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Abstract

We live in a continuous environment in which the visual scene changes on a slow timescale. It has 

been shown that, to exploit such environmental stability, the brain creates a “continuity field” such 

that objects seen seconds ago influence the perception of current objects. What is unknown is 

whether a similar mechanism exists at the level of our metacognitive representations. In three 

experiments we demonstrate a robust inter-task “confidence leak” that cannot be explained by 

response priming or attentional fluctuations. Observers’ ability to modulate this confidence leak 

predicted higher capacity for metacognition as well as greater gray matter volume in the prefrontal 

cortex. A model based on normative principles from Bayesian inference explained the results by 

postulating that observers subjectively estimate the perceptual signal strength in a stable 

environment. These results point to the existence of a novel metacognitive mechanism mediated 

by regions in prefrontal cortex.

Introduction

For various kinds of decisions, we have the ability not only to use the available information 

to make a choice between several alternatives, but also to introspect on the likelihood that 

our decision is correct. This metacognitive ability is critical in deciding whether to act 

immediately on the decision or to continue gathering information, as well as whether to 

update our model of the world with the newly acquired information (Fleming, Dolan, & 

Frith, 2012; Koriat, 2007; Metcalfe & Shimamura, 1994; Nelson & Narens, 1990; 

Shimamura, 2000; Yeung & Summerfield, 2012). Research on metacognitive judgments in 

perception has typically focused on how confidence ratings are influenced by different 

properties of the stimulus at hand (Fleming & Lau, 2014). However, other factors beyond 
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the immediate stimulus also influence confidence ratings (Koriat, 2011). One such factor 

that has received little attention is inter-trial and inter-task influences on metacognitive 

judgments.

We live in a continuous environment in which the viewing conditions change relatively 

slowly and objects tend to persist within our visual field for long periods. It has been 

demonstrated that the brain exploits such environmental stability (Fischer & Whitney, 2014; 

Frund, Wichmann, & Macke, 2014; Liberman, Fischer, & Whitney, 2014; Zhang, Wang, & 

Goldberg, 2014). In particular, it has recently been proposed that the brain creates a 

“continuity field” such that recently seen objects bias the perception of current objects 

(Fischer & Whitney, 2014; Liberman et al., 2014).

Here we report evidence that such continuity field exists at the metacognitive level, and that 

there may be dedicated mechanisms specifically influencing our confidence ratings rather 

than basic perceptual processing. We demonstrate robust inter-task dependence in 

metacognitive judgments of confidence even when the two different tasks involve distinct 

visual features: letter identity versus color. In other experiments, serial dependence of 

confidence ratings is shown to appear when the same task is presented many times. Finally, 

we relate this effect to gray matter volume in the anterior prefrontal cortex (aPFC), an area 

that has previously been linked to metacognition. This phenomenon – which we call 

“confidence leak” – is explained by a computational model based on the principles of 

Bayesian inference. The model quantifies the normative principle that observers use their 

subjective certainty in previous judgments to predict the quality of the perceptual signal for 

future judgments.

Methods

Observers

Sixty-nine observers (39 women; mean age = 23.6; SD = 5.7) participated in three 

psychophysical experiments (Experiments 1–3). Experiment 1 consisted of 27 observers; 1 

observer was excluded for chance performance. Experiment 2 consisted of 22 observers; 4 

observers were excluded for having an extreme bias in the “opt out” task: two of them chose 

the opt out option on at least 396 trials (out of 400) while the other two chose to opt out at 

most 5 times. Finally, Experiment 3 was a re-analysis of a previous 20-subject dataset 

reported in Rahnev et al. (2011). For all 3 studies we sought to collect data from between 20 

and 30 observers as in previous work from our laboratory (Maniscalco, Bang, Iravani, 

Camps-Febrer, & Lau, 2012; Rahnev, Lau, & De Lange, 2011) stopping data collection 

when the sample size reached the target interval; logistical factors led to slightly different 

sample sizes. No statistical analyses reported in the paper were performed on partial data. In 

addition, in Experiment 4 we re-analyzed the data from McCurdy et al. (2013), which 

included 34 observers. All participants were naive regarding the purposes of the 

experiments, had normal or corrected-to-normal vision, and signed an informed-consent 

statement approved by the local ethics committee. Each experiment took approximately one 

hour to complete and participants were compensated at the rate of $10/hour.
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Stimuli and Task / Materials and Procedure

Stimuli in Experiments 1–3 were presented on a gray background (6.0 cd/m2). Observers 

were seated in a dimmed room about 60 cm away from the computer monitor. Stimuli were 

generated using Psychophysics Toolbox in MATLAB (MathWorks, Natick, MA) and were 

shown on an iMac monitor (19 inch monitor size, 1680 × 1050 pixel resolution, 60 Hz 

refresh rate).

Experiment 1—On each trial 40 characters were displayed. The characters were X’s and 

O’s that were colored in red and blue. The letter identity and color were independent of each 

other. Observers’ task was to judge the dominant letter identity and color in the display 

(Figure 1). More specifically, with four different button presses observers indicated (1) 

whether there were more X’s or more O’s, (2) the confidence in their decision on 1–4 scale, 

(3) whether there were more red or blue characters, and (4) the confidence in their decision 

on 1–4 scale. The order of the four questions was the same for all observers. To give their 

responses, observers used the 1–4 keys on a computer keyboard.

The dominant letter always accounted for 23 of the 40 characters on the screen. In different 

runs, the dominant color accounted for either 23 or 29 characters. The dominant letter and 

color were pseudo-randomized such that over the course of the experiment the X’s and O’s, 

as well as the red and blue color, were dominant equally often. We used the same objective 

difficulty level for all observers since achieving very similar level of performance across 

observers was not critical. Conversely, the use of a staircasing procedure could have led 

observers to believe that a correlation structure was actually present in the task (even though 

such structure did not exist in the main experiment), thus potentially compromising our 

analyses on confidence leak.

All letters were presented in Arial font (size = 0.5°) and placed randomly within an 

imaginary square centered on fixation with a side of 10°. The letters remained on the screen 

for one second, after which each of the four questions was presented on the screen in 

succession. Observers were allowed to take as long as they needed to give their responses.

Participants completed a total of 400 trials separated in 4 runs, each consisting of 4 blocks of 

25 trials. At the end of each block observers were given 15-second breaks, while at the end 

of each run they were allowed to take self-paced breaks.

Observers were given a total of 46 practice trials. The initial practice trials were easier and 

the difficulty was gradually increased until it reached the difficulty of the actual experiment. 

Trial-by-trial feedback was provided on the first 36 trials in order to help observers learn 

how to perform the task. There was no feedback in the last 10 practice trials or in the main 

experiment.

Experiment 2—Experiment 2 was similar to Experiment 1. The main difference was the 

method of collecting confidence ratings. In Experiment 1 confidence ratings were always 

collected on the same 1–4 scale. In Experiment 2, in order to minimize the chance of motor 

priming between confidence reporting in the two different tasks, we used two separate 

methods of determining the confidence level that were designed to be as different as 
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possible from each other. The first reporting method required observers to use the mouse to 

make a subjective confidence response on a continuous visual analog scale (VAS), while the 

second was the “opt out” paradigm (Kiani & Shadlen, 2009) in which observers are given 

the option of not responding if they are unsure about the response (but do not give 

confidence explicitly).

In the first method, observers gave the confidence rating on the VAS scale by moving a 

mouse between the two extremes of a straight line. The left extreme of the line was marked 

as “Not confident at all” and was coded as confidence of 0, while the right extreme was 

marked as “Very confident” as was coded as confidence of 100. For each observer, this VAS 

rating followed either the letter identity or color task but this pairing was randomized 

between observers.

Second, on the other task observers were given the option of choosing either of the two 

possible responses (either X/O or red/blue). In addition to these two options, a third 

possibility presented was to choose to “opt out”. The response to this task was provided 

using a computer keyboard. The decision to opt out was coded as confidence of 1, while 

giving a response was coded as confidence of 2. In order to make the “opt out” choice 

meaningful, we introduced a point system. Choosing to opt out resulted in 2 points 

guaranteed, while choosing to respond led to either 4 points (for correct answers), or −1 

points (for incorrect answers). The optimal strategy in this task is thus to choose to “opt out” 

when the probability of being correct is less than 66%. To decrease inter-observer 

variability, we explicitly informed observers of the optimal strategy. In order to increase the 

consistency between the two tasks, observers were awarded 4 points for correct and −1 

points for incorrect answers in the other task (i.e., the task which was followed by VAS 

rating). To motivate participants to use the opt-out option optimally, we rewarded the three 

observers with highest scores across the whole experiment with additional $10.

To remove any other biases potentially present in Experiment 1, we randomized the order of 

the questions between the observers such that about half of them would always respond first 

to the letter identity task, while the other half responded first to the color task. Further, in 

Experiment 2 both tasks had two difficulty levels (the dominant letter identity or color was 

present in either 23 or 26 of the 40 characters) that were completely randomized between 

trials.

Experiment 3—Experiment 3 was performed to investigate whether confidence leak 

depends on the quality of the perceptual signal. It was originally reported in the 

Supplementary Material in Rahnev et al. (2011). There we focused on comparing the 

difference in confidence for high vs. low attention conditions. We returned to this dataset to 

reanalyze it in terms of confidence leak.

In that experiment we varied the number of stimuli (Gabor patches) on the screen in order to 

manipulate how observers distribute their attention to different objects. In one condition we 

used 2 items on the screen (a relatively focused mode of attention), while in the other we 

used 4 items on the screen (a relatively distributed mode of attention). The stimuli were 

presented for 33 ms (two computer frames). After a delay of 500 ms, observers saw a 
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response cue that instructed them which stimulus they should respond to (see Figure 5A). 

Observers had to indicate the tilt (clockwise/counter-clockwise) of the Gabor patch and rate 

their confidence (high/low). Participants completed 8 blocks of 125 trials each for a total of 

1000 trials. Within each block there were always either 2 or 4 patches and a single contrast 

level (4, 6, 8, 10, or 12%).

Experiment 4—Experiment 4 was re-analysis of the data from McCurdy et al. (2013). All 

experimental details are included in the original publication. Very briefly, observers 

completed a 2AFC task in which they indicated which of two noisy stimuli located on the 

left and right of fixation contained a grating. They then provided a confidence rating on 1–4 

scale. Observers completed 510 trials separated in 5 blocks of 102 trials each.

Analyses

Experiment 1—To determine whether confidence “leaks” from one task to the other, we 

first performed, for each observer, a simple trial-by-trial correlation of the confidence 

ratings from the two tasks. Next, in order to control for the influence of other factors we 

performed a regression in which the confidence on the letter identity task was used to predict 

the confidence on the color task while at the same time controlling for the influence of 

accuracy and RT on each task, as well as difficulty of the color task (i.e., whether the 

dominant color was present in 23 or 29 characters).

One possible reason for a confidence leak is simple motoric priming. To control for that 

possibility, we analyzed all trials in which an observer gave a confidence of 1 to one of the 

tasks but not 1 on the other task. This allowed us to determine, for each observer the percent 

of confidence ratings of 2, 3, and 4 on one task paired with a confidence rating of 1 on the 

other task. Similarly, we determined the percent of confidence ratings of 1, 2, and 3 on one 

task paired with a confidence rating of 4 on the other task. We excluded any observers that 

did not have at least 5 trials that entered in either of these analyses because that would lead 

to excessively volatile estimates. This led to the exclusion of 6 observers in this analysis. 

Finally, we performed a repeated-measures ANOVA to test whether there was an interaction 

of the amount of 2, 3, and 4 confidence ratings paired with a confidence of 1 and the amount 

of 1, 2, and 3 confidence ratings paired with a confidence of 4.

Experiment 2—We performed correlation and regression analyses as in Experiment 1. In 

addition, for visualization purposes, we created probability density functions (PDFs) for the 

confidence on the VAS scale conditional on the confidence on the opt-out task. The 

individual PDFs were averaged, and, for visualization, smoothed with a 10-point window.

Experiments 3 and 4—Since observers completed only one task per trial, confidence 

leak in these experiments was determined by analyzing the temporal lag-1 autocorrelation of 

the confidence ratings. Similarly to Experiments 1 and 2, both correlation and regression 

analyses were performed.

To determine observers’ performance on the task, we computed the signal detection theory 

(SDT) measure d’ by calculating the hit rate (HR) and false alarm rate (FAR). Then,
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(1)

where Φ−1 is the inverse of the cumulative standard normal distribution that transforms HR 

and FAR into z-scores. The measure d’ reflects the signal-to-noise ratio for observers 

performing the task.

Bayes factors—We computed Bayes factors for confidence leak in each experiment. We 

employed the Bayes calculator in Dienes (2008) for which we used a wide prior distribution 

for the alternative hypothesis defined as a Half-Normal distribution with a mean of 0, and 

SD of 1. Values higher than 3 are usually regarded as providing substantial evidence for the 

alternative hypothesis (Dienes, 2008, 2014). We obtained very large Bayes factors and the 

results were insensitive to variations in the distribution used for the alternative hypothesis.

Metacognition—To understand the relationship between confidence leak and 

metacognition, we computed a standard measure for metacognition, the area under the Type 

2 ROC curve (Type 2 AUC; Fleming & Lau, 2014; Fleming et al., 2010). The Type 2 ROC 

curve is similar to a conventional ROC curve with the difference that hits are defined as high 

confidence correct trials, while false alarms are defined as high confidence incorrect trials. 

Type 2 AUC was computed for each of the two tasks in Experiment 1 (the average of the 

two was taken as the observer-specific metacognition score; similar results were obtained if 

both scores were considered separately). In Experiment 2 the Type 2 AUC score was 

computed for the task with confidence rating because the opt-out task did not allow us to 

determine the accuracy of the low-confidence decisions (since a decision to “opt out” meant 

that observers did not indicate the perceived stimulus). For this analysis VAS confidence 

scores were transformed into 1–4 scores using cutoffs defined on the 25th, 50th, and 75th 

percentile of VAS scores for each individual observer. Finally, in Experiment 3 Type 2 

AUC was computed taking all trials from the experiment.

We then correlated, across all observers from Experiments 1–3, the amount of confidence 

leak, defined as the Fisher-transformed correlation values from each experiment, with the 

observer-specific metacognition (defined as the Type 2 AUC value). To increase power, the 

correlation was performed on the combined data from the three experiments.

Voxel-based morphometry (VBM)—We repeated the analyses by McCurdy et al. 

(2013) except that we were interested in the brain correlates of confidence leak rather than 

metacognition scores. Briefly, we used the same preprocessing which included segmentation 

into gray matter, white matter, and CSF in native space, aligning the data from different 

observers, registering to Montreal Neurological Institute stereotactic space, and smoothing 

with an 8 mm full-width at half-maximum Gaussian kernel. Multiple regression was used 

with an initial threshold of p < 0.001 uncorrected to determine the brain regions that 

correlated with our measures of confidence leak. Gender was included as a covariate and 

proportional scaling was used to account for global brain volume variability across 

participants. As in McCurdy et al. (2013), small-volume correction was applied to the 

clusters of interest in the prefrontal cortex by defining a 10 mm sphere at the peak voxel 

coordinates presented by Fleming et al. (2010) that were found to be associated with their 
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measure of metacognitive capacity [left aPFC, (−20, 53, 12); right aPFC, (24, 65, 18), (33, 

50, 9); dorsolateral PFC, (36, 39, 21)].

Modeling framework

In order to explain the confidence leak phenomenon, we developed a single-parameter 

model and fitted it to the data from the first three experiments. The model was based on the 

principles of Bayesian inference and is an extension of our previous work on confidence 

generation (Rahnev, Bahdo, de Lange, & Lau, 2012; Rahnev et al., 2013; Rahnev, 

Maniscalco, et al., 2011; Rahnev, Maniscalco, Luber, Lau, & Lisanby, 2012)

Bayesian theory describes the optimal way to choose between different alternatives in the 

space of possible stimuli. Observers attempt to make a decision based on the posterior 

probability P(Si|E = x) where Si are the possible stimulus categories and E is the evidence on 

the current trial. Bayes’ theorem describes how this posterior probability P(Si|E = x) should 

be computed based on the likelihood function fE|Si (x), the prior probability P(Si), and the 

density function of E, fE (x):

(2)

For all perceptual decisions in the current set of experiments, there were two possible 

stimulus categories S1 and S2 (in Experiments 1 and 2 these were either X/O or red/blue, 

while in Experiment 3 these were clockwise/counter-clockwise tilt). Since we informed 

observers that the two stimuli categories were equally likely in all experiments, we set the 

prior probabilities for the two stimulus categories to 0.5. Further, since there are only two 

stimulus categories, we obtain that P(S2|E) = 1 − P(S1|E). Thus, observers’ choice was made 

by simply comparing P(S1|E) and P(S2|E) and choosing the stimulus that corresponds to the 

higher posterior probability. In keeping with previous literature (Macmillan & Creelman, 

2005), the likelihood functions fE|Si (x) are assumed to be Gaussian distributions with equal 

SD that can be set to 1, such that:

(3)

where μi is the mean of the likelihood function fE|Si (x). For simplicity, and without loss of 

generality, we set the two means to be symmetric about the origin, that is μ1 = −μ, μ2 = μ, 

where μ is positive. Notice that, with these assumptions, d’ – the standard measure of 

capacity from signal detection theory – can be expressed as a function of μ:

(4)

Using equation (3), we obtain the following for the posterior distribution P(S2|E = x) (for 

full derivation, see Supplementary Material):
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(5)

How do confidence ratings behave in this framework? According to the principles of 

Bayesian inference, confidence ratings should be determined by the probability of being 

correct. Thus, for example, if an observer is given the option of giving low/high confidence, 

then she would make this choice based on the value of max[P(S1|E)] and give a high 

confidence rating if this posterior probability is higher than a threshold (e.g., 0.75) and a low 

confidence rating otherwise. In general, if observers are asked to produce N discrete 

confidence ratings, they would need to define N−1 different thresholds t1, t2, … tN−1, such 

that a confidence rating of k is given if max[P(S1|E)] is in the interval (tk−1, tk), where t0 = .

5 and tN = 1 (Macmillan & Creelman, 2005).

The thresholds ti are defined in the posterior probability space. However, observers can only 

infer the posterior probability space by assuming a particular shape of the likelihood 

functions fE|Si (x). If this assumption is wrong, then the inferred posterior probability space 

would be incorrect. In this sense, observers do not have direct access to the posterior 

probability space. Therefore, it is helpful to translate the thresholds ti from the posterior 

space to the likelihood space to which observers do have direct access since that space is 

independent of any assumptions on the shape of the likelihood functions or the exact priors. 

Such correspondence is fortunately straightforward: each threshold ti corresponds to a 

criterion ci defined in likelihood space, such that, using equation (5):

(6)

from where it follows that:

(7)

The likelihood space confidence criteria c1, c2, … cN−1 are placed on the right of the origin 

in likelihood space such that a confidence rating of k is given if evidence mapped on the 

likelihood scale is in the interval (ck−1, ck), where c0 = 0 and cN = ∞. These confidence 

criteria reflect the confidence rating when S2 is the more likely stimulus. In a symmetrical 

fashion, −c1, −c2, … −cN are used for the confidence ratings when S1 is the more likely 

stimulus.

With no trial-to-trial information about the likely state of the environment, an observer can 

simply fix c1, c2, … cN−1 based on constant prior and likelihood functions so that they 

correspond to the desired t1, t2, … tN−1. However, the environment has higher order 

structure that makes it predictable (David, Vinje, & Gallant, 2004) and the brain is able to 

take advantage of this predictability (Fischer & Whitney, 2014; Fründ et al., 2014; Liberman 

et al., 2014; Yu & Cohen, 2009). To account for such autocorrelation in the environment, an 

observer will need to update the likelihood functions fE|Si (x) from trial to trial. If an 
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observer expects that the difficulty on the subsequent trial is now described by a likelihood 

function f′E|Si (x) with a mean of μ’, then she ought to update her criteria ci to c’i such that:

(8)

In other words, if an observer expects d’ to change by a factor of F, then to remain Bayes-

optimal, she needs to multiply all criteria, defined in the likelihood space, by a factor of 

(using equation 8 and the linear dependency between d’ and μ from equation 4).

Model fitting

We developed a formal model that is based on the Bayes-optimal strategy of adjusting 

confidence criteria based on the expected change in d’. The model had a single free 

parameter θ, while all other parameters were fixed.

For all experiments, we first computed d’ and ci for each task. The value of d’ was computed 

using equation (1), while ci were computed using the formula:

(9)

where HRi is the proportion of correct responses produced with confidence of i or higher, 

while FARi is the proportion of incorrect responses produced with confidence of i or higher 

(Macmillan & Creelman, 2005).

To perform the model fitting, for each task, we generated random samples from the 

distributions of the stimulus categories S1 and S2 defined by equation (3). For each task k (k 

= 1 or 2, as there were two tasks), we set the means of S1,k and S2,k such that  and 

. Since μ1,k and μ2,k, as well as the criteria ci,k, are symmetrical, without loss of 

generality we could simply sample from the S2,k distributions. The samples for the first task, 

xj,1, were categorized into confidence ratings using the confidence criteria ci,1. However, 

depending on the confidence rating produced on the first task, the criteria for the second task 

on the corresponding trials are shifted. The idea is that, on a trial-by-trial basis, based on the 

confidence in the first task, observers adjust their expectation for the signal-to-noise ratio 

(d’) in the second task such that:

(10)

where ΔC is deviation from the average observer-specific confidence produced on the same 

trial in the first task and θ is a free parameter that controls the amount of adjustment in the 

expectation of d’ in the second task based on the confidence on the first task. For example, if 

an observer has an average confidence of 2.5 on the first task, and on a particular trial she 

gave a confidence of 4 on that task, then ΔC = 4 − 2.5 = 1.5. If, for the same observer θ = 

Rahnev et al. Page 9

Psychol Sci. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.2, then eΔC*θ = e1.5*0.2 = 1.35. In other words, on this particular trial,  for the 

second task would be 1.35 times higher than its normal value. Note that, θ = 0 indicates no 

expectation for any change ( ), while θ > 0 and θ < 0 indicate expectation for an 

autocorrelated and anti-autocorrelated environment, respectively.

Using equations (4) and (8), it follows that, given the expectation for a change in d′ from 

equation (10), the observer should update her confidence criteria on the second task such 

that:

(11)

For each observer in each experiment, the single free parameter θ was fitted by starting with 

a value of 0, and adjusting it in a stepwise fashion until we could reproduce the confidence 

correlation between the two tasks. For each step we simulated 100,000 trials using the above 

procedure, and adjusted the parameter θ based on the obtained confidence correlation: if the 

simulated correlation was smaller/larger than the observed correlation, θ was initially 

increased/decreased by a step of 0.2 and this step was decreased in half after each reversal 

until we obtained a fit of the confidence correlation value with error smaller than 0.001.

In Experiment 1, we computed, for each observer, d’letter and the confidence criteria c1_letter, 

c2_letter, and c3_letter for the letter identity task, as well as d’color and c1_color, c2_color, and 

c3_color for the color task. The trial-to-trial confidence responses on the letter identity task 

(first task) were used to adjust the confidence criteria on the color task (second task).

In Experiment 2, we computed, for each observer, d’VAS and the confidence criteria c1_VAS, 

c2_VAS, … c100_VAS such that confidence ratings from 0 to 100 could be produced. For the 

opt-out task we could not estimate d’optOut for each observer due to reasons outlined above, 

so we set d’optOut to the same value for each observer that was equal to the average d’VAS. 

However, we did compute the single confidence criterion copt_out for each observer 

separately. The trial-to-trial confidence responses on the opt out task (first task) were used to 

adjust the confidence criteria on the VAS task (second task).

In Experiment 3, we computed, for each observer,  and c2−stimulus for the 2-

stimulus task, as well as  and c4−stimulus for the 4-stimulus task. On each step we 

generated 50,000 trials for each of the 2- and 4-stimulus tasks (for a total of 100,000). For 

both the 2- and 4-stimulus tasks, the first trial was generated using the parameters above, 

while for trials i ≥ 2, we used the confidence response on trial i−1 (equivalent to “first task” 

above) to adjust the confidence criteria on trial i (equivalent to “second task” above). We 

fitted the model to the average confidence autocorrelation value across the two tasks but also 

examined the obtained confidence autocorrelation within each task.
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Data and code

All data and codes for the analyses and model fitting in Experiments 1–3, as well as the 

behavioral analyses in Experiment 4 are freely available online: at http://dx.doi.org/10.5281/

zenodo.18396.

Results

Experiment 1

We sought to determine whether confidence “leaks” from one task to another even when the 

two tasks are about separate visual features such as shape and color. To this end we created 

a stimulus consisting of X’s and O’s that were colored in red or blue and asked observers to 

determine the dominant letter identity and color, as well as to provide confidence ratings 

related to both of these decisions (Figure 1).

Average accuracy was 68% (SD = 6.1%) for the letter identity task, 68% (SD = 8.6%) in the 

difficult condition and 88% (SD = 10.5%) in the easy condition of the color task, 

respectively. Thus, our task was successful in inducing appropriate behavioral performance. 

Achieving a pre-specified level of performance was not critical in this study.

To check for confidence leak, we first performed, for each observer, a simple trial-by-trial 

correlation of the confidence ratings from the two tasks. The inter-task confidence 

correlation was positive for 25 of the 26 observers (Figure 2A), and was significantly 

positive (p < .05) for 21 of the 26 observers. Across the whole group, the average Fisher-

transformed correlation coefficient was .23 with 95% confidence interval [.17, .29], which is 

significantly positive (t(25) = 7.40, p = 9*10−8) and corresponds to an effect size (Cohen’s d 

= 1.45) that is considerably higher than what is conventionally considered as “large” effect 

size (d = .80). Finally, we also computed the Bayes factor (see Methods) and found 

substantial evidence for the alternative hypothesis (Bayes factor = 9.4*109).

Next, in order to control for the influence of other task factors, we performed a regression 

where the confidence on the letter identity task was used to predict the confidence on the 

color task while at the same time controlling for the influence of accuracy and RT on each 

task, as well as difficulty of the color task (i.e., whether the dominant color was present in 

23 or 29 characters). After accounting for these other influences, confidence of the letter 

identity task was now a positive predictor of the confidence on the color task in all 26 

observers. The mean beta value was .22 (t(25) = 8.02, p = 2*10−8) with 95% confidence 

interval [.16, .27], signifying that one unit of confidence difference in the letter identity task 

predicted a .22 unit change in the confidence in the color task. This is also illustrated in 

Figure 2B where we plotted the average confidence on the color task for each confidence 

rating of the letter identity task and found a significant difference in their means (F(3,25) = 

32.12, p = 1.8*10−13).

Interestingly, neither accuracy nor RT on the letter identity task predicted confidence on the 

color task (p = .74 and .22, respectively). Therefore, what leaks is not the quality of the 

signal itself but observers’ metacognitive assessment of the signal correlation.
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These data suggest that confidence indeed leaks between tasks, even when these tasks 

depend on different visual features. However, there are several possible alternative 

explanations to rule out.

First, it could be that observers’ attentional states varied over the course of the experiment, 

which could lead to fluctuations in signal quality that is similar for the two tasks. If signal 

quality correlates between the two tasks, then confidence would also correlate trivially. To 

test for this possibility, we computed the performance on the color task as a function of the 

accuracy on the letter identity task. After a correct response on the letter identity task 

average d’ was 1.69, while after an incorrect response it was 1.62 with the difference failing 

to reach statistical significance (t(25) = 1.03, p = . 31, Cohen’s d = .10; Figure 2C). Further, 

this small, non-significant “performance leak” did not significantly correlate across subjects 

with the amount of confidence leak (r = .19, p = .34). Thus, confidence leak is not simply 

the result of fluctuations in signal quality because such fluctuations would have produced 

large corresponding changes in accuracy that would also correlate with confidence leak.

Second, it is possible that confidence ratings for both tasks drifted on a long timescale (e.g., 

they could have slowly increased for both tasks over the course of the experiment), 

reflecting perhaps a change in subjective mood state or degree of perceived expertise with 

the task. Such low-frequency drift could result in an observed confidence leak even without 

any within-trial leak. To check for that possibility, we applied scaled correlation (Nikolić, 

Mureşan, Feng, & Singer, 2012), which is a method to compute the correlation from a small 

window sizes thus excluding the slow-frequency components from contributing to the 

correlation. We used window sizes of 5, 10, 20, 50 100, 200, and 400 trials and found no 

influence of window size on inter-task confidence correlation (F(6,25) = .64, p = .7), 

suggesting that confidence leak does not depend on slow changes in the observers’ overall 

cognitive or mood state.

Third, it could be that confidence for both tasks fluctuated on a very short time scale (e.g., 

on a time scale of less than 5 trials) and that this fluctuation was similar for both tasks but 

that there was no causal influence from one task to the other. To address this question, we 

took advantage of a particular feature in our design: while the letter identity task always had 

the same difficulty over the course of Experiment 1, the difficulty of the color task changed 

once every run (of 100 trials). If confidence did not leak from one task to the other (but 

simply fluctuated simultaneously for the two tasks), we would expect confidence on the 

letter identity task to be the same regardless of the difficulty of the color task. However, 

even though the accuracy on the letter identity task did not depend on the difficulty of the 

color task (p = .48), observers were significantly more confident on the letter identity task in 

the easy color blocks compared to the difficult color blocks (t(25) = 2.65, p = .014). That is, 

an experimental manipulation of task difficulty for the color task led to a significant 

difference in confidence in the letter identity task. We obtained a similar result in an 

additional control experiment in which observers judged the orientation of grayscale 

gratings and provided confidence ratings: intermediate-contrast gratings were judged with 

higher confidence when presented in the same block as high-contrast gratings than when 

presented in the same block as low-contrast gratings (Figure S1 in the Supplementary 

Material available online).
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Finally, it is possible that observers were subject to motoric priming such that a certain 

button press used as a confidence response on one task was likely to be repeated for the next 

task. In order to exclude simple motoric priming as the cause of the observed results, we 

analyzed the trials in which different buttons were pressed for the two tasks in order to 

determine whether confidence leak is preserved when trials with the same motoric response 

are removed. We analyzed the trials in which confidence rating of 1 or 4 was given on one 

of the tasks, while a different confidence rating (i.e., not 1 or not 4, respectively) was given 

on the other. Among these trials, confidence rating of 1 was paired with a confidence of 2, 3, 

and 4 on 38%, 35%, and 27% of the trials, respectively, while confidence rating of 4 was 

paired with a confidence of 1, 2, and 3 on 24%, 30%, and 46% of the trials, respectively. A 

repeated-measures ANOVA confirmed that these patterns are significantly different (F(2,19) 

= 4.6, p = .016), which suggests a simple motoric priming effect cannot explain the data.

Experiment 2

We conducted Experiment 2 in order to obtain a replication of the confidence leak 

phenomenon, as well as to provide stronger evidence that the effects of Experiment 1 were 

not due to motoric or response priming. We kept the stimulus the same but made the two 

confidence ratings as different as possible: one of them was provided on a continuous scale, 

while the other one was collected in an implicit fashion through the “opt out” paradigm in 

which observers are given the option of choosing not to respond if they are not certain 

enough (Figure 1). Further, responses were provided with a mouse to the first task, and with 

a keyboard to the second task. This design minimized the effect of any possible motoric 

priming (see Methods).

We again performed, for each observer, trial-by-trial correlation of the confidence ratings 

from the two tasks. The inter-task correlation was positive for 17 of the 18 observers (Figure 

3A), and was significantly positive (p < .05) for 13 of the 18 observers. Across the whole 

group, the average Fisher-transformed correlation coefficient was .26 with 95% confidence 

interval [.10, .42], which is significantly positive (t(17) = 3.17, p = .006) and corresponds to 

a large effect size (Cohen’s d = 0.75) and strong evidence for the alternative hypothesis 

(Bayes factor = 13.8). Controlling for accuracy, RT, and difficulty on both tasks in a 

regression analysis (as in Experiment 1) produced virtually identical results. As in 

Experiment 1, neither accuracy nor RT on one task predicted confidence on the other task (p 

= .26 and .72, respectively), suggesting that it is specifically the metacognitive assessment of 

the signal’s quality that leaks from one task to another.

To better visualize the magnitude of the effect, in Figure 3B we plotted the probability 

density functions (PDFs) of the confidence distributions in the continuous rating task as a 

function of confidence on the opt-out task. The plot demonstrates the clear tendency for 

confidence to leak from one task to another: the mean of the VAS PDF for trials in which 

observers did not opt out is higher than for trials in which they did.

Further, similarly to Experiment 1, we checked whether the observed confidence leak could 

be due to correlations in signal quality. We could not compute accuracy for the low-

confidence trials in the opt-out task since subjects did not provide a guess when they chose 

to “opt out”, and therefore were unable to repeat the analysis from Experiment 1. Instead, 
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we computed the accuracy correlation between the two tasks restricting the analysis to high-

confidence trials on the opt out task. This correlation (r = .04) was much smaller than the 

correlation for confidence and did not reach statistical significance (p = .08). Further, as in 

Experiment 1, this “performance leak” did not correlate across subjects with the amount of 

confidence leak (r = −.11, p = .67), confirming that confidence leak is not simply due to 

fluctuations in signal quality.

Modeling—To explain the data from the Experiments 1 and 2, we created a model of 

confidence inspired by Bayesian inference. The mathematical description in the model can 

be found in the Methods, while a graphical intuition is presented in Figure 4. The crux of the 

model is that observers attempt to maintain confidence criteria consistently with Bayesian 

principles, according to which confidence should reflect the likelihood of being correct. 

However, computing the likelihood of being correct depends on one’s prior (which we 

always fixed to 0.5 for each choice alternative), expected likelihood function, and evidence 

on the current trial. Our model instantiates the intuition that observers interpret a high 

confidence rating on a previous task as a sign of a high signal-to-noise environment and is 

thus predictive of likelihood that are farther apart on the current trial. In other words, to 

account for the expectation of an easier task, confidence criteria are made more liberal. If the 

expectation is correct, then this adjustment would lead to confidence remaining tightly 

coupled to a particular accuracy level, as prescribed by normative Bayesian theory. 

However, if the expectation is incorrect (i.e., high confidence on the previous task does not 

predict well the difficulty on the current task), this leads to a higher confidence on the 

current task, and therefore to confidence leak. Mathematically, if an observer expects the 

signal-to-noise ratio to change by a factor of F, then to remain Bayes-optimal in her 

confidence ratings, she needs to shift each of her confidence criteria (defined in the 

likelihood space) by a factor of  (see equations 10 and 11 in the Methods).

The model employs a single free parameter θ that reflects the degree to which each observer 

adjusts her expectation of the signal-to-noise ratio on one task as a function of confidence 

rating on the other task. Positive values of θ are indicative of positive between-task 

confidence dependency and therefore indicate the presence of confidence leak. The model 

provided excellent fit to the data in Experiments 1 and 2.

In Experiment 1, the average value of θ was .27, which means that for every increase of 

confidence by one unit (on the 1–4 scale) on the letter identity task, observers expected a 

signal-to-noise increase of .27 on the color task (i.e., a difference of .81 between confidence 

of 1 vs. 4). Further, θ was positive for 25 of the 26 observers in Experiment 1 (t(25) = 6.42, 

p = 10−6; Cohen’s d = 1.26).

Similarly, θ was positive for 17 of the 18 observers in Experiment 2. The highest value for θ 

in Experiment 2 was a significant outlier (3.9 SD higher than the mean group) and was 

therefore omitted from the statistical analyses which demonstrated that θ was significantly 

positive (t(16) = 3.83, p = .001; Cohen’s d = .93). The average value of θ – with the outlier 

excluded – was .016, which means that for every increase of confidence by one unit (on the 

0–100 scale) on the VAS task, observers expected a signal-to-noise increase of .016 on the 
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opt out task (i.e., a difference of 1.6 between confidence of 0 vs. 100). Note that the exact 

value of θ depends on factors such as using the full confidence scale (vs. only a restricted 

range of the scale).

Model fits are shown in Figure 2B and C with open circles, and in Figure 3B with thin lines. 

Despite using a single free parameter, the model was able to fit the data in Experiments 1 

and 2 very well.

Experiment 3

One critical feature of our model is that confidence leak depends solely on observers’ 

expectation of the signal-to-noise ratio on the current task as a function of the confidence 

rating on a previous task. This means that the phenomenon of confidence leak should be 

independent of factors such as the contrast of the stimuli, the individual bias for high or low 

overall confidence ratings, or the attentional demands of the task. In the Supplementary 

Material available online, we report an experiment that demonstrates that confidence leak is 

indeed independent of stimulus contrast. In Experiment 3, we further test whether 

confidence leak depends on attention.

The data from Experiment 3 were first reported in the Supplementary Material in Rahnev et 

al. (2011). In that study we compared conditions of high attention (2 stimuli) vs. low 

attention (4 stimuli) (Figure 5A) in order to understand the relationship between confidence 

and attention. Here, we re-analyzed the same data to check for confidence leak.

We first confirmed that attention led to increased performance, as measured by the signal 

detection measure d’. Indeed, d’ was higher in the high attention condition (average d’ = 

1.73) than in the low attention condition (average d’ = 1.25, t(19) = 6.41, p = 3.8*10−6; 

Figure 5B).

We then checked for confidence leak by determining the amount of confidence 

autocorrelation. The assumption in this analysis was that confidence on the previous trial 

would leak to the confidence on the current trial. The confidence autocorrelation was 

positive for all 20 observers and significant for 18 of them (Figure 5C). Across the whole 

group, the average Fisher-transformed correlation coefficient was .28 with 95% confidence 

interval [.21, .36], which is significantly positive (t(19) = 7.66, p = 3.2*10−7) and 

corresponds to a very large effect size (Cohen’s d = 1.71) and strong evidence for the 

alternative hypothesis (Bayes factor = 2.1*1010). Controlling for accuracy and difficulty in a 

regression analysis (as in Experiments 1 and 2) produced virtually identical results.

Critically, we compared the amount of confidence leak as defined by the beta value in a 

regression in which the confidence on the previous trial was used to predict the confidence 

on the current trial, while controlling for the accuracy and contrast on each trial. We found 

no significant difference in the beta value in the high attention (average beta = .255) and low 

attention (average beta = .261) conditions (t(19) = .22, p = .83; Figure 5D) indicating that 

confidence leak does not depend on attention.
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Our model was able to fit these data too (Figure 5B,D). According to the model fit, the 

amount of confidence leak, as defined by the parameter θ, was positive for 19 of the 20 

observers (t(19) = 7.65, p = 3.2*10−7; Cohen’s d = 1.71), while the average value of θ was .

59 suggesting that increasing confidence from “low” to “high” led observers to expect a 

signal-to-noise increase of .61 on the next trial.

Relationship to metacognition—According to our model, the confidence leak 

phenomenon depends on the extent to which a confidence rating on one task (trial) shifts 

observers’ expectation for the signal-to-noise ratio on a different task (trial). However, since 

in our experiments the environment was kept stable (the difficulty of the tasks on any trial 

could not be predicted from the previous trial), an adjustment in expectation actually led to 

larger noise in observers’ confidence ratings. In our model, larger amounts of confidence 

leak in individual observers lead to larger erroneous shifts in the likelihood functions, which, 

in turn, should result in lower metacognition scores (Maniscalco & Lau, 2012). We checked 

for such an effect by computing, for each observer, the area under the Type 2 ROC curve 

(Type 2 AUC), which is a standard measure of metacognition (Fleming & Lau, 2014; 

Fleming et al., 2010). We then correlated this measure of metacognition with the amount of 

confidence leak as estimated by the Fisher-transformed inter-task correlation value. To 

increase power, we performed the correlation on the combined data from Experiments 1–3. 

We found that confidence leak correlated negatively with metacognition (r = −.36, p = .004, 

95% confidence interval: [−.56, −.12]). The correlation appeared to be influenced by four 

outliers (two observers with Fisher-transformed correlation > 1, and two observers with 

metacognitive score worse than chance = .5) but remained significant when we instead 

applied Spearman’s rank correlation that is less sensitive to outliers (ρ = −.28, p = .02). We 

nonetheless confirmed that the correlation remained significantly negative (r = −.26, p = .04) 

when we removed the outliers altogether (Figure 6). Importantly, when the same analysis 

was performed within each experiment, we obtained similar correlation magnitudes (r = −.

31, −.45, and −.26, respectively) but because of the smaller number of observers in each 

analysis, the p values did not reach the .05 level (p = .12, .06, and .27, respectively). Taken 

together, these results show that, as suggested by our model, the phenomenon of confidence 

leak impairs observers’ metacognitive ability to introspect on their accuracy.

Experiment 4

The empirical relationship between confidence leak and metacognitive accuracy led us to 

explore whether the two may share a common neurophysiological representation. We re-

analyzed the data from McCurdy et al. (2013) which replicated a finding first reported in 

Fleming et al. (2010) that higher metacognitive sensitivity is related to higher gray matter 

volume in the anterior prefrontal cortex (aPFC).

Behaviorally, we found very strong evidence for confidence leak in that dataset too 

(confidence autocorrelation was positive for all 34 observers, mean = .27, 95% CI = [.22, .

31], t(33) = 10.9, p = 1.9*10−12, Cohen’s d = 1.87, Bayes factor = 2.4*1024). In addition, 

replicating the analysis above, we found that confidence leak correlated negatively (r = −.38, 

p = .025) with the measure of metacognitive efficiency (metad’/d’, Maniscalco & Lau, 

2012) originally used in the analyses in McCurdy et al. (2013).
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We then explored whether confidence leak is related to gray matter volume. Given the 

negative relation between confidence leak and metacognitive scores, we expected a negative 

relationship between confidence leak and gray matter volume in prefrontal cortex (PFC) 

regions that had previous been linked to metacognitive sensitivity (Fleming et al., 2010). We 

used the same methods as in McCurdy et al. (2013) and found two regions in right PFC for 

which lower gray matter volume predicted higher confidence leak scores. Both regions 

survived small-volume correction for multiple comparisons (right dorsolateral PFC: peak 

voxel coordinate (41, 32, 22), T = 3.76, cluster familywise error (FWE)-corrected p = 0.032; 

right anterior PFC: peak voxel coordinate (35, 53, 6), T = 3.71, cluster FWE-corrected p = 

0.031; Figure 7).

As we explained above, confidence leak logically leads to lower metacognitive scores. 

However, it is also possible that observers with lower metacognitive capacity are more 

susceptible to confidence leak (i.e., the reverse causal link). Such an effect would raise the 

possibility that the PFC regions identified above do not contribute directly to confidence 

leak. Therefore, we regressed out the influence of metacognitive scores from the confidence 

leak scores and repeated the analyses with the residuals. We found that these new 

confidence leak scores were still significantly predicted by lower gray matter volume in the 

region in right dorsolateral PFC (T = 4.46, cluster familywise error (FWE)-corrected p = 

0.026) but not by the region in anterior PFC (p > .05).

Discussion

Four experiments provided evidence for the novel phenomenon of confidence leak between 

different psychophysical tasks. In the first two experiments, confidence “leaked” between 

the tasks of judging the dominant letter identity and color. In the last two experiments, 

confidence leaked over time in the same task. Our work extends previous demonstrations of 

serial dependence in perceptual decisions (Fischer & Whitney, 2014; Frund et al., 2014; 

Liberman et al., 2014; Zhang et al., 2014) and reveals that such dependence is also present 

for metacognitive judgments.

What causes serial dependence in perception? Previous work has theorized the existence of a 

“continuity field” which arises from the brain’s attempt to use previous information to 

interpret the current visual scene (Fischer & Whitney, 2014; Liberman et al., 2014; Yu & 

Cohen, 2009). This work has shown that in the case of our percepts, this effect is likely to be 

perceptual rather than cognitive. The metacognitive continuity field that we have 

demonstrated appears to arise from a similar process: the brain attempts to interpret the 

fidelity of its current decision based on the perceived fidelity of past decisions. On the other 

hand, the phenomenon of confidence leak clearly arises from higher-level, rather than 

perceptual, processes as demonstrated by the fact that it appears across perceptual tasks and 

is dependent on the brain anatomy of the prefrontal cortex.

Our computational model formalizes the idea that confidence on a previous task is used to 

predict the quality of the perceptual signal in a current task. Using the principles of Bayesian 

inference, the model describes normative behavior in cases in which observers expect that 

the environment has a predictable higher order structure (David et al., 2004) that can be 
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exploited (Fischer & Whitney, 2014; Frund et al., 2014; Liberman et al., 2014). Specifically, 

it has been argued that observers assume the world is autocorrelated because it usually is, 

and that this assumption is not particularly detrimental to performance when the world is not 

autocorrelated (Yu & Cohen, 2009). The model specifies precisely how expecting higher or 

lower signal strength on a given trial ought to translate into an adjustment of the 

metacognitive criterion for confidence. Despite employing a single free parameter, the 

model fitted well a large amount of data (see Figures 2, 3, and 5). It also made two novel 

predictions that were confirmed by additional experiments or analyses. First, the model 

predicted that the phenomenon of confidence leak does not depend on factors that affect the 

perceptual signal such as attention and contrast, which was confirmed in Experiment 3 and 

the control experiment reported in the Supplementary Material, respectively. Second, the 

model predicted that stronger confidence leak leads to impaired metacognitive sensitivity 

(Fleming & Lau, 2014), which was confirmed with the combined data from Experiments 1–

3, as well as in Experiment 4. Thus our model not only fits well the existing data but also 

makes testable novel predictions.

Several components of our model may seem counterintuitive. For example, why do 

observers use one task to predict their performance on a completely different task? We think 

that this is because in the real world even very different tasks tend to vary in difficulty 

together. For instance, foggy conditions, headache, or high level of distractibility could 

decrease the signal-to-noise ratio similarly for both the color and letter identity tasks. 

Another potential concern is whether the fact that high confidence responses make us more 

likely to give higher confidence on the next trial or task would lead to confidence increasing 

indefinitely. We note that confidence ratings are inherently based on both signal strength 

and our perceptual expectations (as well as other potential factors). Thus, even after a 

maximal confidence rating observers can still have a relatively low confidence rating on the 

next task or trial if the signal strength happens to be relatively low. Finally, if observers are 

constantly making predictions about the likelihood functions of the upcoming tasks or trials, 

why did they not learn to adjust these predictions over time? Since the expected likelihood 

functions were only modestly shifted compared to the real likelihood functions, most trials 

would likely not provide enough evidence to overturn observers’ expectation for an 

autocorrelated environment, especially in the absence of trial-to-trial feedback. In a similar 

manner, purely perceptual decisions remain autocorrelated despite the perceptual conflict 

this autocorrelation brings (Fischer & Whitney, 2014; Frund et al., 2014; Liberman et al., 

2014; Zhang et al., 2014).

Our results have several important implications. First, the fact that confidence leak predicts 

metacognitive sensitivity means that we have identified one of the causes of suboptimal 

metacognitive performance in perceptual decision-making (Fleming et al., 2010; Maniscalco 

& Lau, 2012; McCurdy et al., 2013). Second, our findings provide evidence that confidence 

for perceptual decisions is not solely determined by the signal strength in visual cortex, as 

assumed by some dominant theories. For example, theories of population coding in early 

visual cortex (Ma, Beck, Latham, & Pouget, 2006) postulate that visual cortex activity forms 

a distribution from which one can directly read the decision (usually the peak of the 

distribution) and the uncertainty (the width of the distribution)(Drugowitsch & Pouget, 

2012). However, if confidence were determined exclusively based on activity in the visual 
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cortex (and perhaps additionally corrupted by white noise), then we should not have seen 

evidence for confidence leak in Experiments 1 and 2. Indeed, the two tasks in these 

experiments focused on different visual features (color and letter identity), which are often 

assumed to rely on processing in largely independent neural populations (James, James, 

Jobard, Wong, & Gauthier, 2005; Zeki, 1990). Importantly, even for neurons that may be 

sensitive to both shape and color, it is hard to imagine how and why sharper representation 

for one of these features (corresponding to high confidence) could lead to a sharper 

representation for the other feature.

The phenomenon of confidence leak extends previous work by de Gardelle & Mamassian 

(2014) who recently demonstrated the existence of a “common currency” for confidence 

such that the certainty for different perceptual tasks can be directly and meaningfully 

compared. This finding suggests that confidence is represented in generic, task-independent 

format, which is a necessary condition for our proposed mechanism for confidence leak. Our 

results also build on previous work by Mueller and Weidemann (2008) who found 

confidence autocorrelation in the same task but did not put forward an explanation of the 

causes of such confidence autocorrelation or show dependence between different tasks. 

Finally, our results are consistent with previous studies which suggest that confidence is 

influenced by a subjective perception of ease (Koriat, 2008, 2011), but extends this previous 

literature by considering between-task influences.

One alternative explanation for our results is that providing confidence on one task simply 

changes the emotional state of the observer. This explanation is not mutually exclusive with 

the theory that observers engaged in Bayesian inference: for example, it is possible that an 

expectation of higher signal quality puts observers in a better mood. Nevertheless, we 

consider a purely emotional account of the confidence leak phenomenon to be unlikely. 

Indeed, in Experiment 2 we gave observers the opportunity to earn points and presented 

them with the “opt out” paradigm where they could choose not to give a response if they 

were unsure about their response. Further, we explicitly informed them that the optimal 

strategy was to choose the “opt out” option when they had less than 66% certainty in their 

response. Observers were promised a monetary reward for high performance, and it is 

therefore likely that they tried to minimize purely emotional reactions, and instead gave their 

response based on the objectively computed probability of being correct. Despite that, in 

Experiment 2 we observed confidence leak that was just as strong as in the other 

experiments suggesting that a purely emotional account is unlikely.

An important question for future research relates to the limit of the confidence leak 

phenomenon. Future studies should examine whether confidence leak occurs in tasks that 

depend on different senses altogether, such as vision and audition. Beyond perceptual tasks, 

an important question is whether confidence ratings on any task, such as in memory or high-

level cognitive tasks, also show confidence leak. If similar confidence leak is present for 

cognitive tasks, there will likely be a number of real-world implications related, for 

example, to how the level of confidence of witnesses in courts, doctors examining 

mammograms, or drivers deciding whether road conditions are dangerous can be influenced 

by seemingly irrelevant context.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Tasks for Experiments 1 and 2. The stimulus consisted of 40 X’s and O’s that were colored 

in red and blue. The observers’ tasks were to decide whether there were more X’s or more 

O’s (letter identity task), as well as whether there were more red or blue letters (color task). 

For each task, observers indicated their level of confidence. In Experiment 1 confidence was 

indicated using a 1–4 scale. In Experiment 2, for one of the tasks observers used a visual 

analog scale (VAS) by sliding a marker, while for the other question they decided whether 

to provide an answer in order to win a larger reward (thereby indicating high level of 

confidence), or to “opt out” and not give a response thus earning a smaller, guaranteed, 

reward (thereby indicating low level of confidence). To further minimize response priming, 

in Experiment 2 the VAS response was provided with a mouse, while the opt out response 

was provided with a keyboard.
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Figure 2. 
Results of Experiment 1. A) Individual fits in a regression in which only the confidence on 

the letter identity task was used to predict the confidence on the color task. B) Mean 

confidence on the color task increases as a function of the confidence on the letter identity 

task. C) Mean accuracy on the color task does not vary as a function of the accuracy on the 

letter identity task. Open circles signify model fits.
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Figure 3. 
Results of Experiment 2. A) Individual observers’ confidence on one task, measured with 

the visual analogue scale (VAS), as a function of the confidence on the other task, measured 

with opt-out procedure. Positive relationship was found for 17 of the 18 observers. B) 

Probability density functions for the VAS confidence on one task for trials in which the 

observers decided to opt out (i.e., low confidence) vs. trials in which observers provided a 

response (i.e., high confidence) on the other task. For display purposes the curves were 

smoothed with a 10-point moving average. The thick lines indicate data, while the thin lines 

indicate model fits.
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Figure 4. 
A graphical depiction of our model. A) Discrimination between stimuli S1 and S2. Each 

stimulus follows a Gaussian likelihood function (thick lines) on an axis that denotes the total 

evidence available on a given trial. The posterior distributions (thin lines) are drawn for the 

case when the two stimuli have equal prior probability. Bayes-optimal thresholds are placed 

horizontally (black lines) based on predetermined cutoff values (in this case, 0.5 for the 

decision, and 0.75 for the confidence). These cutoffs correspond to vertical criteria defined 

in the likelihood space (green lines), which intersect the horizontal thresholds on the 

posterior distributions. Observers’ goal is to set stable cutoffs in the posterior probability 

space, as depicted in the inset. B) Solid lines represent the distributions from panel A, while 

dashed lines represent the expected distributions in a higher signal-to-noise environment. To 

remain consistent with the threshold placed at a cutoff of 0.75 on the posterior distributions, 

the confidence criteria (defined on the likelihood space) move “inward” (see the new 

criterion vs. baseline criterion in the figure). However, if the expectation for a high signal-

to-noise environment is false, then the observer is using the dashed criteria (based on the 

observer’s expectations) to judge stimuli characterized by the solid distributions. This means 
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that unbeknown to the observer, she is using a lower effective cutoff on the true posterior 

distribution (in the Figure above, the effective cutoff is ~0.6), naturally resulting in a higher 

proportion of high confidence responses.
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Figure 5. 
Experiment 3. A) Observers were asked to decide on the orientation (clockwise vs. counter-

clockwise) of briefly flashed Gabor patches. In different blocks either 2 (high attention 

condition) or 4 (low attention condition) patches were flashed, and observers indicated the 

orientation of a post-cued Gabor patch. B) Capacity d’ was higher in the high-attention, 2-

stimulus condition. C) Individual data showing that the average confidence on the current 

trial is positively correlated with the confidence on the previous trial for all 20 observers. D) 

Confidence autocorrelation was significantly positive (both p’s < .001) for both the high and 

low attention conditions but was not significantly different between the two conditions (p = .

8).
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Figure 6. 
The inter-task confidence leak correlates negatively with metacognition, measured as the 

area under the Type 2 ROC curve (Type 2 AUC), suggesting that the process of confidence 

leak affects negatively observers’ metacognitive performance.
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Figure 7. 
Higher confidence leak scores are predicted by lower gray matter volume in right prefrontal 

cortex (PFC). The image shows a T map thresholded at p = 0.005 uncorrected for display 

purposes, though analyses were performed using small-volume correction for multiple 

comparisons. The regions in right DLPFC and aPFC are shown in blue and green, 

respectively.
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