
QRTEngine: An easy solution for running online reaction time
experiments using Qualtrics

Jonathan S. Barnhoorn & Erwin Haasnoot &
Bruno R. Bocanegra & Henk van Steenbergen

The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Performing online behavioral research is gaining
increased popularity among researchers in psychological and
cognitive science. However, the currently available methods
for conducting online reaction time experiments are often
complicated and typically require advanced technical skills.
In this article, we introduce the Qualtrics Reaction Time
Engine (QRTEngine), an open-source JavaScript engine that
can be embedded in the online survey development environ-
ment Qualtrics. The QRTEngine can be used to easily develop
browser-based online reaction time experiments with accurate
timing within current browser capabilities, and it requires only
minimal programming skills. After introducing the
QRTEngine, we briefly discuss how to create and distribute
a Stroop task. Next, we describe a study in which we inves-
tigated the timing accuracy of the engine under different
processor loads using external chronometry. Finally, we show
that the QRTEngine can be used to reproduce classic

behavioral effects in three reaction time paradigms: a Stroop
task, an attentional blink task, and a masked-priming task.
These findings demonstrate that QRTEngine can be used as a
tool for conducting online behavioral research even when this
requires accurate stimulus presentation times.

Keywords Online experiments . Qualtrics . JavaScript .

AmazonMechanical Turk . Open-source

In the past decade, psychologists have showed increasing
interest in conducting research via the Internet. Through on-
line labor markets such as Amazon’s Mechanical Turk
(AMT), high numbers of participants can be tested in a short
amount of time and at low cost. Recently, concerns about the
quality of data gathered through AMT have been addressed,
and multiple studies have now shown that data gathered using
AMT are reliable and comparable to data obtained in the lab
(Behrend, Sharek, Meade, & Wiebe, 2011; Buhrmester,
Kwang, & Gosling, 2011; Paolacci, Chandler, & Ipeirotis,
2010). These validation studies, like most previous research
conducted via AMT, were survey-based. Conducting online
experiments that rely on precise recording of reaction times
(RTs) is much more difficult, although prior work using basic
HTML and JavaScript has successfully replicated a number of
RT tasks online (Crump, McDonnell, & Gureckis, 2013).

A number ofmethods have recently been developed to help
psychological and cognitive scientists program RT experi-
ments for the Internet. Currently available solutions include
Tatool (von Bastian, Locher, & Ruflin, 2013), WebExp (Kel-
ler, Gunasekharan, Mayo, & Corley, 2009), and ScriptingRT
(Schubert, Murteira, Collins, & Lopes, 2013), which have all
been developed with the aim of providing precise timing 1.
These libraries can be used to produce RTexperiments that are

1 During publication of this article we learned about an alternative
JavaScript method that is worth mentioning: jsPsych (de Leeuw, 2014).
We provide a comparison of QRTEngine and jsPsych, created in collab-
oration with the jsPsych author, on www.qrtengine.comm

Electronic supplementary material The online version of this article
(doi:10.3758/s13428-014-0530-7) contains supplementary material,
which is available to authorized users.

J. S. Barnhoorn : E. Haasnoot :B. R. Bocanegra :
H. van Steenbergen (*)
Institute of Psychology, Leiden University, Wassenaarseweg 52,
Leiden 2333, AK, The Netherlands
e-mail: HvanSteenbergen@fsw.leidenuniv.nl

J. S. Barnhoorn
Department of Cognitive Psychology and Ergonomics, Faculty of
Behavioral, Management and Social Sciences, University of Twente,
Enschede, The Netherlands

E. Haasnoot
University of Sheffield, Sheffield, UK

B. R. Bocanegra :H. van Steenbergen
Leiden Institute for Brain and Cognition, Leiden University, Leiden,
The Netherlands

J. S. Barnhoorn
MIRA Research Institute, University of Twente, Enschede,
The Netherlands

DOI 10.3758/s13428-014-0530-7

Published online: 19 November 2014

Behav Res (2015) 47:918–929

http://www.qrtengine.com
http://dx.doi.org/10.3758/s13428-014-0530-7

cross-platform and cross-browser compatible. To run an ex-
periment in Tatool or WebExp, participants need to have Java
installed on their computer, whereas ScriptingRT is based on
Adobe Flash. Importantly, in order to create RT experiments,
these solutions typically still require substantial programming
skill, and the researcher needs to host a Web server to publish
the experiment. Furthermore, since these methods require
specialized software or plugins, they do not meet the AMT
constraint that the participant may not be required to install
additional software.

Introducing the QRTEngine

Here we present an alternative method for conducting online RT
experiments that is based on the existing online survey devel-
opment environment Qualtrics. The Qualtrics Reaction Time
Engine (QRTEngine) is different from the previously described
methods in a number of ways: It is hosted on the Qualtrics
server; it does not require specialized software or browser
plugins; it is more precise than the previously described
JavaScript method; and because it is embedded in the user-
friendly Qualtrics interface, most of the basic functionality can
be used by researchers who are not experienced programmers.

Using the basic Qualtrics environment, one can set up
sophisticated surveys, publish them, and collect the results.
Typically, a survey is created by adding questions (which can
consist of just text and/or images as well) that are organized in
particular blocks. In order to set up an RT experiment in
Qualtrics, the QRTEngine modifies the way that questions in
a block are presented. When several questions are set up
without a page break, Qualtrics would normally present them
together on the page. When the QRTEngine is included,
however, questions are presented one screen after the other,
allowing for control over the timing of each screen. Further-
more, the QRTEngine provides a way (or API) for conve-
niently adding keyboard responses, setting up conditional and/
or delayed display of screens, and setting more advanced
properties. The QRTEngine itself consists of a piece of
JavaScript code, called the “engine,” that can be easily includ-
ed in any Qualtrics survey. Question screens are created using
the standard Qualtrics visual editor, whereas the properties of
the RT task screens can be set by copying and pasting and
adapting standard JavaScript snippets to each question. The
Qualtrics “Loop & Merge” functionality is used to set the list
of trials and their specific properties in a convenient way. To
control timing-related aspects, the QRTEngine uses a recent
HTML5 method, allowing for more accurate results than
provided by comparable older JavaScript-based methods.

The QRTEngine was developed with researchers in mind
who are not experienced programmers but who have used
experiment-builder applications such as E-Prime or
OpenSesame before (Mathôt, Schreij, & Theeuwes, 2012;

Schneider, Eschman, & Zuccolotto, 2002). Like most
experiment-builder methods, the QRTEngine provides in-
creasingly sophisticated functionality for increasingly com-
plex programming. For users without a background in pro-
gramming, we expect that the example tasks and JavaScript
snippets, provided at www.qrtengine.com, will be sufficient to
help them program simple paradigms themselves. For
researchers who already have substantial programming skills,
we think the QRTEngine can provide a method to speed up
development: The Qualtrics environment provides many tools
that make the building process more efficient, and the
QRTEngine conveniently wraps up the complex calls that are
necessary to implement the timing and dynamic properties of
an experiment. Furthermore, Qualtrics provides some handy
participant management features. The QRTEngine is published
open-source under the Apache 2.0 license, meaning that expe-
rienced programmers are welcome to consult our method when
programming solutions from scratch. When doing this, it is
important to realize that the QRTEngine is not a standalone
library and has dependencies on Qualtrics and the Prototype
Framework (which is already present in any Qualtrics survey).
As we will demonstrate in this article, we think that the
QRTEngine is particularly useful for running plugin-free brows-
er-based RTexperiments that present text and pictures, provided
that accurate timing and a stable intertrial interval are not critical.

Recommendations for online experimentation

Before using the QRTEngine, a researcher should carefully
consider whether performing an online experiment is the right
choice in the first place, and whether the QRTEngine is the
optimal method for the planned study. The pros and cons of
online research in general have already been discussed in
some excellent previous publications (Behrend et al.,
2011; Buhrmester et al., 2011; Mason & Suri, 2012;
Paolacci et al., 2010). When focusing on RT tasks specif-
ically, some additional limitations should be taken into
consideration as well. The computer systems that partici-
pants use vary widely, and the error involved in measuring
RT data and ensuring precise display durations on a given
system is largely unknown. In addition, keyboards have differ-
ent sampling rates (depending on both hardware and the oper-
ating system and browser combination), and monitor refresh
rates also vary. Furthermore, continuously changing operating
systems and Web browsers both contribute to the uncertainty in
precision. When users run multiple applications on their com-
puter, this can also affect timing randomly. Essentially, there are
many sources of potential timing errors. These errors typ-
ically are expected to be random across subjects and con-
ditions, and therefore, multitrial designs and collecting time
audit information are necessary so that experimenters can
filter out extreme timing errors in order to still obtain

Behav Res (2015) 47:918–929 919

http://www.qrtengine.com/

reliable results (Ulrich & Giray, 1989). Hence, we recom-
mend conducting online RT experiments only when it is
acceptable to test more participants in order to compensate
for the noise introduced when using online acquisition
methods.

Using the QRTEngine

A detailed introduction to using the QRTEngine is provided in
the supplementary material as a step-by-step tutorial on how
to create a simple Stroop task (MacLeod, 1991; Stroop, 1935).
In order to build this task, one only needs a computer with an
Internet connection and a Qualtrics account. In this article, we
provide a concise overview of the development process of this
same Stroop task.

The QRTEngine is included into a survey by pasting the
JavaScript code (available via www.qrtengine.com) in the
survey’s header. Then, a number of embedded data fields
need to be created that are used by the engine during the
runtime of the experiment (see Fig. 1a). Finally, the layout
needs to be selected; we recommend using the standard
Qualtrics “Minimal” layout.

The QRTEngine works by looping a question block ac-
cording to a predefined list of trial properties that is specified
under the “Loop & Merge” functionality. In the case of a
Stroop task, the Loop & Merge list specifies the correct
response, the color of the word, and the word (see Fig. 1b).
Each question in the question block is displayed as a screen in
the task. One can include as many screens and responses in
one trial as desired. It is also possible to set a screen to be
displayed in the background through the whole trial—for
example, a response key reminder. Furthermore, a screen
showing accuracy feedback for a specified duration can also
be added as an extra question. The timing and response
configurations for a question are defined in the JavaScript
code corresponding to that question (see Fig. 1c). After setting
these configurations, the survey is finished and can be
distributed.

The trial information, including the individual time au-
dit information, is saved using a JSON representation
within the standard Qualtrics wide data format. Saving
the data in a format that can be directly imported into
packages like SPSS or Excel is not possible, due to restric-
tions in the Qualtrics API. Therefore, we published the
QRTEParser, a cross-platform Java program that is avail-
able on www.qrtengine.com and allows for converting the
Qualtrics QRTEngine comma-separated value (CSV) file
to a long format (where each row presents the data of a
single trial). Standard packages such as SPSS and Excel
can then be used to read the resulting CSV data file and
perform data aggregation and statistics.

Timing features of the QRTEngine

The QRTEngine has been developed with the goal of provid-
ing timing capabilities as accurate as possible within the limits
of modern Web browser technology. In this section, we dis-
cuss which actions we took to achieve this goal.

Logging of timing-related information

The QRTEngine uses an HTML5 feature cal led
“requestAnimationFrame” (rAF) to synchronize the onset of
stimuli with the refresh rate of the monitor. When using rAF,
the QRTEngine is notified by the browser (through a high-
priority function callback) no more than once every screen
refresh that a screen refresh is taking place. Hence, every time
that rAF notifies the QRTEngine, it can use a timer to deter-
mine whether the elapsed screen presentation time approaches
the intended presentation time. In this way, the QRTEngine
can estimate whether the last screen refresh of an intended
screen duration is to be expected, and prepare the next screen
accordingly. To correct for potential imprecision due to im-
perfect resolution of the timer, we recommend subtracting
5 ms from the intended duration. The rAF feature is currently
supported in all modern browsers. In older browsers, rAF may
not be available,2 in which case the QRTEngine falls back to
the less precise setTimeout() method (a low-priority function
callback) to control the duration of presentation.

When the duration for a screen has been set, the
QRTEngine logs the following time audit information during
runtime: Duration, which is the intended duration set by the
researcher; OnsetTime and OffsetTime, which provide time
stamps in milliseconds relative to Unix epoch; and
CalculatedDuration, which represents the estimated actual du-
ration of screen presentation, based on the difference between
the OnsetTime and OffsetTime. The CalculatedDuration can
thus be used to estimate how much the actual duration of
presentation deviated from the intended duration. Figure 1d
provides an overview of all of the information that is saved
during the example Stroop task.

The time stamps are generated using one of two timers
based on browser support. The most precise timer uses the
JavaScript performance.nowmethod, supported by all modern
browsers except Safari.3 According to the W3C definition,
this timer should be accurate to the microsecond, but is at least

2 On the basis of the StatCounter browser-use statistics for June 2014
(http://caniuse.com/usage_table.php, retrieved July 1, 2014), 85 % of
currently used desktop browsers support rAF. For a complete overview
of rAF support, including previous browser versions, see http://caniuse.
com/requestanimationframe. Please note that these statistics are not
absolute; as the site states, “a feature is considered ‘supported’ when its
primary purpose is largely fulfilled.” Therefore, QRTEngine logs rAF and
timer support for every participant.
3 For a complete overview of support, including previous browser ver-
sions, see http://caniuse.com/high-resolution-time.

Behav Res (2015) 47:918–929920

http://www.qrtengine.com/
http://www.qrtengine.com/
http://caniuse.com/usage_table.php
http://caniuse.com/requestanimationframe
http://caniuse.com/requestanimationframe
http://caniuse.com/high-resolution-time

Behav Res (2015) 47:918–929 921

accurate to the millisecond. The performance.now timer is
independent from the system clock, and thus is not subject
to system clock adjustments or system clock skew (Mann,
2012). In older browsers, the QRTEngine falls back to the
JavaScript date.now timer, which is less precise. The
QRTEngine logs the availability of rAF and the type of timer
under the “EngineType” attribute using the following labels
(ordered from most to least precise): “native-highres,” when
rAF and performance.now are both available; “native,” when
rAF is available but only the date.now timer can be used; and
“timer,” when setTimeout is used in combination with the
date.now timer. Information from the “EngineType” attribute
can be used to exclude participants whose browser did not
support precise rAF and/or precise time stamps when an
experiment is very sensitive to timing.

Providing exact statements about the precision of the time
stamps and the timing of screen presentation is not possible,
because multiple factors can influence this precision. For
example, when running many animations in multiple tabs or
when a laptop’s battery power is low, the performance.now
timer resolution is decreased in some browsers in order to save
CPU power. Furthermore, it may sometimes happen that for
unknown reasons, the rAF function call skips a frame. In
general, very high CPU and especially RAM load can be
expected to be associated with decreased precision of the
timers. To estimate the precision of screen durations with the
QRTEngine during an experiment, we therefore performed a
validation study using external chronometry.

Validation using photosensitive diode

To investigate the accuracy of stimulus presentation timing
using the QRTEngine, we conducted a timing validation study
using a method similar to that reported by Simcox and Fiez
(2014) to validate the timing accuracy of Adobe Flash. Ac-
cordingly, we presented stimuli under different CPU and
RAM load conditions and compared the intended durations
with the durations as measured by a photosensitive diode. We
also compared the photodiode measurements to the durations
logged by the QRTEngine in the CalculatedDuration attribute.
The diode was placed on the computer screen on which the
experiment was displayed and monitored via the line-in jack
of a separate desktop computer running Windows Sound
Recorder at a sampling rate of 44.1 kHz (this computer ran
no other programs during recording). Offline analysis was

performed in MATLAB and SPSS. Because of the variety of
computer systems, operating systems, and Web browsers,
testing every possible configuration is not possible. Therefore,
we selected two configurations that reasonably represent typ-
ical configurations.

Method The experimental survey was run on two systems.
System 1was a BTO laptop runningWindows 7 Ultimate on a
2.5-GHz Intel i5 quad core processor with 8 GB of RAM. The
experiment was conducted running Chrome 27 on a Targa
CRT monitor running at 60 Hz. System 2 was a MacBook Pro
running OSX 10.5.8 on a 2.4-GHz Intel Core 2 Duo processor
with 4 GB of RAM. The experiment was conducted running
Firefox 16.0.2 with the same Targa CRT monitor running at
60 Hz. Similar to the experiment reported by Simcox and Fiez
(2014), both systems used Prime95 version 27.9 to manipulate
CPU and RAM load in a controllable, predictable way
(Woltman, 2012). The four load conditions were (1) low, in
which only the browser was running; (2) medium, in which
Prime95 ran a torture test using 50 % of the CPU; (3) high, in
which Prime95 ran a torture test using 100 % of the CPU; and
(4) maximum, in which the torture test was run using up
almost all RAM, as well.

The survey that we created for the experiment consisted of
a white screen on which a large black square was presented
approximately 40 times for durations of 1, 2, 3, 4, 5, 6, 12, 30,
and 60 frames (in that order, with each duration condition fully
completed before the next condition). The interval between
the presentations of two squares was set to 1,500 ms. The total
duration of the experiment was about 12 min.

Results and discussion In order to estimate the accuracy of the
presentation timing, we compared the actual stimulus duration
measured using the photosensitive diode with (1) the duration
set by the experimenter and (2) the calculated duration logged
in the QRTE data file. The mean absolute differences between
these measures are displayed in Table 1 (for details, see the
supplementary material).

As Table 1 shows, the average deviation of both mea-
sures is around 6 ms in the low-load conditions. Only
under conditions of maximum load was a substantial dete-
rioration in performance observed in both systems, leading
to an average deviation of around 10 ms. The results also
indicate a difference in performance between the two sys-
tems. It may have been that this difference was due to the
fact that the System 2 hardware and software were quite
old (the operating system was released in 2007 and has lost
support by current browsers). However, this difference in
performance also illustrates a general caveat in online
experimenting: The experimenter simply cannot know all
hardware and other factors that will influence performance.
Our findings show that the mean deviation between the
intended duration of a stimulus and the actual deviation of

�Fig. 1 (a) Screenshot of what the embedded data overview should look
like for the Stroop reaction time (RT) task. (b) Screenshot of the Loop &
Merge list. In the Stroop RT task, 96 trials will be displayed, and four
columns are needed to define the variable content for each trial. (c)
Screenshot of the question block along with the JavaScript for each
question. Each question represents a screen in the task. (d) Schematic
overview of a trial in the Stroop RT task

Behav Res (2015) 47:918–929922

a stimulus was small, and given the 60-Hz display rate
used here, falls within the range of ± 1 display frame
deviation (16.67 ms). A similar accuracy was observed
for the calculated duration attribute that is logged in the
QRTE data file. Researchers might use this attribute to get
a reasonably reliable estimate of timing errors, which can
be used to exclude trials or participants on an individual
basis when accurate timing is critical. Apart from the mean
deviation in milliseconds, we also analyzed the deviation
between the photodiode measurement and the intended
duration as expressed in the number of frames (16.67-ms
units, in our test case). The results of these analyses are
reported in Table 2. The results show that across the sys-
tems, including the low-, medium-, and high-load condi-
tions, a timing accuracy of the intended duration within the
range of ± 1 frame deviation was present in 97 % of the
trials. In the supplementary material, we provide tables
similar to Table 2 for the trials in which only one or two
frames were presented.

Server communication delay

Another important timing-related aspect concerns the
communication with the Qualtrics server. Because the
implementation of a block of trials depends on the native
Qualtrics Loop & Merge functionality, at the end of
every trial the data that have been collected are automat-
ically sent to the Qualtrics server. The speed of this
server communication relies on factors such as the Inter-
net connection of the participant and on the load of the
Qualtrics server. The duration of the server communica-
tion time is variable and not under control of the
researcher.

When setting up a QRTEngine survey, the researcher
defines an intertrial delay (ITD), which is essentially the
minimum delay between the end of the current and the
beginning of the next trial (the intertrial interval), during
which period server communication takes place. Please

note that preloading (or caching) trials is not possible when
using the Qualtrics environment. As is displayed in
Fig. 1d, the ITD is the minimum time that will elapse
between two consecutive trials set by the researcher. Dur-
ing the ITD, the last screen of trial n and the first screen of
trial n + 1 are displayed, while in the meantime three
processes take place. The first process, InitPre, takes care
of the server communication during which the collected
information is sent to the server and the data regarding the
next trial are received from the server. When server com-
munication is complete, the second process, called Init,
starts, which initializes the next trial. The third process,
InitPost, fills up the remaining ITD that was set by the
researcher. If the combined duration of InitPre and Init
exceeds the ITD, the duration of the InitPost is set to 0.
The time stamps of all three processes are logged separate-
ly (see also Fig. 1d).

In the validation experiments, to be discussed in the
next section, we measured the duration of the InitPre and
Init processes. Because we anticipated that a slightly
longer ITD for some participants would not negatively
influence our results, we allowed MTurk workers to par-
ticipate if their estimated server communication delay was
lower than 2,000 ms.4 Across the 158 participants in
Experiments 1, 2, and 3, the average InitPre duration
was 1,388 ms (SD = 630 ms), whereas the average Init
duration was 110 ms (SD = 31 ms). Thus, whereas we
aimed for an ITD of 1,000 ms, for most trials (75.7 %) the
actual ITD was slightly longer than the intended duration.
In the supplementary material, we have provided
participant-specific information on the durations of InitPre
and Init.

4 Participation was only allowed and data were only acquired when the
mean +2 standard deviations of an individual’s InitPre did not exceed
2,000 ms. These InitPre’s were measured in a separate question block,
which looped ten trials while showing an initialization progress bar,
before the experiment started.

Table 1 Differences between intended, actual, and logged durations in the timing validation study

Computer Load Mean (ms)

| Intended Duration – Actual Duration | | Logged Duration – Actual Duration |

System 1 System 2 Average System 1 System 2 Average

Low 1.2 9.9 5.6 0.9 9.7 5.3

Med 2.2 10.9 6.6 1.8 9.6 5.7

High 1.5 9.5 5.5 1.4 10.1 5.8

Max 9.3 10.7 10.0 6.6 10.0 8.3

Average 3.5 10.2 6.9 2.7 9.9 6.3

System 1 = BTO laptop running Windows 7; System 2 = MacBook Pro running OSX 10.5.8

Behav Res (2015) 47:918–929 923

Online RT experiments using the QRTEngine

In order to demonstrate that typical chronometric effects can
be observed when using the QRTEngine, we ran a number of
classic behavioral RTexperiments using this method. Accord-
ingly, a Stroop task, an attentional blink task, and a masked-
priming task were programmed using the QRTEngine and run
online via AMT. Although standard Stroop and attentional
blink effects have been observed using other online research
tools as well, reliable negative masked-priming effects (cf.
Eimer & Schlaghecken, 2002) have not been shown yet using
JavaScript-based methods (Crump et al., 2013). The goal of
the present experiments was to test whether the QRTEngine
timing capabilities are sufficient to show the standard effects
in these tasks.

Experiment 1: Stroop task

The Stroop task is a classic paradigm that requires participants to
identify the word color of congruent and incongruent color words.
When word and word color are incongruent (e.g., the word “red”
in green), RTs are slower and people make more errors than when
the stimuli are congruent (MacLeod, 1991; Stroop, 1935).

Method

Participants The participants were recruited through AMT
and were required to be located in the United States.5 Fifty-
two participants completed the task: 29 were female, 43 were
right-handed, and the average age was 35 years (SD =
12.54). Participants received financial compensation to com-
plete the task, which lasted for approximately 5 min. Informed
consent was given prior to the experiment. The ethics com-
mittee of the Leiden University Psychology section approved
the experiment, as well as the following experiments de-
scribed in this article.

Stroop task The experiment was based partly on the Stroop
task used by Crump et al. (2013). Participants completed 96
trials, of which 48 were congruent. The background color of
the page was white, and words were presented in 50-point font
in the colors red, green, blue, and yellow. Participants were
asked to respond by typing the first letter of the color of the
stimulus. The fixation point, word, and feedback were pre-
sented at the center of the page.

The trial started with a fixation cross displayed for 1,000ms,
which was followed by a blank screen displayed for 500 ms.
Then the screen showing the color word was displayed until a
response was made. Accuracy feedback was given after the
response, using the word “CORRECT” or “INCORRECT”
displayed for 500 ms in a black 30-point font.

Procedure Participants found the task advertised as a HIT on
AMT. They were informed that this HIT would require them
to respond as accurately as possible and that it required full
concentration. After participants had decided to take part, they
were linked to our Qualtrics survey. This survey first collected
somemetadata, such as the browser version, operating system,
and screen resolution used. Then, the survey estimated the
speed of the participant’s Internet connection using the ITD
estimation described earlier. When the connection speed was
too low, the participant was kindly informed that he or she
could not participate.

After participants had given informed consent, they were
asked for their AMTworker ID in order that we could pay the
participants later. This was followed by the instruction to
maximize the browser window using F11 and reminding the
participant that concentration was necessary for successful
completion of the task. Following these general instructions,
the specific instructions for the Stroop task were presented
along with four examples. After this, participants started the
task. When the task was completed, participants were asked
for some demographic information before the survey ended.

Results and discussion

We excluded four participants because of an accuracy below
80 %. A one-way repeated measures analysis of variance

5 Although these Mechanical Turk participants had a registered location
within the United States, we cannot exclude the possibility that some
participants were actually performing the experiment from another
country.

Table 2 Percentages of observed deviations, in frames, between intended and actual durations in the timing validation study

System 1 System 2

0 1 2 >2 0 1 2 >2

Low load 93.0 % 6.6 % 0.2 % 0.0 % 46.1 % 50.5 % 2.2 % 1.1 %

Med load 87.2 % 12.2 % 0.5 % 0.0 % 45.8 % 45.8 % 6.9 % 1.3 %

High load 91.9 % 7.2 % 0.8 % 0.0 % 49.1 % 46.3 % 3.8 % 0.5 %

Max load 59.1 % 32.7 % 3.6 % 4.4 % 48.6 % 42.2 % 7.7 % 1.3 %

System 1 = BTO laptop running Windows 7; System 2 = MacBook Pro running OSX 10.5.8

Behav Res (2015) 47:918–929924

(ANOVA) on correct RTs and error rates was conducted with
Congruency as the factor. For this experiment, as well as for
the following experiments, a Greenhouse–Geisser correction
was applied when the assumption of sphericity was violated.
In these cases, we report corrected p values and uncorrected
degrees of freedom. All significant effects (p < .05) are re-
ported. TheMSE and partial eta-squared are reported as mea-
sures of effect size.

Figure 2 shows the mean RT and error rate for each condi-
tion. In line with predictions, RTs were slower for incongruent
(1,064 ms) than for congruent (887 ms) trials, showing a large
Stroop effect (177 ms), F(1, 44) = 144.28, MSE = 4903, p <
.001, ηp

2 = .766. Error rates were very low, with higher error
rates for incongruent (2 %) than for congruent (0.3 %) items,
F(1, 44) = 17.92, MSE = .001, p < .001, ηp

2 = .289. The
observed RTs are consistent with those in the study by Crump
et al. (2013), who reported 859ms for congruent and 1,152 ms
for incongruent trials.

Experiment 2: Attentional blink

The attentional blink paradigm requires very precise control
over the timing of stimulus presentation, and is therefore well
suited to investigate the timing capabilities of the QRTEngine.
Stimuli are presented in a rapid serial visual presentation
(RSVP), and participants are asked to identify a first target
(T1) and to decide whether a second target (T2) was present.
The classic attentional blink effect shows that target identifi-
cation of the T2 is impaired when it is presented 100–500 ms
after T1 (Raymond, Shapiro, & Arnell, 1992). When T2 is
presented directly after T1, there is less impairment, an effect
called “lag 1 sparing.”When T2 is presented 2–8 places after
T1, accuracy typically increases gradually with the distance
from T1.

Method

Participants Participants were recruited through AMT and
were required to be located in the United States. Among the
49 participants who completed the task, 20 were female, 37
were right-handed, and the average age was 34 years (SD =
12.54). Participants received financial compensation to com-
plete the task, which lasted for approximately 5 min. Informed
consent was taken prior to the experiment.

Attentional blink task The experiment consisted of 80 trials
and was partly based on the attentional blink task used by
Crump et al. (2013). A gray 300-pixel square was displayed in
the center of the page, the background was white, and stimuli
were presented in the center of the square in a 50-point font.
The letter sequences consisted of 7–14 pretarget letters and
seven posttarget letters, all of which were uniquely selected
from the whole alphabet and randomly ordered.6 T1 always
appeared at the end of the pretarget sequence, and T2 was
presented on 50 % of the trials at each of the posttarget
positions. The present attentional blink experiment used black
letters as distractors, a white letter as T1, and a black capital X
as T2.

In each trial, a fixation cross was presented for 1,000 ms,
followed by the stream of letters, each of which was presented
for 100 ms. After the stream completed, participants were
asked to identify T1 by pressing the corresponding letter on
the keyboard. Then they were asked to press “1” if T2 had
been present, or “0” if T2 had not. Both questions were
displayed in a 15-point black font in the center of the gray
square.

Procedure The same procedure was used as described for
Experiment 1.

Results and discussion

The analysis included only trials in which T1 was identified
correctly. Figure 3 shows the mean proportions correct for
detecting T2. A significant effect of lag is apparent, F(6, 252)
= 31.89, MSE = .056, p < .001, ηp

2 = .432. The proportion
correct is higher for lag 1 (.54) than for lag 2 (.41), t(42) =
2.82, p = .007, an effect demonstrating the typical lag 1
sparing. After lag 2, the proportion correct increases gradually
to lag 7. In other words, the standard effects observed in
attentional blink paradigms were reproduced in the present
experiment. The proportions correct for the present experi-
ment are quite similar to, although a little higher than, the
results found by Crump et al. (2013), who reported a lag 1

Fig. 2 Mean reaction time (RT) and error rate for each condition in the
Stroop task

6 We aimed to present eight posttarget positions, but due to a program-
ming error, the eighth position was never presented. We therefore do not
include the lag 8 condition in the analyses.

Behav Res (2015) 47:918–929 925

proportion correct of .43 and a lag 2 proportion correct of .23.
The differences between the lag 1 and lag 2 proportions
correct in both studies are quite similar: .13 in our results,
and .2 in the study by Crump et al. (2013).

Experiment 3: Masked priming

The minimum duration for which a stimulus can be displayed
on an average monitor is 16 ms, corresponding to a refresh
rate of 60 Hz. Therefore, if the QRTEngine were proved
capable of accurately presenting stimuli for 16 ms, that would
indicate very good control over the timing. Masked-priming
tasks are among the few paradigms that depend on such short
presentation times. A classic result pattern of the masked-
priming task developed by Eimer and Schlaghecken (2002)
is a negative compatibility effect: When primes are presented
for very short durations, a congruent prime increases the RT.
We expected that a negative compatibility effect could indeed
be found if the QRTEngine allowed very short stimulus pre-
sentation times.

Method

Participants Participants were recruited through AMT and
were all located in the United States. Among the 57 partici-
pants who completed the task, 33 were female, 57 were right-
handed, and the average age was 42 years (SD = 13.04).
Participants received financial compensation to complete the
task, which lasted for approximately 30 min. Informed con-
sent was taken prior to the experiment.

Masked-priming task The experiment consisted of 576 trials.
The stimuli were black and measured 70 pixels in width and
40 pixels in height, and were presented in the center of a white
page. There were six blocks of 96 trials; each block had a
prime duration of 16, 32, 48, 64, 80, or 96 ms. The prime

stimulus consisted of two arrows pointing is the same direc-
tion (<< or >>). The mask stimuli were chosen from 24
images consisting of eight randomly rotated and placed lines.
The probe stimulus was similar to the prime.

Procedure For this experiment, largely the same procedure
was used as in Experiment 1. After the general instructions,
participants received task-specific instructions and started the
task. Each trial started with a fixation cross presented for
1,000 ms, followed by the prime with variable duration, which
was followed by the mask presented for 96 ms. Next, a blank
48-ms interval was presented. Finally, the probe stimulus was
presented for 96 ms and then removed immediately. Partici-
pants were instructed to respond as quickly and accurately as
possible by pressing “S” when the probe consisted of left
arrows, and “L” when the probe consisted of right arrows.

Results and discussion

Of the 57 participants, four outliers were omitted from analy-
sis: three on the basis of low accuracy, one on the basis of RT
(mean RT > 1,250 ms). Figure 4 shows the mean RTs and
error rates for each of the prime durations. Importantly, the
classic pattern of the masked-priming paradigm was
reproduced: Relative to congruent primes, an incongruent
prime increased RTs for longer prime durations (standard
compatibility effect), whereas for shorter prime durations,
the pattern reversed (negative compatibility effect). ANOVAs
showed that the main effect of compatibility was not signifi-
cant. The main effect of prime duration was significant, F(5,
260) = 5.49, MSE = 7875, p = .003, ηp

2 = .096, as was the
interaction effect of compatibility and duration, F(5, 260) =
10.75, MSE = 549, p < .001, ηp

2 = .171. The compatibility
effects were significant for all duration conditions except the
64-ms condition: for the 16-ms condition, compatibility effect
= –10 ms, t(52) = 3.36, p = .001; for the 32-ms condition,
compatibility effect = –14 ms, t(52) = 3.35, p = .002; for the
48-ms condition, compatibility effect = a marginally signifi-
cant –10 ms, t(52) = 1.96, p = .056; for the 80-ms condition,
compatibility effect = 11 ms, t(52) = –2.03, p = .047; for the
96-ms condition, compatibility effect = 16ms, t(52) = –2.73, p
= .009.

For the error rates, we found a significant main effect of
prime duration, F(5, 260) = 3.4, MSE = .005, p = .031, ηp

2 =
.061, a significant main effect of compatibility, F(1, 52) =
4.09, MSE = .007, p = .048, ηp

2 = .073, and a significant
interaction effect, F(5, 260) = 7.57,MSE = .003, p < .001, ηp

2

= .127. The compatibility effects were significant for the 80-
ms condition, compatibility effect = 3 %, t(52) = 2.14, p =
.037, and for the 96-ms condition, compatibility effect = 5 %,
t(52) = 4.21, p < .001.

The observed RTs are consistent with those from the
study by Crump et al . (2013) , who reported a

Fig. 3 Mean Target 2 (T2) proportions correct as a function of T1–T2 lag

Behav Res (2015) 47:918–929926

compatibility effect of 34 ms in the 96-ms condition,
whereas we found a compatibility effect of 16 ms in that
condition. Since no negative compatibility effect was
found in the study by Crump et al. (2013), we compared
the negative compatibility effect with the one in the orig-
inal masked-priming study by Eimer and Schlaghecken
(2002). They reported a negative compatibility effect of
about 12 ms in the 16-ms condition, very similar to the
10 ms from our results. Given that the pattern of our
results is similar to the original findings by Eimer and
Schlaghecken (2002), the results from the present exper-
iment show that the QRTEngine can even be used to
conduct behavioral experiments that rely on very short
stimulus presentation timings.

Summary of behavioral validation studies

By reproducing classic behavioral effects in three validation
studies, we have provided important empirical validation for
the QRTEngine. Although the Stroop and attentional blink
effects had been found before in online studies (Crump et al.,
2013), the present study, to our knowledge, was the first to
provide results similar to the masked-priming effect originally
reported by Eimer and Schlaghecken (2002) using JavaScript-
based methods.

Discussion

Performing behavioral research online is an interesting ap-
proach that is gaining increased popularity. The rapid devel-
opment of Web-browser technology and the emergence of
recruiting platforms such as AMT have facilitated this devel-
opment. We think that the QRTEngine can help researchers

conduct online behavioral research in an accessible and effi-
cient way.

The QRTEngine provides a number of key features. First,
the accuracy of its presentation timing was within ± 1 frame
deviation in 97 % of the trials, which we observed by com-
paring the intended presentation times with a photodiode
measurement. Further validation for its accurate timing was
provided by an analysis of the behavioral results in typical RT
paradigms run on AMT. A second key feature of the
QRTEngine is that it works quite simply. In our experience,
60 min is often sufficient for a novice to follow the tutorial in
the supplementary material to build a Stroop task. When using
the method more often, building experiments will likely be-
come very efficient, because elements can be easily ex-
changed within and between surveys. Because the experimen-
tal flow is determined by JavaScript snippets instead of by
objects in a graphical user interface, trial procedures can also
be implemented in a flexible manner. However, this flexibility
also allows for programming the same experiment in different
ways, possibly introducing small errors in the experimental
design. We therefore recommend that users to share their
experiments to facilitate research transparency and replicabil-
ity (Asendorpf et al., 2013).

Although we believe that the QRTEngine indeed provides
interesting benefits, potential users should be aware of some
limitations. First of all, given that the observed accuracy of
presentation timing is ± 1 frame deviation in 97% of trials, the
presentation timing capabilities of the QRTEngine are certain-
ly not as good as those of software like E-Prime (Schneider
et al., 2002) or comparable packages for offline research, since
these solutions have considerably more control over the oper-
ating system. Furthermore, timing is partly dependent on the
participant’s Web browser: For older browsers, the timing is
less precise. Additionally, when using the time stamps logged
during an experiment, it is important to keep inmind that these
time audits are subject to measurement error. We expect that
the limitations regarding timing will gradually be resolved in

Fig. 4 Mean reaction times (RTs)
and error rates for each condition
in the masked-priming task. Note
the typical reversal of the
compatibility effect for the shorter
prime durations

Behav Res (2015) 47:918–929 927

the future, since Web browsers develop very rapidly with a
focus on speed. Although our validation studies suggest that
the QRTEngine is often capable of providing very short
presentation times of up to one frame (i.e., 16.7 ms when
using a 60-Hz refresh rate), inaccuracy will always remain
when running online experiments directly in the browser,
especially with very short presentation times. Considering
these validations, it should be noted that we did not perform
any validation on mobile devices such as tablets or
smartphones. Given these considerations, online studies will
introduce considerable nonsystematic noise in terms of
timing, which might affect the sensitivity to small effects in
RTs. In extreme cases, measurement error could therefore be
speculated to become even twice as high as in typical lab
experiments. Increasing the sample size is the easiest way to
reduce the impact of this problem. As a very conservative rule
of thumb, researchers might therefore consider multiplying
their sample size, based on conventional power analyses of lab
studies, by a factor 4 in order to be equally sensitive to the
similar effects observed in the lab.

Second, the ITD may occasionally exceed the desired
duration between trials. This is because the method is depen-
dent on Qualtrics servers and the Internet connection of the
participant. We therefore recommend not using the
QRTEngine when it is necessary for the intertrial interval to
be exactly consistent or when the intertrial interval needs to be
very short. Using a test that measures the Internet connection
quality before the start of an experiment will partly help to
reduce the impact of this limitation.

Third, at present the QRTEngine allows for presenting
text and pictures only, so studies requiring auditory and
movie stimuli are not supported. Furthermore, researchers
should also be aware that designs in which the types of
trials cannot be specified in advance in Loop & Merge lists
might be difficult to implement in Qualtrics. Besides these
QRTEngine-specific recommendations, we would remind
potential users of the caveats associated with online RT
experiments in general, which we discussed in the
introduction.

The growing interest in online behavioral research has
led to numerous studies regarding the benefits and validity
of such results, mostly focusing on data collected using
AMT (Buhrmester et al., 2011; Germine et al., 2012;
Paolacci et al., 2010). Although the QRTEngine can be
used to conduct online research through any channel, it
provides the additional benefit of being JavaScript-based,
which complies with AMT’s regulations that workers
should not be asked to download additional software.
Conducting online behavioral research provides numerous
advantages and is starting to emerge as a serious alternative
for many researchers. We think that the findings described
here show that the QRTEngine may provide a valuable tool
for conducting such research.

Author Note The main programming of the QRTEngine was per-
formed by Erwin Haasnoot. We thank those who have tested and provid-
ed feedback on earlier versions of the QRTEngine, especially Poppy
Watson and Laura di Bella. This work was supported by a grant from
the Netherlands Organization for Scientific Research (NWO) to Bernhard
Hommel.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Asendorpf, J. B., Conner, M., De Fruyt, F., De Houwer, J., Denissen, J. J.
A., Fiedler, K., & Wicherts, J. M. (2013). Recommendations for
increasing replicability in psychology. European Journal of
Personality, 27, 108–119. doi:10.1002/per.1919

Behrend, T. S., Sharek, D. J., Meade, A. W., & Wiebe, E. N. (2011). The
viability of crowdsourcing for survey research. Behavior Research
Methods, 43, 800–813. doi:10.3758/s13428-011-0081-0

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-quality,
data? Perspectives on Psychological Science, 6, 3–5. doi:10.1177/
1745691610393980

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013).
Evaluating Amazon’s Mechanical Turk as a tool for experimental
behavioral research. PLoS ONE, 8, e57410. doi:10.1371/journal.
pone.0057410

de Leeuw, J. R. (2014). jsPsych: A JavaScript library for creating behav-
ioral experiments in a Web browser. Behavior Research Methods.
doi:10.3758/s13428-014-0458-y

Eimer, M., & Schlaghecken, F. (2002). Links between conscious aware-
ness and response inhibition: Evidence from masked priming.
Psychonomic Bulletin & Review, 9, 514–520. doi:10.3758/
BF03196307

Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee,
G., & Wilmer, J. B. (2012). Is the Web as good as the lab?
Comparable performance from Web and lab in cognitive/
perceptual experiments. Psychonomic Bulletin & Review, 19, 847–
857. doi:10.3758/s13423-012-0296-9

Keller, F., Gunasekharan, S., Mayo, N., & Corley, M. (2009). Timing
accuracy of Web experiments: A case study using the WebExp
software package. Behavior Research Methods, 41, 1–12. doi:10.
3758/BRM.41.1.12

MacLeod, C. M. (1991). Half a century of research on the Stroop effect:
An integrative review. Psychological Bulletin, 109, 163–203. doi:
10.1037/0033-2909.109.2.163

Mann, J. (2012). High Resolution Time. W3C recommendation.
Retrieved July 1, 2014, from www.w3.org/TR/hr-time/

Mason, W., & Suri, S. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44, 1–
23. doi:10.3758/s13428-011-0124-6

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-
source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44, 314–324. doi:10.3758/s13428-
011-0168-7

Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments
on Amazon Mechanical Turk. Judgment and Decision Making, 5,
411–419.

Behav Res (2015) 47:918–929928

http://dx.doi.org/10.1002/per.1919
http://dx.doi.org/10.3758/s13428-011-0081-0
http://dx.doi.org/10.1177/1745691610393980
http://dx.doi.org/10.1177/1745691610393980
http://dx.doi.org/10.1371/journal.pone.0057410
http://dx.doi.org/10.1371/journal.pone.0057410
http://dx.doi.org/10.3758/s13428-014-0458-y
http://dx.doi.org/10.3758/BF03196307
http://dx.doi.org/10.3758/BF03196307
http://dx.doi.org/10.3758/s13423-012-0296-9
http://dx.doi.org/10.3758/BRM.41.1.12
http://dx.doi.org/10.3758/BRM.41.1.12
http://dx.doi.org/10.1037/0033-2909.109.2.163
http://www.w3.org/TR/hr-time/
http://dx.doi.org/10.3758/s13428-011-0124-6
http://dx.doi.org/10.3758/s13428-011-0168-7
http://dx.doi.org/10.3758/s13428-011-0168-7

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary
suppression of visual processing in an RSVP task: An attentional
blink? Journal of Experimental Psychology: Human Perception and
Performance, 18, 849–860. doi:10.1037/0096-1523.18.5.849

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime
[Computer software]. Pittsburgh: Psychology Software Tools.

Schubert, T. W., Murteira, C., Collins, E. C., & Lopes, D. (2013).
ScriptingRT: A software library for collecting response latencies in
online studies of cognition. PLoS ONE, 8, e67769. doi:10.1371/
journal.pone.0067769

Simcox, T., & Fiez, J. A. (2014). Collecting response times using
Amazon Mechanical Turk and Adobe Flash. Behavior Research
Methods, 46, 95–111. doi:10.3758/s13428-013-0345-y

Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
Journal of Experimental Psychology, 18, 643–662. doi:10.1037/
0096-3445.121.1.15

Ulrich, R., & Giray, M. (1989). Time resolution of clocks: Effects on
reaction time measurement—Good news for bad clocks. British
Journal of Mathematical and Statistical Psychology, 42, 1–12.
doi:10.1111/j.2044-8317.1989.tb01111.x

von Bastian, C. C., Locher, A., &Ruflin,M. (2013). Tatool: A Java-based
open-source programming framework for psychological studies.
Behavior Research Methods, 45, 108–115. doi:10.3758/s13428-
012-0224-y

Woltman, G. (2012). Prime95Webpage. Retrieved from www.mersenne.
org/freesoft/

Behav Res (2015) 47:918–929 929

http://dx.doi.org/10.1037/0096-1523.18.5.849
http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.3758/s13428-013-0345-y
http://dx.doi.org/10.1037/0096-3445.121.1.15
http://dx.doi.org/10.1037/0096-3445.121.1.15
http://dx.doi.org/10.1111/j.2044-8317.1989.tb01111.x
http://dx.doi.org/10.3758/s13428-012-0224-y
http://dx.doi.org/10.3758/s13428-012-0224-y
http://www.mersenne.org/freesoft/
http://www.mersenne.org/freesoft/

	QRTEngine: An easy solution for running online reaction time experiments using Qualtrics
	Abstract
	Introducing the QRTEngine
	Recommendations for online experimentation
	Using the QRTEngine
	Timing features of the QRTEngine
	Logging of timing-related information
	Validation using photosensitive diode
	Server communication delay

	Online RT experiments using the QRTEngine
	Experiment 1: Stroop task
	Method
	Results and discussion

	Experiment 2: Attentional blink
	Method
	Results and discussion

	Experiment 3: Masked priming
	Method
	Results and discussion

	Summary of behavioral validation studies
	Discussion
	References

