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Abstract

The AMP-activated protein kinase (AMPK) signaling system plays a key role in cellular
stress by repressing the inflammatory responses induced by the nuclear factor-kappa B
(NF-kB) system. Previous studies suggest that the anti-inflammatory role of AMPK involves
activation by adenine, but the mechanism that allows adenine to produce these effects has
not yet been elucidated. In human umbilical vein endothelial cells (HUVECSs), adenine was
observed to induce the phosphorylation of AMPK in both a time- and dose-dependent man-
ner as well as its downstream target acetyl Co-A carboxylase (ACC). Adenine also attenu-
ated NF-kB targeting of gene expression in a dose-dependent manner and decreased
monocyte adhesion to HUVECs following tumor necrosis factor (TNF-a) treatment. The
short hairpin RNA (shRNA) against AMPK a1 in HUVECs attenuated the adenine-induced
inhibition of NF-kB activation in response to TNF-a, thereby suggesting that the anti-inflam-
matory role of adenine is mediated by AMPK. Following the knockdown of adenosyl phos-
phoribosyl transferase (APRT) in HUVECSs, adenine supplementation failed to induce the
phosphorylation of AMPK and ACC. Similarly, the expression of a shRNA against APRT
nullified the anti-inflammatory effects of adenine in HUVECSs. These results suggested that
the role of adenine as an AMPK activator is related to catabolism by APRT, which increases
the cellular AMP levels to activate AMPK.

Introduction

Inflammation-induced endothelial dysfunction is closely associated with many vascular dis-
eases [1]. Vascular inflammation causes a wide range of diseases, including atherosclerosis,
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hypertension, ischemia/reperfusion injury, diabetes, myocardial infarction and chronic kidney
disease [2-5]. It is initiated by the inflammatory activation of endothelial cells that express
adhesion molecules and facilitate the tethering and rolling of leukocytes on the endothelial lin-
ing [6-8]. Activation of nuclear factor-kappa B (NF-«B) plays a central role in the inflamma-
tory reactions of endothelial cells by up-regulating the expression of adhesion molecules and
other inflammatory mediators [9]. Thus, the inhibition of NF-xB blocks endothelial inflamma-
tion by suppressing the expression of NF-kB- dependent genes and subsequent monocyte
adhesion.

AMP-activated protein kinase (AMPK), a key sensor of energy homeostasis in eukaryotes,
is mainly regulated by cellular AMP, which causes a conformational change that leads to phos-
phorylation by upstream kinases [10-12]. In addition to the regulation of energy homeostasis,
recent studies have reported that AMPK is involved in modulating cellular stresses such as
inflammatory response [13-15]. Activated AMPK can repress the NF-xB translocation as well
as reduce the expression levels of NF-xB target genes and monocyte adhesion to endothelial
cells [16]. Numerous studies also supported the anti-inflammatory function of AMPK activa-
tors in response to proinflammatory stimuli, such as a glucagon-like peptide-1 analog, 5-ami-
noimidazole-4-carboxamide ribonucleoside (AICAR), metformin, resveratrol and berberine
[17-19].

Adenine phosphoribosyltransferase (APRT') is an important enzyme in the salvage pathway,
which functions as a catalyst in the reaction between adenine and phosphoribosyl pyrophos-
phate (PRPP) to produce AMP. Our previous findings suggest that adenine represents a novel
AMPK activator, which could ameliorate LPS-induced inflammation in microglial BV2 cells
and enhance glucose uptake in NIH-3T3 cells via the activation of AMPK [20, 21]. However,
the precise mechanism that underlies adenine-induced AMPK activation is still unknown.

In this study, we found that adenine reduces tumor necrosis factor (TNF)-o.-stimulated
monocyte adhesion by inhibiting NF-«B translocation in human umbilical vein endothelial
cells (HUVECs). The administration of adenine induces the phosphorylation of AMPK and
acetyl Co-A carboxylase (ACC); however, this is not so after the knockdown of APRT in
HUVECs. Consistent with previous studies of TNF-o-stimulated monocyte adhesion, we
found that the anti-inflammatory effect of adenine was dependent on AMPK and APRT. These
results demonstrate that adenine-induced AMPK phosphorylation is mediated by APRT.

Materials and Methods
Reagents and chemicals

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) except where otherwise
specified. Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum (FBS) were
purchased from Invitrogen (Carlsbad, CA, USA). Adenine with a proprietary name of ENER-
GI-F704 was generously provided by Energenesis-Biomedical Co., Ltd. (New Taipei City,
Taiwan).

Cell culture

Human umbilical vein endothelial cell line (HUVEC, BCRC, H-UV001) was purchased from
Food Industry Research and Development Institute, Hsin Chu, Taiwan. Cells were cultured in
Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS), 4
mM L-glutamine, 2 mM sodium pyruvate and 0.01% penicillin/streptomycin (Invitrogen Gib-
coBRL, Carlsbad, CA, USA) at 37°C under 5% CO,. The cells used in this experiment were
between passage 3 and 8.
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Cell viability assay

Cell viability was analyzed using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)- 2H-tetrazolium-
5-carboxanilide (XTT) assay. Briefly, HUVECs were seeded in 96-well plates at 4x 10° cells/mL
for 18 h and subsequently treated with either adenine or AICAR at designated concentrations
(0, 200, 600, 1200, 2400 and 4800 uM). After 24 h incubation, 50 uL of XTT reagent was added.
The plates were then incubated for 4 h at 37°C in the dark. The absorbance was measured at
490 nm with a reference wavelength set at 690 nm using VersaMax ELISA microplate reader
(Molecular device, Sunnyvale, CA, USA). Data was presented as relative absorbance values to
untreated cells.

Western blot assays

HUVECs were lysed using cell lysis buffer [10 mM Tris-HCI pH7.5, 150 mM NaCl, 1 mM eth-
ylenediaminetetraacetic acid (EDTA), 0.5% (v/v) Triton-X 100, 1x Protease inhibitor cocktail
(Roche, Basel, Switzerland), 1x PhosSTOP phosphatase inhibitor cocktail (Roche, Basel, Swit-
zerland)] for 30 min at 4°C, and then centrifuged at 15,000xg for 1 min. The equal amount of
cell lysates were resolved by sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) and then
transfer to immobilon polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA,
USA) as previous described [22]. The rabbit anti-phospho-AMPK (Thr172) antibody, rabbit
anti-AMPK antibody, rabbit anti-COX-2 antibody, rabbit anti-ICAM-1 antibody and rabbit
anti-VCAM-1 antibody were purchased from Cell signaling technology (Danvers, MA, USA).
The rabbit anti-APRT antibody was purchased from Abcam (Cambridge, UK) and the mouse
anti-B-actin antibody was purchased from Novus biologicals (Littleton, CO, USA). After the
membranes were incubated with 1* antibodies at 4°C overnight followed by the corresponding
2" antibody for 1 h at room temperature (RT), immunoreactive bands were detected by
chemiluminescence (VisGlowTM, Visual Protein, Taipei, TW) and recorded using Kodak
XAR-5 film (Rochester, NY, USA). The detected signals were scanned and then quantified
using Image J software (http://image.nih.gov/ij/).

Immunocytochemistry

HUVECs were seeded on glass coverslips in DMEM culture medium and treated with indi-
cated concentration of adenine under TNF-o stimulation at 37°C for 6 h. Cells were fixed
using 4% paraformaldehyde in PBS for 15 min and blocked with 3% BSA for 1 h at room tem-
perature (RT). Then, cells were incubated with an anti-p65 antibody (1:200, #82452, Cell sig-
naling technology) at 4°C overnight, followed by incubation with a goat anti-rabbit
immunoglobulin G (IgG) conjugated to Alexa Fluor 488 (1:1000, ab150077, Abcam) for 2 h at
RT. Coverslips were mounted with Ibidi mounting medium (Ibidi GmbH, Martinsried, Ger-
many) and the pattern of immunostaining were analyzed using fluorescent microscopy (OLY-
MUS 1X71 research inverted system microscope).

Enzyme-linked immunosorbent assay (ELISA)

Production of secreted IL-6 was measured using ELISA assay. The supernatant of cell culture
was harvested and assessed. The cytokines IL-6 was evaluated using Mouse DuoSet ELISA kits
(R&D Systems, Minneapolis, MN, USA). All the manipulations were performed following the
manufacturer’s protocol.
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Monocyte-endothelial cell adhesion assay

The monocyte adhesion assay was performed as previously described with some modifications
[23]. Briefly, HUVECs were seeded in 6-well plates at 4x 10° cells/mL for 18 h and were stimu-
lated with 10 pg/L of TNF-o for another 6 h in the present of adenine. For fluorescent labeling,
THP-1 cells were incubated with 10 uM of Calcein AM (Sigma-aldrich) at 37°C for 30 min, and
then were harvested by centrifugation (1,000xg, 5 min) and washed three times with PBS. The
fluorescent THP-1 cells were suspended in medium and were added into TNF-o. stimulated
HUVECs with indicated treatments. After 30 min, non-adhering THP-1 cells were washed twice
with PBS and THP-1 cells bound to HUVECs were imaged by OLYMUS 1X71 microscope.

Construction of shAPRT and shAMPK expressing cell lines

HUVECs were cultured to 80% confluency and transfected with small hairpin RNA (shRNA)
of APRT or AMPK using Turbofect (Thermo scientific, Waltham, USA) according to the man-
ufacturer’s instructions. For knockdown the expression of APRT and AMPK, shRNA against
human APRT 5’GCTGGTTGAGCAGCGGATCCGCAGCTTCC3’, AMPKal 5TCTGGTG
TGGATTATTGTCACAGGCATAT3’ and non-targeting ShRNA (shNT) were constructed in
pGFP-V-RS vectors were purchased from Origene Technologies (Origene, MD, USA). The
knockdown HUVECs were selected using 2 ug/mL puromycin (Sigma-aldrich) according to
the manufacturer’s protocols, and the knockdown efficiency in HUVECs were confirmed by
western blot analysis (S1 Fig and S2 Fig).

Statistical analysis

Data were presented as means + S.E.M. Comparison between treatments was performed using
GraphPad PRISM software version 5.00 (San Diego, CA) using one-way ANOVA with Tukey
post hoc test or two-way ANOV A with Bonferroni post hoc test. Statistical significance was
accepted when P<0.05.

Results
Cytotoxic effect of adenine on HUVECs

We determined whether the in vitro cytotoxic effects of AMPK activators on HUVECs might
be related to cell stress. The XTT cell viability assay was used to assess the in vitro cytotoxic
effect of adenine in HUVEC s after treatment for 24 h. As shown in Fig 1, adenine caused dose-
dependent cytotoxicity at 4800 uM, whereas AICAR had cytotoxic effects at concentrations
above 1200 pM.

Time course- and dose- dependent effects of adenine on HUVECs

To determine whether adenine activates AMPK, HUVECs were exposed to various concentra-
tions of adenine and 1200 uM AICAR for 6 h before assessing AMPK phosphorylation at
Thr172 using western blot analysis. As shown in Fig 2, the phosphorylation of both AMPK and
its downstream target, ACC, were increased after adenine administration in a time- and dose-
dependent manner.

Adenine inhibited the NF-kB-dependent expression of IL-6, COX-2,
ICAM-1 and VCAM-1 in TNF-a-activated HUVECs

It has been reported that the activation of AMPK reduces TNF-o-stimulated adhesion mole-
cules by inhibiting the activity of NF-xB and via p65 translocation to the nucleus in endothelial

PLOS ONE | DOI:10.1371/journal.pone.0142283 November 6, 2015 4/14



el e
@ : PLOS ‘ ONE Adenine Reduces Inflammation by AMPK and APRT Dependent Mechanism

120

110

100 * *k %k k

*k %k k
90

80 -1

(% of control)

*k %k k

Relative cell viability
1

-@- Adenine
60 -wACAR

50 T T T T
0 1000 2000 3000 4000 5000

Concentration (L.M)

Fig 1. In vitro cytotoxicity of adenine and AICAR on HUVECSs. Cells were treated by adenine or AICAR at
different concentrations or solvent alone for 24 h. The cell viability of each condition was analyzed using XTT
assay; Statistical significance was determined by two-way ANOVA followed by ad-hoc Bonferroni post hoc
tests; all data are plotted as mean + S.E.M (n = 3). *, P<0.05; ***, P<0.001.

doi:10.1371/journal.pone.0142283.g001

cells [24]. Therefore, we investigated the effects of adenine on the expression of NF-kB target
genes such as IL-6, COX-2, ICAM-1, and VCAM-1, which were induced by the NF-«B activa-
tor TNF-o in HUVECs. As shown in Fig 3A, adenine suppressed the secretion of IL-6 from
TNEF-a-activated HUVEC:s in a dose-dependent manner. Similarly, the administration of ade-
nine resulted in a dramatic decrease in COX-2, ICAM-1 and VCAM-1 protein expression in
response to TNF-a stimulation compared with the control group (Fig 3B and 3C).

Adenine reduced the translocation of NF-kB after the stimulation of TNF-
ain HUVECs

The expression of adhesion molecules is NF-kB dependent; therefore, we also analyzed the
mechanism that allows adenine to inhibit the expression of adhesion molecules by determining
its effects on the translocation of NF-xB in TNF-a-stimulated HUVECs. As shown in Fig 4, the
nuclear translocation of p65 in HUVECs was triggered by the stimulation of TNF-a, but this
was reversed by treatment with adenine. In addition, the suppression of NF-xB translocation
by adenine was demonstrated by the knockdown of the a1 subunit of AMPK. Genetic inhibi-
tion of AMPK failed to prevent the nuclear translocation of p65 following adenine treatment,
thereby indicating that the suppressed expression of NF-«B targeting genes by adenine was
mediated by AMPK.

Adenine inhibited TNF-a-induced monocyte adhesion

To explore the functional impact of adenine on the interaction between endothelial cells and
monocytes, we examined the adhesion of THP1 to TNF-a-stimulated HUVECs in the presence
or absence of adenine for 6 h. In contrast to the control group, inhibition of monocyte adhesion
occurred after adenine treatment in a dose-dependent manner (Fig 5). Treatment with 600 uM
adenine caused a 70% decrease in monocyte adhesion relative to that in the control cells,
whereas knockdown of the a1 subunit of AMPK had no effect. Overall, these results suggest
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Fig 2. Adenine activated AMPK in HUVECs. (A) HUVEC cells were incubated for 6 h with various concentrations of adenine and compared with 1200 yM
AICAR. (B) HUVEC cells were incubated with 600 uM adenine for the times indicated. Cell lysates were used to determine the phosphorylation of AMPK and
ACC by western blot using antibodies specific for the phosphorylated protein. The level of total AMPK and ACC were also assessed as controls for loading.
Statistical significance was determined by one-way ANOVA followed by Tukey post hoc tests; all data are plotted as mean + S.E.M. (n = 5). *, P<0.05; **,

P<0.01; *** P<0.001.
doi:10.1371/journal.pone.0142283.9002

that adenine inhibits the monocyte adhesion mediated by AMPK, thereby preventing the
nuclear translocation of NF-«xB in response to TNF-o.

Adenine induced the phosphorylation of AMPK via ARPT

The utilization of adenine depends on the activity of APRT via the incorporation of PRPP into
AMP [25]. To determine whether the effect of adenine-induced AMPK phosphorylation is
mediated through the activity of APRT, we used retroviral short hairpin RNA (shRNA) against
APRT in HUVECs. The expression of knockdown APRT was verified by western blot analysis
and compared with the non-targeted shRNA (shNT) in HUVECs. We found that HUVECs
transfected with a shAPRT plasmid exhibited a 92% reduction in APRT compared with the
shNT HUVECs (S1B Fig). As shown in Fig 6A (Right panel), the levels of phosphorylated
AMPK and its downstream target ACC increased in a dose-dependent manner following ade-
nine treatment in shNT HUVECs, whereas they were unchanged in shAPRT HUVECs (Fig
6A, Left panel). This suggests that adenine-induced AMPK phosphorylation is mediated by the
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activity of APRT. Similarly, the effect of adenine on the adhesion between THP-1 cells and
HUVECs was not changed by knockdown in HUVECs (Fig 6B). These results indicate that
adenine mediates the TNF-o-induced adhesion ability between HUVECs and THP-1 cells via
APRT.

Discussion

The activation of endothelial AMPK signaling plays a critical role in the anti-inflammatory
response induced by different stimuli. A decrease in AMPK activity, however, is associated
with increased inflammation [16]. It has been reported that AMPK activators such as AICAR
and metformin indirectly attenuate cytokine-induced NF-kB activation by suppressing the
activity of IKK to stabilize the NF-kB-IkBo complex [24, 26]. In the present study, the anti-
inflammatory effects of adenine are similar to those observed in our previous analysis of micro-
glia following LPS treatment [20]. However, the molecular mechanism that underlies the effect
of adenine on AMPK activation remains unknown. We suggest that this mechanism involves
adenine supplementation, leading to an increase in cellular AMP levels, which in turn activates
AMPK. To the best of our knowledge, the membrane-localized APRT is the only route that
converts adenine into AMP via the incorporation of PRPP [25, 27, 28].
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We investigated the toxicological effects of adenine in HUVECs. Adenine is a cell permeable
compound and its uptake rate depends on the activity of APRT [27]. Excess of adenine (e.g.
millimolar concentration) may be cytotoxic to cells by disrupting the cellular purine balance,
thereby depleting the guanine pool and increasing the ratio of [AMP] relative to [GMP]. The
administration of adenine significantly increases the phosphorylation of Thr172 in the o1-sub-
unit in both a dose- and time-dependent manner (Fig 2). Our results demonstrate that adenine
had a similar effect to AICAR, which induced the phosphorylation of AMPK and ACC (Fig 2).
We also investigated whether the anti-inflammatory effects of adenine were related to an
AMPK-independent pathway. After the knockdown of AMPK a1 in HUVECsS, the administra-
tion of adenine failed to attenuate monocyte adhesion in inflamed HUVEC: (Fig 5), thereby
suggesting that the anti-inflammatory effects of adenine were mediated by AMPK.

In inflamed HUVECs, adenine down-regulated the production of proinflammatory cyto-
kines and adhesion molecules by inhibiting the translocation of NF-kB [24, 26]. Activation of
AMPK by adenine in TNF-oa-treated HUVECs was found to be associated with preventing
decreases in IkBo due to inhibition of the nuclear translocation of NF-kB (S3 Fig).
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Furthermore, the up-regulation of NF-xB downstream genes including IL-6, COX-2, ICAM-1
and VCAM-1 under TNF-a induction was reversed by adenine. These results suggest that ade-
nine has the capacity to suppress TNF-o-induced NF-«B activation and AMPK activation by
increasing the stability of the NF-kB-IkBo complex in HUVECs. In addition, it has been
reported that AMPK activation can enhance the activity of SIRT1 by increasing intracellular
NAD" level [29]. For the p65 subunit of the NF-xB complex, deacetylation at Lysine310 facili-
tates methylation at Lysine314 and 315 to enhance the degradation of the p65 subunit by the
ubiquitin-proteasome system [30, 31]. In previous studies, we also observed increases in the
NAD" level and decreases in the protein level of the p65 subunit of the NF-kB complex in
inflammatory microglial cells after adenine treatment [20]. Overall, our results support the
hypothesis that adenine can activate AMPK without cell type restrictions, and thus adenine
may attenuate the translocation of NF-«B by simultaneously increasing the degradation of the
p65 subunit and stabilizing IxB. Therefore, adenine may be capable of modulating the NF-xB
proinflammatory signaling pathway, and it could have therapeutic applications against inflam-
matory diseases.
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AMPK is known to play a vital role in the regulation of endothelial function as well as in
metabolism modulation [32]. AMPK activation leads to increases in the activity of endothelial
nitric oxide synthase [33-36], and it protects endothelial cells against metabolic and inflamma-
tory stress. During inflammation in cardiovascular diseases, the endothelium encounters exces-
sive amounts of chemokines or cytokines, which may lead to enhanced leukocyte infiltration
and the upregulated expression of adhesion molecules [37, 38]. Significant expression of
ICAM-1, VCAM-1 and E-selectin in endothelial cells is induced by various inflammatory sti-
muli including LPS and TNF-q, which are mediated by the NF-kB signaling pathway [39-41].
It has been reported that AMPK activators such as AICAR and metformin can reduce the sur-
face levels of adhesion molecules in endothelial cells [26], which agrees with our finding that
the upregulated adhesion molecules, including ICAM-1 and VCAM-1, in TNF-o-treated
HUVECs were attenuated by adenine in a dose-dependent manner. We also observed that
treatment with adenine decreased the number of adhesion numbers of THP-1 cells that inter-
acted with TNF-o-treated endothelial cells. In addition, IL-6, a cytokine that is the hallmark of
vascular inflammation, has been demonstrated to enhance the adhesion of monocytes with
endothelial cells by inducing ICAM-1 expression via the STAT3 signaling cascade [42-45] and
monocyte activation [3]. We suggest that the decreased secretion of IL-6 in TNF-ca.-activated
HUVEGC:s after adenine treatment contributes to the lower expression of adhesion molecules in
the present study. Therefore, our results support previous investigations of the roles of AMPK
in response to different stimuli [19].

The main finding of the present study is that adenine can activate AMPK in HUVECs via
the conversion of APRT. We suggest that adenine-mediated AMPK activation occurs via the
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conversion of adenine into AMP, thereby inducing the phosphorylation of AMPK. Our results
indicate that knockdown of APRT in HUVECs impaired the protective effects of adenine. Both
AMPK and APRT are required for adenine to suppress the adhesion of THP-1 cells to inflamed
HUVECs; therefore, the anti-inflammatory effects of adenine on HUVECs depend on AMPK
via APRT.

In conclusion, we reveal that the administration of adenine increases the cellular AMP levels
via catabolism by APRT, which in turn activates AMPK. Adenine, once known as Vitamin B4,
is one of the simplest AMPK activators reported to date. For the first time, we demonstrate that
the effect of adenine-mediated cell signaling on AMPK activation occurs via catabolism by
APRT. Further in vivo studies should aim to target different disease models to identify suitable
AMPK activators.

Supporting Information

S1 Fig. The knockdown efficiency of shAMPK in HUVECs. HUVECs infected with lentiviral
non-targeting shRNA (shNT) or with different shRNAs specific for AMPKal (#1, #2, #3, #4),
knockdown efficiency was determined by (A) western analysis in cell lysates. (B) Quantifica-
tion of western blot of total AMPK protein level was normalized to -Actin. Statistical signifi-
cance was determined by one-way ANOVA followed by Tukey post hoc tests; all data are
plotted as mean + SEM. (n = 5). *, P<0.05; ***, P<0.001; N.S., no significance.

(TTF)

S2 Fig. The knockdown efficiency of shAPRT in HUVECs. HUVECs infected with lentiviral
non-targeting shRNA (shNT) or with different shRNAs specific for APRT (#1, #2, #3, #4),
knockdown efficiency was determined by (A) western analysis in cell lysates. (B) Quantifica-
tion of western blot of total APRT protein level was normalized to B-Actin. Statistical signifi-
cance was determined by one-way ANOVA followed by Tukey post hoc tests; all data are
plotted as mean + S.E.M. (n=5). *, P<0.05; ***, P<0.001; N.S., no significance.

(TTF)

S3 Fig. Effects of adenine on protein expression of IkBa in TNF-a-activated HUVECs.
Cells were incubated with 10 pg/L of TNF-o. in the presence or absence of 600 uM adenine for

6 h. Cell lysates collected from each condition were used to determine the expression of IxBo.
using western blot analysis. Statistical significance was determined by one-way ANOV A followed
by Tukey post hoc tests; all data are plotted as mean + S.E.M. (n = 3). **, P<0.01; ***, P<0.001.
(TIF)
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