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Abstract

In this paper, we study the theoretical properties of a class of iteratively re-weighted least squares 

(IRLS) algorithms for sparse signal recovery in the presence of noise. We demonstrate a one-to-

one correspondence between this class of algorithms and a class of Expectation-Maximization 

(EM) algorithms for constrained maximum likelihood estimation under a Gaussian scale mixture 

(GSM) distribution. The IRLS algorithms we consider are parametrized by 0 < ν ≤ 1 and ε > 0. 

The EM formalism, as well as the connection to GSMs, allow us to establish that the IRLS(ν, ε) 

algorithms minimize ε-smooth versions of the ℓν ‘norms’. We leverage EM theory to show that, 

for each 0 < ν ≤ 1, the limit points of the sequence of IRLS(ν, ε) iterates are stationary point of the 

ε-smooth ℓν ‘norm’ minimization problem on the constraint set. Finally, we employ techniques 

from Compressive sampling (CS) theory to show that the class of IRLS(ν, ε) algorithms is stable 

for each 0 < ν ≤ 1, if the limit point of the iterates coincides the global minimizer. For the case ν = 

1, we show that the algorithm converges exponentially fast to a neighborhood of the stationary 

point, and outline its generalization to super-exponential convergence for ν < 1. We demonstrate 

our claims via simulation experiments. The simplicity of IRLS, along with the theoretical 

guarantees provided in this contribution, make a compelling case for its adoption as a standard 

tool for sparse signal recovery.

I. Introduction

Compressive sampling (CS) has been among the most active areas of research in signal 

processing in recent years [1], [2]. CS provides a framework for efficient sampling and re-

construction of sparse signals, and has found applications in communication systems, 

medical imaging, geophysical data analysis, and computational biology.

The main approaches to CS can be categorized as optimization-based methods, greedy/

pursuit methods, coding-theoretic methods, and Bayesian methods (see [2] for detailed 

discussions and references). In particular, convex optimization-based methods such as ℓ1-
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minimization, the Dantzig selector, and the LASSO have proven successful for CS, with 

theoretical performance guarantees both in the absence and in the presence of observation 

noise. Although these programs can be solved using standard optimization tools, iteratively 

re-weighted least squares (IRLS) has been suggested as an attractive alternative in the 

literature. Indeed, a number of authors have demonstrated that IRLS is an efficient solution 

technique rivalling standard state-of-the-art algorithms based on convex optimization 

principles [3], [4], [5], [6], [7], [8]. Gorodnitsky and Rao [3] proposed an IRLS-type 

algorithm (FOCUSS) years prior to the advent of CS and demonstrated its utility in 

neuroimaging applications. Donoho et al. [4] have suggested the usage of IRLS for solving 

the basis pursuit de-noising (BPDN) problem in the Lagrangian form. Saab et al. [5] and 

Chartrand et al. [6] have employed IRLS for non-convex programs for CS. Carrillo and 

Barner [7] have applied IRLS to the minimization of a smoothed version of the ℓ0 ‘norm’ for 

CS. Wang et al. [8] have used IRLS for solving the ℓν -minimization problem for sparse 

recovery, with 0 < ν ≤ 1. Most of the above-mentioned papers lack a rigorous analysis of the 

convergence and stability of the IRLS in the presence of noise, and merely employ IRLS as 

a solution technique for other convex and non-convex optimization techniques. However, 

IRLS has also been studied in detail as a stand-alone optimization-based approach to sparse 

reconstruction in the absence of noise by Daubechies et al. [9].

In [10], Candès, Wakin and Boyd have called CS the “modern least-squares”: the ease of 

implementation of IRLS algorithms, along with their inherent connection with ordinary 

least-squares provide a compelling argument in favor of its adoption as a standard algorithm 

for recovery of sparse signals [9].

In this work, we extend the utility of IRLS for compressive sampling in the presence of 

observation noise. For this purpose, we use the Expectation-Maximization (EM) theory for 

Normal/Independent (N/I) random variables and show that IRLS applied to noisy 

compressive sampling is an instance of the EM algorithm for constrained maximum 

likelihood estimation under a N/I assumption on the distribution of its components. This 

important connection has a two-fold advantage. First, the EM formalism allows to study the 

convergence of IRLS in the context of the EM theory. Second, one can evaluate the stability 

of the IRLS as a maximum likelihood problem in the context of noisy CS. More specifically, 

we show that the said class of IRLS algorithms, parametrized by 0 < ν ≤ 1 and ε > 0, are 

iterative procedures to maximize ε-smooth approximations to the ℓν ‘norms’. We use EM 

theory to prove convergence of the algorithms to stationary points of the objective, for each 

0 < ν ≤ 1. We employ techniques from CS theory to show that the IRLS(ν, ε) algorithms are 

stable for each 0 < ν ≤ 1, if the limit point of the iterates coincides with the global minimizer 

(which is trivially the case for ν = 1, under mild conditions standard for CS). For the case ν 

= 1, we show that the algorithm converges exponentially fast to a neighborhood of the 

stationary point, for small enough observation noise. We further outline the generalization of 

this result to super-exponential convergence for the case of ν < 1. Finally, through numerical 

simulations we demonstrate the validity of our claims.

The rest of our treatment begins with Section II, where we introduce a fairly large class of 

EM algorithms for likelihood maximization within the context of N/I random variables. In 

the following section, we show a one-to-one correspondence between the said class of EM 
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algorithms and IRLS algorithms which have been proposed in the CS literature for sparse 

recovery. In Sections IV and V, we prove the convergence and stability of the IRLS 

algorithms identified previously in Section III. We derive rates of convergence in Section VI 

and demonstrate our theoretical predictions through numerical experiments in Section VII. 

Finally, we give concluding remarks in Section VIII.

II. Normal/Independent random variables and the Expectation-Maximization 

algorithm

A. N/I random variables

Consider a positive random variable U with probability distribution function pU(u), and an 

M-variate normal random vector Z with mean zero and non-singular covariance matrix Σ. 

For any constant M-dimensional vector μ, the random vector

(1)

is said to be a normal/independent (N/I) random vector [11]. N/I random vectors encompass 

large classes of multi-variate distributions such as the Generalized Laplacian and multi-

variate t distributions. Many important properties of N/I random vectors can be found in [12] 

and [11]. In particular, the density of the random vector Y is given by

(2)

with

(3)

for x ≥ 0 [11].

N/I random vectors are also commonly referred to as Gaussian scale mixtures (GSMs). In 

the remainder of our treatment, we use the two terminologies interchangeably.

Eq. (2) is a representation of the density of an elliptically-symmetric random vector Y [13]. 

Eq. (3) gives a canonical form of the function κ(·) that arises from a given N/I distribution. 

However, when substituted in Eq. (2), not all κ(·) lead to a distribution in the GSM family, 

i.e., to random vectors which exhibit a decomposition as in Eq. (1). This will be important in 

our treatment because we will show that IRLS algorithms which have been proposed for 

sparse signal recovery correspond to specific choices of κ(x) which do lead to GSMs. In 

[14], Andrews et al. give sufficient and necessary conditions under which a symmetric 

density belongs to the family of GSMs. In [11], Lange et al. generalize these results by 

giving sufficient and necessary conditions under which a spherically-symmetric random 

vector is a GSM (note that any elliptically-symmetric density as in Eq. (2), with non-

singular covariance matrix, can be linearly transformed into a spherically-symmetric 
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density). The following theorem gives necessary and sufficient conditions under which a 

given choice of κ(x) leads to a density in the N/I family.

Proposition 1 (Conditions for a GSM)—A function f(x) : ℝ ↦ ℝ is called completely 

mono-tone iff it is infinitely differentiable and (−1)kf(k)(x) ≥ 0 for all non-negative integers k 

and all x ≥ 0. Suppose Y is an elliptically-symmetric random vector, with representation as in 

Eq. (2), then Y is a N/I random vector iff κ′(x) is completely monotone.

We refer the reader to [11] for a proof of this result.

B. EM algorithm

Now, suppose that one is given a total of P samples from multi-variate N/I random vectors, 

yi, with mean and covariances μi(θ) and Σi(θ) respectively, for i = 1, 2, · · ·, P, all 

parametrized by an unknown parameter vector θ. Let

(4)

for i = 1, 2, · · ·, P. Then, the log-likelihood of the P samples, parametrized by θ, is given by:

(5)

An Expectation-Maximization algorithm for maximizing the log-likelihood results if one 

linearizes the function κ(x) at the current estimate of θ. This is due to the fact that

(6)

and hence linearization of κ(x) at the current estimate of θ gives the Q-function by taking the 

scale variable U as the unobserved data [15], [11]. If θ(ℓ) is the current estimate of θ, then the 

(ℓ + 1)th iteration of an EM algorithm maximizes the following Q-function:

(7)

Maximization of the above Q-function is usually more tractable than maximizing the 

original likelihood function.

The EM algorithm is an instance of the more general class of Majorization-Minimization 

(MM) algorithms [16]. The EM algorithm above can also be derived in the MM formalism, 

that is, without recourse to missing data or other statistical constructs such as marginal and 

complete data likelihoods. In [11], Lange et al. take the MM approach (without missing 

data) and point out that the key ingredient in the MM algorithm is the κ(·) function, which is 

related to the missing data formulation of the algorithm through Eq. (6).
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III. Iterative Re-weighted Least Squares

In this section, we define a class of IRLS algorithms and show that they correspond to a 

specific class of EM algorithms under GSM assumptions.

A. Definition

Let x ∈ ℝM be such that |{xi : xi ≠ 0}| ≤ s, for some s < M. Then, x is said to be an s-sparse 

vector. Consider the following observation model

(8)

where b ∈ ℝN, with N < M is the observation vector, A ∈ ℝN×M is the measurement matrix, 

and n ∈ ℝN is the observation noise. The noisy compressive sampling problem is concerned 

with the estimation of x given b, A and a model for n. Suppose that the observation noise n is 

bounded such that ||n||2 ≤ η, for some fixed η > 0. Let  := {x : ||b − Ax||2 ≤ η}. Let w ∈ ℝM 

such that wi > 0 for all i = 1, 2, · · ·, M. Then, for all x, y ∈ ℝM, the inner-product defined by

(9)

induces a norm .

Definition 2—Let ν ∈ (0, 1] be a fixed constant. Given an initial guess x(0) of x (e.g. the 

least-squares solution), the class of IRLS(ν, ε) algorithms for estimating x generates a 

sequence  of iterates/refined estimates of x as follows:

(10)

with

(11)

for i = 1, 2, · · ·, M and some fixed ε > 0.

Each iteration of the IRLS algorithm corresponds to a weighted least-squares problem 

constrained to the closed quadratic convex set , and can be efficiently solved using the 

standard convex optimization methods. The Lagrangian formulation of the IRLS has a 

simple closed form expression which makes it very appealing for implementation purposes 

[4]. Moreover, if the output SNR is greater than 1, that is, ||n||2 ≤ η < ||b||2, then 0 is not a 

feasible solution. Hence, the gradient of  is non-vanishing over . Therefore, the 

solutions lie on the boundary of , given by ||b−Ax||2 = η. Such a problem has been 

extensively studied in the optimization literature in its dual form, for which several robust 
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and efficient solutions exist (See [17] and references therein). Finally, note that when η = 0, 

the above algorithm is similar to the one studied by Daubechies et al. [9]. Throughout the 

paper, we may drop the dependence of IRLS(ν, ε) on ν and ε, and simply denote it by IRLS, 

wherever there is no ambiguity.

B. IRLS as an EM algorithm

Consider an M-dimensional random vector y ∈ ℝM with independent elements distributed 

according to

(12)

for some function κ(x) with completely monotone derivative. Note that y is parametrized by 

θ := (x1, x2, · · ·, xM)T ∈ . The Q-function of the form (7) given the observation y = 0 ∈ ℝM 

is given by:

(13)

Identifying  with  in Eq. (10), we have

(14)

for x ≥ 0. It is not hard to show that κ′(x) is completely monotone [11] and hence, according 

to Proposition 1, κ(x) given by

(15)

defines an N/I univariate random variable with density given by Eq. (12). The log-likelihood 

corresponding to the zero observation is then given by

(16)

Therefore, the IRLS algorithm can be viewed as an iterative solution, which is an EM 

algorithm [11], for the following program:

(17)
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Note that the above program corresponds to minimizing a ε-smoothed version of the ℓν 

‘norm’ of x (Figure 1) subject to the constraint ||b − Ax||2 ≤ η, that is

(18)

The function fν (x) has also been considered in [9] in the analysis of the IRLS algorithm for 

noiseless CS. However, the above parallel to EM theory can be generalized to any other 

weighting scheme with a completely monotone derivative. For instance, consider the IRLS 

algorithm with the weighting:

(19)

for some ε > 0. Using the connection to EM theory [11], it can be shown that this IRLS is an 

iterative solution to

(20)

which is a perturbed version of ℓ1 minimization subject to ||b − Ax||2 ≤ η.

IV. Convergence

The convergence of the IRLS iterates in the absence of noise have been studied in [9], where 

the proofs rely on the null space property of the constraint set. The connection to EM theory 

allows to derive convergence results in the presence of noise using the rich convergence 

theory of EM algorithms.

A. Convergence of IRLS as an EM Algorithm

It is not hard to show that the EM algorithm provides a sequence of iterates  so that 

sequence of log-likelihoods  converges. However, one needs to be more prudent 

when making statements about the convergence of the iterates . Let  denote a, 

non-empty, closed, strictly convex subset of ℝN. Let : ℝM ↦ ℝM be the map

(21)

for all z ∈ ℝM, where

(22)
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Results from convex analysis [18] imply the following sufficient and necessary optimality 

condition for x* ∈ , the unique minimizer of  over :

(23)

Moreover, continuity of  in x and z implies that  is a continuous map [19]. We 

prove this latter fact formally in Appendix A. The proof of convergence of the EM iterates 

to a stationary point of the likelihood function can be deduced from variations on the global 

convergence theorem of Zangwill [20] (See [19] and [21]). For completeness, we present a 

convergence theorem tailored for the problem at hand:

Theorem 3 (Convergence of the sequence of IRLS iterates)—Let x(0) ∈  and 

 be a sequence defined as x(ℓ+1) = (x(ℓ)) for all ℓ. Then, (i) x(ℓ) is bounded 

and ||x(ℓ) − x(ℓ+1)||2 → 0, (ii) every limit point of  is a fixed point of , (iii) every 

limit point of  is a stationary point of the function  over 

, and (iv) fν(x(ℓ)) converges monotonically to fν(x*), for some stationary point x*.

Proof: (i) is a simple extension of Lemmas 4.4 and 5.1 in [9], where one substitutes 〈x(ℓ+1), 

x(ℓ) − x(ℓ+1)〉w(x(ℓ)) ≥ 0 for the optimality conditions at each iterate ℓ.

(ii) From (i),  is a bounded sequence. The Bolzano-Weierstrass theorem establishes 

that  has at least one convergent subsequence. Let x(ℓk) → x̄ be one such convergent 

sub-sequence:

(24)

Since x(ℓk+1) = (x(ℓk)), the continuity of the map  implies that

(25)

Therefore, x̄ is a fixed point of the mapping .

(iii) To establish (iii), we will show that the limit point of any convergent subsequence 

{x(ℓk)}k of  satisfies the necessary conditions of the stationary points of the 

minimization of  over . Note that x̄ = (x̄) if and only if 〈x̄, x − 

x̄〉w(x̄) ≥ 0 for all x ∈ . Moreover,
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(26)

Note that 〈∇fν(x̄), x − x̄ 〉 ≥ 0 is the necessary condition for a stationary point x̄ of fν(x) over 

the strictly convex set  [18]. Finally, (iv) follows from the continuity of  in x and z, 

and convexity of  (See Theorem 2 of [21]). This concludes the proof of the theorem.

B. Discussion

Note that Theorem 3 implies that if the minimizer of fν(x) over  is unique, then the IRLS 

iterates will converge to this unique minimizer. Moreover, by Theorem 5 of [21], the limit 

points of IRLS lie in a compact and connected subset of the set {x : fν (x) = fν(x*)}. In 

particular, if the set of stationary points of fν(x) is finite, the IRLS sequence of iterates will 

converge to a unique stationary point. However, in general the IRLS is not guaranteed to 

converge (i.e. the set of limit points of the sequence of iterates is not necessarily a 

singleton).

There are various ways to choose ε adaptively or in a static fashion. Daubechies et al. [9] 

suggest a scheme where ε is possibly decreased in each step. This way fν(x) provides a better 

approximation to the ℓν norm. Saab et al. [5] cascade a series of IRLS with fixed but 

decreasing ε, so that the output of each is used as the initialization of the next.

The result of Theorem 3 can be generalized to incorporate iteration-dependent changes of ε. 

Let  be a sequence such that limℓ→∞ε(ℓ) = ε̄ ≥ 0. It is not hard to show that 

Theorem 3 holds for such a choice of {ε(ℓ)}, by defining , if ε̄ > 0. 

Let x̄ be a limit point of the IRLS iterates. Then, if ε̄ = 0 and Tx̄ := supp(x̄) ⊆ {1, 2, · · ·, M}, 

then the results of parts (iii) and (iv) of Theorem 3 holds for minimization of 

 over . This general result encompasses both 

the approach of Daubechies et al. [9] (in the absence of noise), and Saab et al. [5] as special 

cases. The technicality under such iteration-dependent choices of ε arises in showing that x̄ 

is the fixed point of the limit mapping (z), which can be established by invoking the 

uniform convergence of  to (x̄) for any given subsequence {z(ℓ)} 

converging to x̄. A formal proof is given in Appendix B. For simplicity and clarity of 

presentation, the remaining results of this paper are presented with the assumption that ε > 0 

is fixed.

V. Stability of IRLS for noisy CS

Recall that fν(x) is a smoothed version of . Hence, for 0 < ν ≤ 1, the global minimizer of 

fν(x) over  is expected to be close to the s-sparse x, given sufficient regularity conditions on 

the matrix A [8], [5]. Bounding the distance of this minimizer to the s-sparse x provides the 
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desired stability bounds. For ν = 1, f1(x) is strictly convex. Therefore the solution of the 

minimization of f1(x) over the convex set  is unique [18]. Hence, the IRLS iterates will 

converge to the unique minimizer in this case. However, for ν < 1, the IRLS iterates do not 

necessarily converge to a global minimizer of fν(x) over . In practice, the IRLS is applied 

with randomly chosen initial values, and the limit point with the highest log-likelihood is 

chosen [7].

Recall that the matrix A ∈ ℝN×M is said to have Restricted Isometry Property (RIP) [22] of 

order s < M with constant δs ∈ (0, 1), if for all x ∈ ℝM supported on any index set T ⊂ {1, 2, 

· · ·, M} satisfying |T| ≤ s, we have

(27)

The following theorem establishes the stability of the minimization of fν(x) over  in the 

noisy setting:

Theorem 4

Let b = Ax+n be given such that x ∈ ℝM is s-sparse. Let m be a fixed integer and suppose 

that A ∈ ℝN×M satisfies

(28)

Suppose that ||n||2 ≤ η and let  := {x : ||b − Ax||2 ≤ η}. Let ε > 0 be a fixed constant. Then, 

the solution to the following program

(29)

satisfies

(30)

where C1 and C2 are constants depending only on ν, s/m, δm and δm+s.

Proof—The proof is a modification of the proof of Theorem 4 in [5], which is based on the 

proof of the main result of [23]. Let T0 := {i : xi ≠ 0}. Let S ⊆ {1, 2, ···, M}. We define

(31)

Let x̄ be a global minimizer of fν(x) over  and let h := x̄ − x. It is not hard to verify the 

following fact:
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(32)

The above inequality is the equivalent of the cone constraint in [23]. Moreover, it can be 

shown that

(33)

for any x ∈ ℝM and S ⊆ {1, 2, ···, M} such that |S| ≤ s. By dividing the set  into the sets T1, 

T2, ··· of size m, sorted according to decreasing magnitudes of the elements of  , it can be 

shown that

(34)

where T01 := T0 ∪ T1. Also, by the construction of  and the hypothesis of the theorem 

about A, one can show that [5], [23]:

(35)

Combining Eqs. (34) and (35) with the fact that , yields.

(36)

where

(37)

and

(38)

Remark

Note that the result of Theorem 4 can be extended to compressible signals in a 

straightforward fashion [5]. Moreover, as it will be shown in the next section, the hypothesis 
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of Eq. (28) can be relaxed to the sparse approximation property developed in [24], with a 

similar characterization of the global minimizer under study.

VI. Convergence Rate of IRLs for noisy CS

In presenting our results on the convergence rate of IRLS in presence of noise, it is more 

convenient to employ a slightly weaker notion of near isometry of the matrix A developed in 

[24]. This is due to the structure of the IRLS algorithm, which makes it more convenient to 

analyze the convergence rate in the ℓ1 sense, and as it becomes clear shortly, the sparse 

approximation property is the more appropriate choice of regularity condition on the matrix 

A.

A. Sparse approximation property and its consequences

We say that a matrix A has the sparse approximation property of order s if

(39)

for all x ∈ ℝM, where S is an index set such that |S| ≤ s, and D and β are positive constants. 

Note that RIP of order 2s implies sparse approximation property [24], but the converse is not 

necessarily true. The error bounds obtained in Theorem 4 can be expressed in terms of D 

and β in a straightforward fashion [24]. A useful consequence of the sparse approximation 

property is the reverse triangle inequality in presence of noise:

Proposition 5—Let A satisfy the sparse approximation property of order s with constants β 

< 1 and D. Let x1, x2 ∈  := {x : ||b − Ax||2 ≤ η} and suppose that x1 is s-sparse. Then, we 

have:

Proof: Let T be the support of x1. Then, we have:

(40)

The sparse approximation property implies that

(41)

Moreover, ||A(x2 − x1)||2 ≤ 2η, by the construction of . Hence, combining Eqs. (40) and 

(41) yield:
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(42)

which together with Eq. (40) gives the statement of the proposition.

The above reverse triangle inequality allows to characterize the stability of the IRLS in the 

ℓ1 sense. This is indeed the method used by Daubechies et. al [9] in the absence of noise. Let 

x̄ be the minimizer of f1(x) over . Then, it is straightforward to show that

(43)

Combining the above inequality with the statement of Proposition 5 yields:

(44)

Note that the above bound is optimal in terms of η up to a constant, since 

, and in fact ||n||1 may achieve the value of .

B. Convergence rate of the IRLS

Let  be a sequence of IRLS iterates that converge to a stationary point x̄, for ν = 1. 

We have the following theorem regarding the convergence rate of IRLS:

Theorem 6—Suppose that the matrix A satisfies the sparse approximation property of 

order s with constants D and β. Suppose that for some ρ < 1 we have

(45)

and let R0 be the right hand side of Eq. (44), so that ||x̄ − x||1 ≤ R0. Assume that

(46)

Let

(47)

Then, there exists a finite ℓ0 such that for all ℓ > ℓ0 we have:

(48)

for some R1 comparable to R0, which is explicitly given in this paper.
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Proof: The proof of the theorem is mainly based on the proof of Theorem 6.4 of [9]. The 

convergence of the IRLS iterates implies that e(ℓ) → 0. Let T be the support of the s-sparse 

vector x. Therefore, there exists ℓ0 such that

(49)

Clearly the right hand side of the above inequality is positive, since

(50)

by hypothesis. Following the proof method of [9], we want to show (by induction) that for 

all ℓ > ℓ0, we have

(51)

for some R1 that we will specify later. Consider e(ℓ+1) = x(ℓ+1) − x̄. The first order necessary 

conditions on x(ℓ+1) give:

(52)

Substituting x(ℓ+1) by x̄ + e(ℓ+1) yields

(53)

We intend to bound the term on the right hand side. First, note that

(54)

since

by hypothesis. Moreover, the sparse approximation property implies that
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(55)

thanks to the tube constraint ||b − Ax||2 ≤ η. Hence, the left hand side of Eq. (54) can be 

bounded as:

(56)

Also, we have:

(57)

Note that γ(ℓ) → 0, since e(ℓ) → 0. Therefore, we have

(58)

An application of the Cauchy-Schwarz inequality yields:

(59)

Hence,

(60)

First, note that γ(ℓ) is a bounded sequence for ℓ > ℓ0. Let γ0 be an upper bound on γ(ℓ) for all 

ℓ > ℓ0. We also have:

(61)

Now, we have:
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(62)

where

(63)

This concludes the proof of the theorem.

C. Discussion

Eq. (62) implies that . Therefore, the IRLS iterates 

approach a neighborhood of radius  (in the ℓ1 sense) around the stationary 

point x̄ exponentially fast. Note that the radius of this neighborhood is comparable to the 

upper bound on the distance of x̄ to the s-sparse vector x (in the ℓ1 sense) given by R0. 

Hence, it is expected that with relatively few iterations of IRLS, one gets a reasonable 

estimate of x (Indeed, numerical studies in Section VII-C confirm this observation). 

Although the bound of the theorem holds for all ℓ > ℓ0, it is most useful when (1 − μ)−1 R1 is 

less than ρ mini∈T |x̄i|. A sufficient condition to guarantee this is that 

, which gives an upper bound on the noise level η and ε.

It is straightforward to extend the above theorem to the case of ν < 1. As shown in [9], the 

local convergence of  in the case of ν < 1 and in the absence of noise is super-linear, 

with exponent 2 − ν. It is not hard to show that in the presence of noise, one can recover the 

super-linear local convergence with exponent 2 − ν. We refer the reader to Theorem 7.9 of 

[9], which can be extended to the noisy case with the respective modifications to the proof 

of Theorem 6.

VII. Numerical Experiments

In this section, we use numerical simulations to explore and validate the stability and 

convergence rate analyses of the previous sections. In particular, we compare ℓ1-

minimization to fν(·)-minimization, in both cases in the presence of noise, for different 

values of ν, ε, and signal-to-noise ratio (SNR).

A. Experimental set-up

For fixed ν, ε and η,

1. Select N and M so that A is an N × M matrix; sample A with independent Gaussian 

entries.

2. Select 1 ≤ S < M/2.
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3. Select T0 of size S uniformly at random and set xj = 1 for all j ∈ T0, and 0 

otherwise.

4. Make b = Ax + n, where each entry of n is drawn uniformly in (−α, α), for some α 

that depends on η; find the solution x̄ to the program of Eq. (18) by IRLS.

5. Compare x̄ to x.

6. Repeat 50 times.

For each ν, ε and η, we compare the program solved in Step 4 to solving the program of Eq. 

(19) for ν = 1(ℓ1-minimization). We solve each IRLS iteration, as well as the ℓ1-

minimization problem, using CVX, a package for specifying and solving convex programs 

[25], [26].

Remark—Modulo some constants, both η and ε appear in the same proportion in the 

stability bound derived in Theorem 3. Intuitively, this means that, the higher the SNR (small 

η), the smaller the value of ε one should pick to solve the program. In our experiment, we 

start with a fixed ε for the smallest SNR value (5 dB), and scale this value linearly for each 

subsequent value of the SNR. In particular, we use , where we use the 

loose notation η(SNR) to reflect the fact that each choice of SNR corresponds to a choice of 

η, and vice versa. In summary, our experimental set-up remains the same, except for the fact 

that we choose values of ε which depend on η.

B. Analysis of Stability

Figures 2 and 3 demonstrate the stability of IRLS for ε = 10−4, respectively for choices of ν 

= 1 and ν = 1/2. Figure 2 shows (as expected) that the stability of IRLS is comparable to that 

of ℓ1-minimization for ν = 1 and small ε. Moreover, only a few number of IRLS iterations 

are required to reach a satisfactory value of the MSE. These observations also apply to 

Figure 3, which further highlights the sparsifying properties of fν(·)-minimization for ν < 1. 

Indeed, the MSE achieved for ν = 1/2 are smaller than those achieved for ν = 1. Figure 4 

shows that the approximation to the ℓ1-norm improves as one decreases the value of ε. In all 

three figures, we can clearly identify the log-linear dependence of the MSE as a function of 

η, which is predicted by the bound we derived in Theorem 4.

C. Convergence rate analysis

Figure 5 shows that the IRLS algorithm for f1(·)-minimization converges exponentially fast 

to a neighborhood of the fixed-point of the algorithm. Moreover, the larger the SNR, the 

faster the convergence. These two observations are as predicted by the bound of Theorem 6. 

Figure 6 shows an alternate depiction of these observations in the log scale. Figure 7 shows 

that the IRLS algorithm for f1/2(·)-minimization converges super-exponentially fast to a 

neighborhood of the fixed-point of the algorithm. As observed in Figure 5, the larger the 

SNR, the faster the convergence. Figure 8 shows an alternate depiction of these observations 

in the log scale.
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VIII. Discussion

In this paper, we provided a rigorous theoretical analysis of various iteratively re-weighted 

least-squares algorithms which have been proposed in the literature for recovery of sparse 

signals in the presence of noise [3], [4], [5], [6], [7], [8], [9]. We framed the recovery 

problem as one of constrained likelihood maximization using EM under Gaussian scale 

mixture assumptions. On the one hand, we were able to leverage the power of the EM theory 

to prove convergence of the said IRLS algorithms, and on the other hand, we were able to 

employ tools from CS theory to prove the stability of these IRLS algorithms and to derive 

explicit rates of convergence. We supplemented our theoretical analysis with numerical 

experiments which confirmed our predictions.

The EM interpretation of the IRLS algorithms, along with the derivation of the objective 

functions maximized by these IRLS algorithms, are novel. The proof of convergence is 

novel and uses ideas from Zangwill [20] which, in a sense, are more general than the proof 

presented by Daubechies [9] in the noiseless case. We have not presented the proof in the 

most general setting. However, we believe that the key ideas in the proof could be useful in 

various other settings involving iterative procedures to solve optimization problems. The 

proof of stability of the algorithms is novel; it relies on various properties of the function 

fν(·), along with techniques developed by Candés et al. [23]. The analysis of the rates of 

convergence is novel and makes interesting use of the sparse approximation property [24], 

along with some of the techniques introduced in [9].

Although we have opted for a fairly theoretical treatment, we would like to emphasize that 

the beauty of IRLS lies in its simplicity, not in its theoretical properties. Indeed, the 

simplicity of IRLS alone makes it appealing, especially for those who do not possess formal 

training in numerical optimization: no doubt, it is easier to implement least-squares, 

constrained or otherwise, than it is to implement a solver based on barrier or interior-point 

methods. Our hope is that a firm theoretical understanding of the IRLS algorithms 

considered here will increase their adoption as a standard framework for sparse 

approximation.
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Appendix A. Continuity of (z)

The proof of Theorem 3 relies on the continuity of (·) as a map from ℝM into . We 

establish continuity by showing that for all zn → z as n → ∞, (zn) → (z). We will show 

that every convergent subsequence of (zn) converges to (z). Since  is non-empty, there 

exists x̄ ∈  such that

(64)
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On the other hand, zn is bounded because it is convergent. This implies that there exists B 

such that maxi |zni| ≤ B, so that . Therefore,

(65)

so that (zn) is uniformly bounded. Therefore, there exists a convergent subsequence of 

(zn). Now, let (znk) be any convergent subsequence, and let  be its limit. By definition 

of (znk) and results from convex optimization [18], for each nk, (znk) is the unique 

element of  satisfying

(66)

Taking limits and invoking continuity of the inner-product, we obtain

(67)

Continuity of (·) follows from the fact that (z) is the unique element of  which 

satisifies

(68)

Therefore,  = (z), which establishes the continuity of (·).

Appendix B. Iteration-dependent choices of ε

Let  be a non-increasing sequence such that limℓ→∞ ε(ℓ) = ε̄ ≥ 0. In this case, the 

mapping  must be substituted by the mapping  ℝM ↦ ℝM:

(69)

for all z ∈ ℝM, where

(70)

The main difference in the proof is in part (ii), where it is shown that x̄ is a fixed point of the 

mapping . We consider two cases: 1) ε̄ > 0 and, 2) ε̄ = 0.
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Case 1

Suppose that ε̄ > 0 and that {x(ℓk)}k is a converging subsequence of the IRLS iterates with 

the limit x̄. Since the sequence {x(ℓ)} is bounded, there exists an L, such that for all ℓ > L, all 

the iterates x(ℓ) lie in a bounded and closed ball B0 ⊂ ℝM. Moreover, let

(71)

Clearly, (x̄) is bounded (since the true vector x ∈  is bounded). Let B ⊂ ℝM be a closed 

ball in ℝM such that B0 ⊆ B and (x̄) ∈ B. Then, we have

(72)

Now, recall that

(73)

It is easy to show that the function  is uniformly convergent to

(74)

for all x ∈ B. To see this, note that

(75)

where Lt denotes the Lipschitz constant of the function (x2 + t2)ν/2−1. Since ε(ℓk), ε̄ > 0, the 

Lipschitz constants are uniformly bounded. Moreover, since x ∈ B, then each  is bounded, 

hence the uniform convergence of the function  is implied. Given the uniform 

convergence, a result from variational analysis (Theorem 7.33 of [27]) establishes that
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(76)

where . Note that the minimizer of  over the convex set  ∩ B 

is unique. Therefore, the above inclusion is in fact equality. Hence,

(77)

by the construction of B. The rest of the proof remains the same by substituting ε̄ for ε.

Case 2

Suppose that ε̄ = 0 and that supp(x̄) =: T ⊆ {1, 2, ···, M}. In this case, if T ≠ {1, 2, ···, M}, the 

limit limℓ→∞ (z) does not exist. Hence, the proof technique used for Case 1 does no 

longer hold. However, with a careful examination of the limiting behavior of the mapping 

(z), we will show that x̄ is a fixed point of the mapping:

(78)

for |zi| > 0 for all i ∈ T. Due to the closedness of , x̄ ∈ . So, the set  ∩ {x : xTc = 0} is 

non-empty. If this set is a singleton {x̄}, then x̄ is clearly the fixed point. If not, then there 

exists z ∈  ∩ {x : xTc = 0} such that z ≠ x̄. Then, the necessary conditions for each 

minimization at step ℓk gives:

(79)

First consider the terms over T. We have:

(80)

Next, consider the terms over Tc:

(81)

Hence, we have:
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(82)

which is the necessary and sufficient condition for x̄ being a fixed point of (z) over all z ∈ 

 ∩ {x : xTc = 0}. Similar to the proof the Theorem 3, it can be shown that x̄ satisfies the 

necessary optimality conditions for the function:

(83)

over the set  ∩ {x : xTc = 0}. This concludes the proof. Note that the case of ε̄ = 0 is not 

favorable in general. Carefully chosen sequences {ε(ℓ)} as in [9] together with the 

assumption that the s-sparse vector x ∈  is unique, can result in convergence of the IRLS to 

the true s-sparse x. However, for general sequences of {ε(ℓ)} with limℓ→∞ ε(ℓ) = 0, this is not 

necessarily the case.
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Fig. 1. 
Level sets of ℓν balls and their ε-smooth counterparts, which the IRLS(ν, ε) algorithm 

maximizes subject to fidelity constraints on the signal reconstruction.
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Fig. 2. 
Mean square error (20 log10 ||x̄ − x||2) as a function of ℓ and SNR, for ν = 1 and ε(5) = 10−4. 

The figure shows that the stability of IRLS compares favorably to that of ℓ1-minimization. 

More importantly, only a few number of IRLS iterations are required to reach a satisfactory 

value of the MSE.
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Fig. 3. 
Mean square error (20 log10 ||x̄ − x||2) as a function of ℓ and SNR, for ν = 1/2 and ε(5) = 

10−4. This figure highlights the sparsifying properties of fν(·)-minimization by IRLS for ν < 

1. As in the previous figure, only a few number of IRLS iterations are required to reach a 

satisfactory value of the MSE.
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Fig. 4. 
Mean square error (20 log10 ||x̄ − x||2) as a function of ℓ and SNR, for ν = 1 and ε(5) = 10−6. 

The figure shows that, as one decreases ε, the approximation to the ℓ1-norm improves.
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Fig. 5. 
Ratio ||x(ℓ+1) − x̄||1/||x(ℓ) − x̄||1 as a function of ℓ and SNR, for ν = 1 and ε(5) = 10−4. The 

figure shows that the IRLS converges with a relatively small number of iterations (ℓ).
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Fig. 6. 
20 log10 ||x(ℓ) − x̄||1 as a function of log10 ℓ and SNR, for ν = 1 and fixed ε(5) = 10−4. The 

figure shows that the IRLS converges with a relatively small number of iterations (ℓ).
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Fig. 7. 

Ratio  as a function of ℓ and SNR, for ν = 0.5 and fixed ε(5) = 

10−4. The figure shows that the IRLS converges with a relatively small number of iterations 

(ℓ).
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Fig. 8. 
20 log10 ||x(ℓ) − x̄||0.5 as a function of log10 ℓ and SNR, for ν = 0.5 and fixed ε = 10−4. The 

figure shows that the IRLS converges with a relatively small number of iterations (ℓ).
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