several parallel left-right HMMs that shared common 

start and end nodes, where the end loops back to the start. The idea was that each branch of 

the graph captured one type of head motion. However, the method was initially proposed as 

dependent on the subject, as it was found that the model changed significantly if it was 

trained on a different subject.

In sum, a variety of methods for modeling head (body) motion exist in literature, yet the 

problem of establishing a generic structural model of head motion is still challenging.

E. Multimodal behavior analysis

The specific application domain considered in this paper is behavioral coding of interactions 

related to marital therapy. Even within this domain, there are a number of distinct types of 

behavioral codes used by the experts to describe different behaviors of interests related to a 

range of research and clinical questions (See Sec. V-A for more details). Each code 

description is cued by diverse, and often multiple, relevant communication and interaction 

modalities: voice, language use, nonverbal vocal and visual cues, etc. For example, past 

work on inferring “high” vs. “low” score on behavior codes related to Blame patterns in 

married couple conversation show that in general, lexical cues, manually transcribed or 

derived from noisy ASR lattice, were most effective for this specific behavior (e.g., around 

90%/78% accuracies respectively for estimating Blame behaviors in the binary classification 

task) [46]. The estimation accuracies for the same code just using acoustic [34] and visual 

cues [16] were close (around 70% accuracies for the same task above). This is not surprising 

given that language is the most explicit, structured, and controlled method of human 

communication in expressing blame in a conversation. In general, for across a variety of 

behavioral codes, multimodal fusion is shown to improve over a single modality [47], [48], 

[49].
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F. Behavioral entrainment

There have been computational studies on underlying behavioral mechanisms. For instance, 

human behaviors in interactions, such as movement, facial expression, physiology, and 

emotion, often become alike or coordinated. This phenomenon is called entrainment [11], or 

in other close terms — mimicry, mirroring, synchrony, etc. [50]. Behavior entrainment is an 

underlying mechanism characterizing rapport and affect between interlocutors [12], [13] and 

is connected with clinical outcomes in psycho-therapy [14]. Entrainment in behavioral 

sciences has been modeled largely qualitatively in the past, however recently some initial 

attempts on computational models of entrainment are emerging [51], [52], [53], [54].

Delaherche et al. [55] have conducted a survey of recent works on computational model of 

human interaction synchrony. In sum, the study of synchrony have spanned multimodal 

signal forms, and have been evaluated against human annotation, or through comparison 

between true interaction and pseudo-interaction. The synchrony measures of two 

interlocutors could be mainly categorized into three classes: correlation of multimodal 

features; derived from phase or spectrum of the signals; and derived from recurring 

instances from each person’s “bag of features”.

III. Modeling kinemes of head motion

We have introduced kineme in Sec. I as the elementary unit of motion in the kinesics theory. 

In this section, we model the kinemes of head motion in a data driven way, beginning with 

head motion estimation and segmentation.

A. Motion estimation

In this work, we compute optical flow of the face region as an estimate of motion. This is 

also used in other work such as by Martin et al. [56]. The procedure described here is simple 

and effective for the data we are analyzing: the audiovisual data is of relatively low-quality 

and the participants are seated and thus their lower body is relatively immobile. More 

advanced techniques can be applied, e.g., extended Kalman filter and particle filtering [23], 

[21]; however, that is not the main focus of this work.

We use the Haar-based cascade classifier implemented in OpenCV [57] to detect the 

subject’s face in each frame, and approximate the face size with the side length S of the 

square that is marking the detected face. We find the histogram of detected face sizes in 

integer value bins, and smooth the histogram by averaging with two bins on the left and 

right, respectively (i.e., 5-point moving average). We estimate the true face size as the mode 

of the smoothed histogram, i.e., the most likely value, denoted Ŝ. To reduce noise from 

erroneous detections, we exclude outliers in size by rejecting faces with size S > 1.2Ŝ or S < 

0.8Ŝ. For outliers in location, we estimate the average center of the face position, Ĥc, by 

averaging all detected face center coordinates. After finding the distance from each detected 

face center Hc to the estimated center of face position Ĥc, i.e., |Hc − Ĥc|, we exclude face 

detections with such distance larger than the head size on the horizontal axis, i.e., |Hcx − Ĥcx| 

> Ŝ, and larger than half the size of the head on the vertical axis, i.e., |Hcy − Ĥcy| > 0.5Ŝ.
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The above approach is based on the assumption of steady seated posture of the subject, and 

the thresholds are empirically chosen through observing the video and the subject 

movements. The frames that have no acceptable face detections are assigned values through 

linear interpolation of the closest adjacent annotated frames. In Fig. 2 we illustrate some 

examples of outlier removal in face detection. In each column, we display the distribution of 

the face positions for one session before and after the outlier removal and interpolation. We 

can see that the outliers (e.g., near image boundaries) are effectively removed, while the 

procedure does not influence sessions without outliers. Note that removing outlier face 

detections does not imply rejection of large head motion, since head motions are computed 

through optical flows as described below, rather than through changes of face positions.

We compute pixel-wise optical flow in the 2D plane using Farnebäck’s algorithm [58], 

denoted θ⃗ (x, y) for pixel at coordinate (x, y). In order to get frame level motion velocities, 

we propose four types of operators on the field of optical flows over the detected face 

region, i.e., horizontal, vertical, radial and rotational, denoted O⃗
X(x, y), O⃗

Y(x, y), O⃗
Z(x, y) 

and OR⃗(x, y), as shown in Fig. 3. The velocity MW is derived as in (1).

(1)

B. Kinesis activity detection

The aim of Kinesis Activity Detection (KAD) is to separate motion from non-motion in time 

domain, so that we can focus on motion segments afterwards. We use the motion velocities 

MX and MY as features to perform the segmentation. We observed that MZ and MR were of 

low SNR and provided little discriminative power thus we did not use them in this study.

We assume motion and non-motion states can each be modeled by a multi-variate Gaussian 

distribution. We use a 2-component Gaussian Mixture Model (GMM) to describe the 

distribution of MX and MY. To model transitions from motion to non-motion states we use a 

2-state HMM. The GMM and HMM are optimized iteratively. Initially, let 

 be the total velocity, where t = 1, 2, ⋯, T is the time index and T 

is the total duration. We assign the top 20% samples of M(t) to the motion class, and the rest 

to the non-motion class, for an Expectation-Maximization (EM) training of GMM. We 

initialize the self-transition probability of both HMM states to 0.9. The state of each sample 

is estimated in Maximum-a-Posteriori (MAP) sense using Forward-Backward algorithm on 

the HMM. Then the GMM is re-trained based on the new state estimation, while the HMM 

parameters are also updated. We repeat this process for 30 iterations, which is sufficient for 

convergence for our experimental data. In the end, we obtain the optimized state estimation.

Moreover, if a pause less than 0.2 seconds exists between two motion segments each longer 

than 1 second, we consider the pause as part of the motion and merge it with neighboring 

motion segments. We then remove short motion segments that are less than 1 second. The 

smoothing is applied to ensure smoothness and noise reduction and that segments are of 

significant size to include meaningful behavioral gestures.

Xiao et al. Page 8

IEEE Trans Multimedia. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Motion normalization and segmentation

Real world data recordings, such as the ones we are dealing with, tend to have large 

variability in their acquisition settings, methods, equipment, lightning, subject 

characteristics, etc. Hence the acquired data require normalization to overcome the variation, 

and to generalize across subjects.

In this study we apply two steps of normalization:

First, we observed that due to differences in the sitting posture of the subjects such as 

leaning on the couch or sitting upright in a chair, the main directions of head motion might 

not align with the horizontal and vertical image axes. To correct for this alignment issue we 

rotate the extracted motion MX and MY along the main motion directions. These are the 

Principal Component Analysis (PCA) components in the 2D plane of MX and MY, based on 

the motion segments estimated in the KAD step. We then project the motion vector (MX, 

MY) onto the new PCA axes, resulting in .

Second, we observed that the amplitude of extracted head motion varied among subjects, 

due to the distance of camera to the head, and the nature of inter-person heterogeneity. To 

correct for this we apply a zero-mean unit-variance normalization separately on  and 

for each session, obtaining  and .

KAD provides the estimation of motion states, however, there may be very long sequences 

of motion. Human head motion may change rapidly, and we assume that those long 

sequences contain multiple kinemes which are short-time stationary. We thus apply a 

shifting window on long motion segments to localize the motion events. Motion segments 

longer than 3 seconds are broken into 2-second motion events with 1 second overlap; 

otherwise preserved as a single motion event. As a result, the windowed motion events vary 

in length between 1 second to 3 seconds, due to KAD and windowing, with the bulk of the 

events being of 2 seconds.

D. Representation of head motion

We use Linear Predictive (LP) models to extract parametric representation of motion events, 

assuming head motion can be approximated by an auto-regressive process. Specifically, LP 

models are expected to be effective in capturing the frequency of repeated movements such 

as nodding and shaking. LP derived features are also consistent in dimension for motion 

events of varying lengths. In the end we convert the LP coefficients to Line Spectral 

Frequencies (LSF) since those exhibit better quantization properties [59].

We compute the LSF for  and , then concatenate the results. Let 

 be the order-N LSF feature, extracted from the segment of 

 corresponding to the i-th motion events in the j-th stream. Let 

 be the order-N LSF feature extracted from the 

corresponding segment of . We denote  as the 2N -dimensional feature 

vector representing the motion events.
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E. Generalization of head motion types

To generalize our model for various types of head motion, we employ a Gaussian Mixture 

Model (GMM) over the LSF features [60]. We assume that the mixture model is an 

approximation to the set of kinemes, where each component may be associated with one 

kineme, i.e., one type of head motion. The GMM can also be viewed as a soft clustering 

approach compared to a hard-labeled clustering such as K-means. The posterior of a motion 

event evaluated on each component can be interpreted as a partial cluster membership. Such 

a relaxation allows modeling of ambiguous motion events as combinations of multiple 

motion prototypes.

The GMM training is conducted on LSF features extracted from all motion events in all 

training sessions. We use the K-means algorithm with K clusters to initialize the training, 

and use the Expectation-Maximization algorithm for learning the parameters of the GMM. 

As a result, we obtain the prior probabilities πk, the mean vectors μk = (μk(1), μk(2), ⋯, 

μk(2N)), and the variance vectors σk = (σk(1), σk(2), ⋯, σk(2N)), i.e., the diagonal of the 

assumed diagonal covariance matrix corresponding to the feature vector of dimension 2N, 

where k = 1, 2, ⋯, K is the component index.

For GMM inference, let us consider  to be the feature vector. The likelihoods  and 

posteriors , k = 1, 2, ⋯, K, are derived from the GMM [60].

We accumulate the posteriors of all the motion events for a subject in one session, and 

consider it as a soft histogram of motion types. Such aggregated partial counts may reflect 

the composition of motion activities of a subject. Let the vector of posterior sum be Fj, the 

session duration be Tj, we obtain Fj in (2)

(2)

Note that the objective of EM is to maximize the likelihood function. Since this is an 

unsupervised optimization this may not be the same as optimizing with respect to 

behaviorally meaningful motion types. Due to the latent nature of motion types and its 

relation to behavioral characteristics, one way of optimizing the GMM may be selecting the 

model based on its discriminative power towards behavior code prediction (our intended 

application). In practice, we train an ensemble of GMMs that are initialized with different 

K-means derived parameters. With limited data, we do not have a distinct, large, held out set 

for the selection of optimal GMM that would eliminate the need for a GMM ensemble. 

Therefore we make use of the ensemble in two ways: (1) by integrating the results from each 

individual model, (2) by employing one sample of the training set as a development set to 

choose the best performing model (this will lead to X · (X − 1) -fold validation for X distinct 

samples).

To summarize, in this section we have modeled kinemes of head motion in three conceptual 

steps: segmentation, representation, and generalization of motion events. These steps are 

shown in Fig. 4.
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IV. Head motion similarity in interaction

A. Modeling head motion similarity

Our goal for head motion similarity modeling is to find similar motion activities from the 

two interlocutors, based on the proposed head motion model, and define the metric of 

similarity both for comparing motion events and for comparing the overall behavior during a 

time interval.

Let  and  be the feature vectors of two head motion events from an interacting dyad, 

say the subject w (wife) and h (husband), respectively. Let the head motion be modeled 

using the GMM in Sec. III-E, and the posterior of feature vector of head motion be denoted 

P(k|L) for component k. Mathematically, we employ a divergence formulation to quantify 

similarity, where lower divergence is equivalent to higher similarity, and vice versa. Let the 

symmetric Kullback-Leibler (KL) divergence of two posterior distributions be denoted as in 

(3).

(3)

To avoid numerical instability caused by zero values in the posterior, we add a small 

positive value ε = 1 × 10−5 to all elements of the posterior distribution and re-normalize 

before substituting to (3).

Let  be the set of feature vectors corresponding to the head motion events of 

subject w during a certain time interval , where I is the total count of motion events. 

Similarly for subject h, denote  with respect to the same time interval . We 

define the similarity measure for subject w and h over  in the form of divergence as 

follows.

1. Compute pairwise symmetric KL divergence for all pairs of motion events in ℬw 

and ℬh, resulting in a matrix DIV of size I × I′, where .

2. Convert the matrix DIV to a vector D = (d(1), d(2), ⋯, d(II′)), sorted in ascending 

order.

3. Compute similarity measures div(ℬw, ℬh, ρ) per (4), where 0 < ρ < 1 is a tuning 

parameter, and ⌊ρII′⌋ is the count of elements in D that is averaged.

(4)

We capture very similar pairs of motion events from two interactants with div(ℬw, ℬh, ρ). 

This focus on extreme values in D is based on the intuition that participants’ very similar 

motions are more behaviorally meaningful (salient). For simplicity in computation, we do 
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not match motion events of two subjects one-to-one, but take the mean of pairwise 

symmetric KL divergence as an averaged measure.

B. Dynamics of motion similarity

The motion similarity measure is influenced by the animation degree of the interlocutors. 

Without any normalization, the more animated the couple, the more likely they are to exhibit 

similar motion events. Limited by the duration of interaction sessions in our data, we divide 

each session into two halves and employ the first half as a normalizing factor thus enabling 

us to evaluate the, now, normalized degree of similarity change along the session.

Let  and  be the sets of motion events for subject w in the first and second halves of 

the interaction, respectively. Similarly let  and  be that for subject h. Let the relative 

change of similarity measure derived from the GMM with index m be denoted , as 

in (5).

(5)

Our goal is to establish the usefulness of this measure to characterize behavioral synchrony 

or entrainment. Since we do not have access to direct ground truth measures of entrainment 

for validation, we do this indirectly by examining how well the proposed similarity 

measures will statistically explain behavioral constructs (codes) where entrainment is 

implicated. We use the averaged similarity based on the ensemble of GMMs as a more 

robust measure, due to a lack of held out dataset for model selection as we discussed in 

Section. III-E. Let the log-scale averaged relative change of similarity measure be denoted 

R(w, h), as in (6). We use log operation to stretch the scales below and above 1 before 

correlating to behavior codes. R(h, w) is equal to R(w, h) since we employ symmetric KL 

divergence.

(6)

V. Couple therapy corpus

A. Data collection and annotation

The corpus used in this study comprises audio-visual recordings of seriously and chronically 

distressed couples in dyadic conversations addressing a problem in their marriage. The data 

were collected by the University of California, Los Angeles and the University of 

Washington [61]. Each couple talked about two separate problems, one chosen by the wife 

and one by the husband, for 10 minutes each. These discussions took place at three points in 

time during the therapy process: before the psychotherapy began, 26 weeks into the therapy 

and 2 years after the therapy session finished. The full database is 96 hours long and 

contained 574 sessions. The video format was 704 × 480 pixels, 30 fps, with a screen split 

and one spouse on each side.
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Both spouses in all sessions were evaluated individually following two expert designed 

coding systems, the Couples Interaction Rating System 2 (CIRS2) [62] and the Social 

Support Interaction Rating System (SSIRS) [63]. The CIRS2 contained 13 behavior codes 

and was specifically designed for conversations involving a problem in relationship, while 

the SSIRS consisted of 20 codes that measured the emotional component of the interaction 

and the topic of conversation. These codes serve the interests of various research and clinical 

questions. Of these, for this work, we focus on four codes — Acceptance, Blame from 

CIRS2, and Positive, Negative from SSIRS1, which have relations to behavioral entrainment 

that is grounded in theoretical studies [64], [65], [66]. Moreover, these also reflect general 

affect and attitudes of the subjects. The remaining codes available in the full database, which 

are associated with diverse research questions, are not conceptually relevant or directly 

within the scope of the current study’s focus on head-motion based behavioral modeling.

The researchers trained a group of undergraduate students majoring in psychology to 

perform the annotation; the annotators acquired adequate knowledge in the domain and 

could be considered as “experts” compared to naive coders. At least three students were 

assigned to the same session, where they would watch the entire session and give an overall 

score on each code. Each score is on a discrete numerical range from 1 to 9. We use the 

average score among coders as ground truth. Note that the codes only measure how much a 

particular behavior of interest occurs, independent of how much their opposite occurs. For 

example, both Positive and Negative codes can have high value if they are both present in 

the interaction.

B. Data pre-processing and filtering

The video quality of the recordings (that took place across several different clinical settings) 

is not ideal. There was no calibration carried out, and relative positions of subjects as well as 

of the cameras were not available as the database was intended originally for human-driven 

analysis. Therefore, we apply a pre-filtering step to all sessions on the left and right split 

screen content of the video in order to filter out unqualified sessions. First, we run an 

OpenCV [57] face detector on one frame per second of the video. Second, the face size is 

estimated by the mode of the distribution of detected size of the face blocks. Third, we retain 

sessions which have a face detected on more than 70% of the sampled frames, and have the 

estimated face size between 80 pixels and 160 pixels, i.e.,  to  of the image height. In 

these recordings, the upper body of a subject is generally present while it is uncertain if the 

hands are captured.

We constructed two subsets of the dataset for the two analyses of this work. First, we 

considered subjects on an individual basis, and collected samples from only one side or both 

sides of the split screen. This resulted in 561 data sequences of a single subject each. We 

denote this collection of data as 1.

1Acceptance indicates understanding and acceptance of partner’s views, feelings and behaviors. Blame indicates that one blames, 
accuses, or criticizes the partner, uses critical sarcasm, makes character assassinations. Positive and Negative are overall rating of the 
positive and negative affect the target spouse showed during the interaction. Examples include overt expressions of warmth, support, 
acceptance, affection, positive negotiation and compromise for Positive, and rejection, defensiveness, blaming, and anger for 
Negative.
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Second, we considered the interaction of two interlocutors, i.e., a couple, and collected 

sessions in which the video quality of both partners satisfy our pre-filtering conditions. As a 

result 163 sessions (326 single-subject sequences, 66 unique pairs of couples) were 

obtained. We denote this collection of data as 2. Compared to our previous works [16], 

[17], we now utilize more than twice the data.

VI. Experiments and hypothesis tests

A. Inferring expert judgment on behavior using head motion signal

We address a problem of classifying “low” vs. “high” presence of certain behavior codes for 

a subject in this section, in order to investigate the effectiveness of the proposed head 

motion model. While the behavior codes are assigned discrete values from 1 to 9 by the 

human coders, we divide the dataset 1 for each code into three parts:  and  for the 

top 25% of sessions with the highest scores and the 25% of sessions with the lowest scores, 

respectively; as well as  for the middle 50% of the sessions.

We consider four behavior codes: Acceptance, Blame, Positive and Negative which are 

introduced in Sec. V-A. The human experts achieved 0.7 correlation in their annotations of 

these codes, pointing to high inter-coder agreement. This suggests that the behaviors are 

consistently represented and perceived by human coders and thus provide a meaningful 

challenge to address using computational methods.

In contrast to [16] where the model was trained on  and , in this work we train our 

model on . This keeps training and testing data disjoint thus it avoids a need for cross-

validation on the model construction.2 For the linear predictive analysis step (Sec. III-D), a 

higher filter order N yields a better fit and decreased residual error but at the cost of 

overfitting and increasing the feature dimensions and hence the complexity of the resulting 

GMM. For our experiments, we choose a linear predictive analysis order of N = 10 based on 

pilot trials, where any higher order does not improve the performance. The number of GMM 

mixtures K should be selected to reflect the number of head motion kinemes. However, the 

number of kinemes is unknown given that the nature of head motion structure is not 

obvious, so we experimentally examine K from 3 to 25. The lower bound is chosen to model 

a very coarse category of kinemes, while the upper bound is much larger than the number of 

head motion types proposed in most existing coding systems. This larger upper limit is also 

motivated by the assumption that automatic clustering may capture finer types than manual 

labeling, although in practice it is constrained by available data samples to robustly learn the 

GMM. We run the GMM training with randomized initialization for M = 50 times to get an 

ensemble of GMMs, where the number 50 is chosen as a trade-off between having an 

adequate number to increase robustness and assuring affordability in terms of computational 

complexity.

We test the model by setting up a binary classification problem where the samples in 

and  are in two classes. The features for training the binary classifiers are the 

2Cross validation is still needed for other aspects of the analysis as described below.
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accumulated posterior vectors of the motion events, defined as Fj in Sec. III-E. We use a 

linear Support Vector Machine (SVM) as our binary classifier [67]. Limited by the number 

of samples, i.e., 282 in total combining  and , we carry out a leave-one-subject-out 

cross validation. This means we train the SVM on all but one subject, and test on that 

subject; and we repeat the process for every subject in the dataset for classification. 

Constrained by data sparsity, we use this scheme to validate our method’s ability to 

generalize across different subjects. The total number of subjects (wives and husbands) in 

experiments with respect to each code is included in Table I.

We consider two approaches for fusing the M models given the same K. First, we choose the 

classifier that performs best on the training data itself in each round, denoting its test 

performance as Acct. This in a sense is using the training data as the development data, due 

to data sparsity. The second approach is to predict using all the M GMMs and employ 

majority-voting as the decision, with the test performance denoted Acce. The assumption 

here is that the clustering that converges at other local minima is detecting events 

independent to the behavior codes of interest, hence averaging would cancel those out.

We plot the results of Acct and Acce for the four target behavior codes (Acceptance, Blame, 

Positive, Negative) and different values of K in Fig. 5. As we can see, the best results of both 

Acct and Acce exceed 60% accuracy, and are close to 70% for some codes. However, the 

best-performing number of clusters K differs by codes. There is a general trend of better 

accuracy with larger K, but the fluctuation of accuracy against K is also high. This means 

that increasing the number of clusters by one may lead to better or worse results. Since the 

space of motion types is latent, it is difficult to answer what is the optimal K from a 

theoretical perspective.

Following the above discussion, we want to examine the feasibility of automatic model 

selection among all K values and ensembles of GMMs, which was not addressed previously 

in [16]. Due to the lack of a development set, we run an innerlayer of cross-validation 

against all GMMs, i.e., during each round of testing, among the X-but-one training subjects, 

we again repeatedly train on X-but-two subjects and test on the corresponding left out 

subject for X − 1 times. This leads to a total of X · (X − 1) times of training and testing 

binary classifiers. We evaluate the effectiveness of GMMs by the average accuracy in X − 1 

times of cross-validation. Based on the evaluated performance, we may select a group of 

models in practice. In the experiment, we check the averaged test accuracy Accυ based on 

the majority vote of the selected top V models out of 1150 GMMs in each round, where V is 

an odd number from 1 to 199. In Table I we show Accυ for V = 199, as we find that Accυ 

converges around V = 99 and in general stays stable afterwards. The values of Accυ are 

significantly better than chance (accuracy of 0.5) at p ≤ 0.01 based on one-tailed binomial 

test.

B. Hypothesis tests on motion similarity dynamics

We examine the hypothesis that the relative change of similarity measure is linked to target 

behavioral characteristics of subjects, based on dataset 2 containing 163 sessions. Denote 

ℛ as the vector of similarity measures for both the wives and the husbands in (7):
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(7)

Let Y (w), Y (h) be the behavior code value for subject w and h, respectively. Denote  as 

the vector of a certain behavior code for all the subjects as in (8).

(8)

We investigate the Pearson’s correlation coefficients between ℛ and , with hypotheses 

testing performed using student’s t-distribution. The null and alternative hypotheses are:

H0 ℛ and  are uncorrelated.

Ha there is some correlation between ℛ and .

In [17] we trained the head motion model on the same set for testing correlation. In this 

work, we use the set c = {s|s ∈ 1, s ∉ 2} to train the head motion model, which is 

disjoint to 2. Similar to the previous experiment, we set N = 10, M = 50, and K ∈ {3, 4, ⋯, 

25}. We sample the value of parameter ρ (0 < ρ < 1) including 0.01, 0.02, and from 0.05 to 

0.25 with a step size of 0.05. We found that there were sessions with extreme values of r ∈ 

ℛ, where the estimation of head motion was contaminated by recording artifacts as the 

video were originally recorded on tapes. In order to avoid the influence of outliers, we 

exclude sessions of the top 3% largest |r| values (on two tails in logarithm domain) for each 

test of correlation.

Moreover, to verify that any found correlations are meaningful effects of the interaction, we 

conduct the correlation analysis with random pairings of interacting subjects. In other words, 

the similarity and relative change are computed based on subjects who did not interact with 

each other (i.e., not “true” couples). We repeat the shuffling for 100 times.

As a result, we find consistent significant correlations for the four behavior codes of interest: 

Acceptance, Blame, Positive, and Negative. In Fig. 6a we show the correlations obtained 

with ρ = 0.05. In general, we can see that the signs of the correlations confirm to the polarity 

of codes. For example, negative emotional codes such as Blame and Negative are positively 

correlated with divergence, and vice versa for positive emotional codes Acceptance and 

Positive.

The correlations are significant at p < 0.05 for K in the range of 7 to 9, and also 13 to 16 for 

Positive and Negative. For the above cases, we reject H0 and suggest Ha. The most 

prominent correlations are obtained with K = 9. Compared with the findings in Sec. VI-A, 

we see that larger values of K may provide higher discriminative power; however, a very 

fine clustering of motion types may not help tracking the similarity of motion.

In addition, we display the correlation with K = 9 and different ρ values in Fig. 6b. We see 

that smaller ρ yields stronger correlation. The results are comparable for ρ = 0.02 and ρ = 

0.05, which suggests that the setting of ρ is not necessarily fixed to a particular value but 

robust over a range. The correlation decreases as ρ becomes larger. This might suggest that 

closer matching of behaviors are more salient, i.e., pairs of motion with small divergence are 

more influential on the coder’s judgment of the interlocutor’s behavioral characteristics.
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In Table II we show the statistics of the correlation results in randomized pairings of 

subjects, with K = 9 and ρ = 0.05. The mean of correlation is close to 0, and any significant 

correlation (p < 0.05) is beyond at least one standard deviation. This suggests that although 

spurious high correlation may occur in the random pairings, it does not generally happen.

In sum, we have shown the relation between the proposed head motion similarity measure 

and the expert-specified behavioral characteristics. In the future we would like to investigate 

if the relation can be strengthened such that the similarity can become a feature for code 

value inference.

VII. Discussion

A. Analysis of the head motion model

Our head motion model is derived by a data driven approach; therefore, we would like to 

analyze what kind of kinemes the model captures. We take one GMM from the ensemble 

that is trained with N = 10, K = 9 on c as an example, which yields strong correlation in 

Sec. VI-B. Recall that μ1, μ2, ⋯, μ9 are the mean vectors in the GMM, each composed by 

the averaged L(x) and L(y) that are LSF parameters. We convert each L(x) and L(y) to linear 

predictive coefficients L′ (x) and L′ (y), which can be viewed as coefficients of auto-

regressive filters.

We plot the filter impulse responses along the horizontal and vertical directions for the 9 

clusters in Fig. 7. In addition, we retrieve motion events of high posterior probability (> 

0.95) on each cluster from 2, and watch the collection of corresponding video segments per 

cluster. Associating the impulse responses and the collected motion events, we find that the 

clustering identifies not only head nod and shake, but also the magnitude (small or large) 

and speed (slow or fast). Such clustering confirms Hadar’s findings [2] that were introduced 

in Sec. I of the paper. Recall that Hadar proposed five classes of head motion, namely “slow, 

ordinary, rapid, posture shift, and tremor”. We can see there is substantial overlap between 

the knowledge driven clustering proposed by Hadar and the automatic clustering learned 

from data and annotations of high level behavioral characteristics. The details of cluster 

descriptions are included in Fig. 7.

The above result emphasizes that head motion should be studied with the aspects of 

magnitude and speed taken into consideration. It also shows that linear predictive analysis 

method is suitable for capturing these properties of head motion. In both experiments, the 

datasets for training and applying the head motion model are disjoint, showing that the 

modeling approach generalizes well.

B. Future directions

In the future, there are many directions to advance behavior analysis. From the head motion 

modeling perspective, direct and more accurate motion acquisition methods such as Kinect 

along with finer face tracking can be applied to get 3D motion signal. Joint segmentation 

and clustering algorithms in addition to novel representation methods can be designed to 

formulate a better set of typical motion exemplars. From the behavior analysis perspective, 

machine learning methods can be applied to answer how these motion patterns link to the 
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expert’s behavior judgment. Alongside, methods for effectively incorporating domain 

knowledge into the algorithm should be developed, e.g., characterizing the behavioral 

meaning of gestures.

Behavior is expressed multimodally; thus modeling of a single modality, e.g., head motion, 

may provide useful information about particular behavioral characteristics, but may not 

contain the full information in the multimodal expression. The behavior code classification 

method in this work based on head motion, though not adequate to work alone, provides an 

important stream of behavioral cues that may be integrated within a multimodal system for 

more effective analysis. Future modeling techniques may consider multiple channels jointly.

Moreover, certain parts of the interaction may be more important than others in terms of 

carrying behavioral meaning, which is often referred as “salient” events [68]. Identifying 

salient events and weighting the signal derived features may lead to better understanding of 

the big picture of human interaction. Human interaction is also dynamic and interactive. We 

simplified the problem by using “bag-of-motion-events” in the experiments, while in the 

future we would like to model the mutual influence among the interlocutors.

The above research goals have to be supported by sufficient real rather than acted 

interaction data, ideally from natural encounters. Proper data collection systems must be 

implemented, ideally being multimodal, multi-channel, high quality and non-intrusive. Data 

annotation is also a key part of the study. So far we have been relying on psychologists to 

score the behavior along the dimensions of well-designed coding systems. Coder reliability 

and the consistency among coders are some of the key issues that influence both the 

modeling and validation. Quantifying the human coder biases may help to better understand 

the ground-truth. In cases where constraints on data publication due to subject privacy can 

be relaxed, one might also take advantage of the crowd-sourcing approaches to obtain other 

non-expert views on the data.

VIII. Conclusion

Head motion is an important channel of nonverbal communication that conveys rich 

information. In this paper we described a data driven method to model head motion in 

human interaction, in order to analyze socio-communicative and affective behavioral 

characteristics of interacting partners. We first segmented the stream of 2D motion into 

small chunks of motion events, then extracted linear predictive features to represent the 

signal, and finally constructed GMMs to generalize the motion into kinemes. We applied the 

model in a binary classification problem of “high” vs. “low” presence of certain target 

behavior codes that were annotated by domain experts. We achieved accuracies around 60% 

to 70% in general using the proposed model. In addition, we derived a similarity measure of 

head motion in order to approximate behavioral entrainment in interaction. Through 

statistical hypotheses tests, we found that the relative change of similarity correlated with 

behavior code values, where entrainment processes are conceptually implicated to be at 

work. These results demonstrated the promise of the proposed model.
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In the future, we would like to work on improvement of head motion signal extraction, 

multimodal analysis of behavior, saliency analysis of behavioral cues, as well as extended 

data collection. We believe signal processing approaches on multimedia observational data 

can greatly impact the understanding of human behavior and its translation to societal 

applications such as in health and educational assessment and intervention.
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Fig. 1. 
Automated path — Machine Processing, Manual Path —Human annotation, Behavioral 

entrainment—Head motion similarity
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Fig. 2. 
Examples of face position distribution before and after outlier removal. (a) ~ (f): before; (g) 

~ (l): after; one column per session.
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Fig. 3. 
Operators on the optical flow field
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Fig. 4. 
Illustration of the processing steps in Sec. III.
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Fig. 5. 
Binary classification of behavior codes using model selected by training accuracy or 

majority-voting of the ensemble of models
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Fig. 6. 
Results of hypotheses tests for the correlation between ℛ and 
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Fig. 7. 
Impulse responses of the linear filters representing typical motions. Tentative descriptions: 

1. small nod 2. small shake 3. large nod 4. large shake 5. slow wide shake 6. slow short 

sweep 7. fast small shake 8. camera shake and snow flake 9. slow wide sweep
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TABLE I

Binary classification accuracies of behavior codes using 199 models selected by cross-validation

Code Acceptance Blame Positive Negative

Subjects 136 141 144 142

Sessions 282 282 282 282

Accυ 0.64 0.60 0.63 0.57

Sig. 1e–6 1e–3 1e–5 1e–2
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TABLE II

Correlation between ℛ and  in randomized pairings

Code Acceptance Blame Positive Negative

Mean of correlation −0.015 0.001 −0.009 0.011

Std of correlation 0.05 0.05 0.05 0.06
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